
VecFusion: Vector Font Generation with Diffusion

Vikas Thamizharasan*1,2 Difan Liu*2 Shantanu Agarwal1 Matthew Fisher2

Michaël Gharbi2 Oliver Wang3 Alec Jacobson2,4 Evangelos Kalogerakis1

University of Massachusetts Amherst1 Adobe Research2 Google Research3 University of Toronto4

(a) Missing Glyph Generation

(b) Few-shot Vector Glyph Generation
Synthesized Vector GlyphsInput Raster Images

Figure 1. We present VecFusion, a generative model for vector fonts. (a) VecFusion generates missing glyphs in incomplete fonts. Blue
glyphs are glyphs that exist in the fonts. Red glyphs are missing glyphs generated by our method. On the right, we show generated control
points as circles on selected glyphs. (b) VecFusion generates vector glyphs given a few exemplar (raster) images of glyphs. Our method
generates precise, editable vector fonts whose geometry and control points are learned to match the target font style.

Abstract

We present VecFusion, a new neural architecture that
can generate vector fonts with varying topological struc-
tures and precise control point positions. Our approach is
a cascaded diffusion model which consists of a raster diffu-
sion model followed by a vector diffusion model. The raster
model generates low-resolution, rasterized fonts with aux-
iliary control point information, capturing the global style
and shape of the font, while the vector model synthesizes
vector fonts conditioned on the low-resolution raster fonts
from the first stage. To synthesize long and complex curves,
our vector diffusion model uses a transformer architecture
and a novel vector representation that enables the model-
ing of diverse vector geometry and the precise prediction
of control points. Our experiments show that, in contrast
to previous generative models for vector graphics, our new
cascaded vector diffusion model generates higher quality
vector fonts, with complex structures and diverse styles.

1. Introduction

Vector fonts are extensively used in graphic design, arts,
publishing, and motion graphics. As opposed to rasterized
fonts, vector fonts can be rendered at any resolution with-
out quality degradation, and can be edited via intuitive con-
trol point manipulation. However, authoring high-quality
vector fonts remains a challenging and labor-intensive task,
even for expert designers. Recent approaches [6, 27, 46]
use VAEs or autoregressive models to automatically synthe-
size vector fonts, but they often struggle to capture a diverse
range of topological structures and glyph variations, due to
the inherent ambiguity of vector curves. As a result, they
frequently create artifacts and imprecise control point po-
sitions, compromising the overall quality and editability of
the synthesized fonts.

In this work, we leverage recent advances in raster
generative models, to design a generative model for vec-

∗Equal contribution

1

ar
X

iv
:2

31
2.

10
54

0v
1

 [
cs

.C
V

]
 1

6
D

ec
 2

02
3

tor fonts. Such a generative model has a number of real
world applications, such as glyph completion, few-shot
style transfer, and font style interpolation. However, train-
ing vector domain generative models is not straightforward:
the irregular data structure of vector graphics prevents naive
applications of commonly used CNN-based architectures.
Furthermore, there is an inherent ambiguity in vector rep-
resentations: infinitely many control points configurations
can produce the same glyph, but not all configurations are
equivalent. In particular, designers carefully create control
points so that the font can be intuitively edited. Generated
vector fonts should follow a similar design goal.

To address the above-mentioned challenges, we propose
a novel two-stage diffusion model, called VecFusion, to
generate high-quality vector fonts. Our pipeline is a cas-
cade of a raster diffusion model followed by a vector dif-
fusion model. The raster diffusion model gradually trans-
forms a 2D Gaussian noise map to a target raster image of
the glyph at low resolution, conditioned on a target glyph
identifier and a target font style. It also generates auxiliary
raster fields to drive the placement of vector control points
in the next stage. The second stage is a vector diffusion
model conditioned on the raster outputs from the first stage.
It is trained to “denoise” a noisy vector glyph representation
into structured curves representing the glyph.

Contributions. This papers makes several contributions.
First, we present a novel two-stage cascaded diffusion
model for high-quality vector fonts generation. This cas-
cading process allows us to effectively “upsample” low-
resolution raster outputs into a vector representation. We
introduce a new mixed discrete-continuous representation
for control points, which allows the vector diffusion model
to automatically predict the number of control points and
paths to use for a glyph, as well as their position. We show
that diffusion models can effectively “denoise” in this new
representation space. Moreover, to capture long-range de-
pendencies and accommodate the irregular nature of vec-
tor representations, we introduce a transformer-based vec-
tor diffusion model. Finally, we show that VecFusion syn-
thesizes fonts with much higher fidelity than state-of-the-art
methods evaluated on datasets with diverse font styles.

2. Related Work

Generative vector graphics. Significant work has been
invested in generative modeling of vector graphics, us-
ing VAEs [21, 27], sequence-to-sequence models like
RNNs [14] or transformers [36]. Recent approaches em-
ploy hierachical generative models [6], while others bypass
the need for direct vector supervision [35], using a differen-
tiable rasterizer [24].

Font generation. Due to their ubiquity and central role
in design, fonts have received special attention and dedi-
cated synthesis methods. Many methods learn to generate
raster fonts from a large set of reference glyphs [12, 19]
or a few exemplar images [1, 7, 13, 22, 33, 40]. These
methods produce visually appealing raster fonts in a vari-
ety of styles, but cannot generate vector outputs, thus they
are limited by resolution and pixelization artifacts. In the
task of vector font generation, early approaches use mor-
phable template models [39], or manifold learning to enable
interpolation/extrapolation of existing fonts [5], while re-
cent methods use deep generative models [25, 45]. The first
generation of deep learning solution sometimes generated
glyphs with strong distortion and visual artifacts. Methods
like DeepVecFont-v2 [46] improve the synthesis quality us-
ing a transformer architecture. Although these methods can
generate visually pleasing vector fonts, effectively model-
ing a diverse distribution of glyphs and topologies remains
a challenge. DeepVecFont-v2, for instance, only supports a
limited number of glyphs (52 characters).

Diffusion models. To address the challenges in vector
field design, we leverage diffusion models [15] for their
ability to model diverse and complex data distributions. Un-
like previous methods [9, 43] that use CNN or RNN-based
vector diffusion models, our approach uses a transformer-
based vector diffusion model to handle long-range depen-
dencies inherent to complex vector glyphs. Furthermore,
our two-stage raster–vector approach and novel vector rep-
resentation enable precise Bézier curve prediction on chal-
lenging artist-designed font datasets.

Cascaded diffusion. Cascaded diffusion models [17]
have achieved impressive synthesis quality across various
domains, including images [2, 38], videos [4, 16] and
3D [18, 26]. In the same spirit, we introduce a cascaded
diffusion model for high-quality vector font generation.

Image vectorization. Image vectorization approaches [3,
29, 41] output a vector graphics representation from a raster
image. Dedicated for line drawing vectorization, many
learning-based methods [20, 31, 34] have been proposed.
Although these methods can produce high-quality vector
graphics, they often create redundant or imprecise con-
trol points and fail to produce high-fidelity results on low-
resolution raster images. Our diffusion model can generate
precise vector geometry from low-resolution raster images,
also providing a new perspective for image vectorization.

3. Method
Overview. The goal of VecFusion is to automatically gen-
erate vector graphics representations of glyphs. The input
to our model is the Unicode identifier for a target character,

2

1

2 3

456

1

2
3

4

5

6

7

8
9

10

11
12

13

14

15

16

1718

Char name

Char look-up table Font look-up table Font style encoding

Char embedding

 xT
 xt

 x0

 yT
 yt

 y0

Font name Reference raster glyphs

Font conditioning

cross-attncross-attncross-attn

Encoding

Figure 2. Overview of the VecFusion’s cascade diffusion pipeline.
Given a target character and font conditioning, our raster diffusion
stage (“Raster-DM”) produces a raster image representation of the
target glyph in a series of denoising steps starting with a noise
image. The raster image is encoded and input to our vector diffu-
sion stage (“Vector-DM”) via cross-attention. The vector diffusion
stage produces the final vector representation of the glyph also in a
series of denoising steps starting with a noise curve representation.

also known as code point, and a target font style. The target
font style can be specified in the form of a few representa-
tive raster images of other glyphs in that style or simply by
the font style name. Figure 2 shows an example of the gen-
erated vector representation for the glyph corresponding to
the input target letter “sha” of the Devanagari alphabet and
the target font style “Mukta”. Our method is trained once
on a large dataset of glyphs from various font styles. Once
trained, it can generate glyphs not observed during train-
ing. Our model has several applications: generate missing
glyphs in incomplete fonts, synthesize novel fonts by trans-
ferring the style of a few exemplar images of glyphs, or
interpolate font styles.

Output vector representation. The generated vector rep-
resentation for a glyph is in the form of ordered sequences
of control points in cubic Bézier curve paths commonly
used in vector graphics. Control points can be repeated in
the generated sequences to manipulate the continuity of the
vector path. Our method learns to generate an appropri-
ate number of vector paths, control points, and point repeti-
tions tailored to each character and font style. In addition, it
learns the proper ordering of control points for each path, in-
cluding where first and last control points are placed, since
their placement patterns often reflect artist’s preferences.

Pipeline. Our method consists of a two-stage cascade. In
the first stage (raster diffusion model, or in short “Raster-
DM”, Figure 2), conditioned on the target character code
point and font style, our method initiates a reverse diffu-
sion process to generate a raster image. The generated
raster image captures the shape and style of the target glyph
at low resolution. Additionally, we generate an auxiliary

set of control point fields encoding information for con-
trol point location, multiplicity, and ordering. In the sec-
ond stage (vector diffusion model or “Vector-DM”, Figure
2), our method proceeds by synthesizing the vector format
capturing fine-grained placement of control points guided
by the raster glyph and control point fields generated in the
first stage. We observed that this two-stage approach results
in generating higher-fidelity fonts compared to using diffu-
sion in vector space directly or without any guidance from
our control point fields. In the next sections, we discuss our
raster and vector diffusion stages in more detail.

3.1. Raster diffusion stage

Given a target character identifier and font style, the raster
diffusion stage creates a raster image x0 encoding infor-
mation about the target glyph in pixel space (Figure 2,
“Raster-DM”). This is performed through a diffusion model
that gradually transforms an image xT sampled from a unit
Gaussian noise distribution towards the target raster image
x0 in a series of T denoising steps. At each step t = 1...T ,
a trained neural network executes the transition xt → xt−1

by predicting the noise content to be removed from the im-
age xt. This denoiser network is conditioned on the input
character identifier and font style. In the next paragraphs,
we explain the encoding of the input character codepoint
and font style, the target raster image, the denoiser network,
and finally the training and inference processes of this stage.

Character identifier embeddings. Inspired by similar
approaches in NLP to represent words [42], we create a
one-hot vector representation for all unique character code-
points available in our dataset. Given a target character’s
codepoint, its one-hot vector representation is mapped to
a continuous embedding g through a learned look-up ta-
ble. The look-up table stores embeddings for all codepoints
available in our dataset and retrieves them using the one-hot
vector as indices.

Font style conditioning. To encode the font style, we ex-
perimented with two approaches depending on the appli-
cation. To generate missing glyphs in incomplete fonts,
we create a one-hot vector representation for all font styles
available in our dataset. Given a target font style, its one-
hot vector is mapped to a continuous embedding f through
a learned look-up table as above. To generate glyphs condi-
tioned on a few exemplar images, we concatenate the input
images channel-wise and pass them through a convnet to
get a font style feature map f (see Appendix section: 5).

Target raster image. The target x0 produced in the raster
diffusion stage is a N × N image made of the following
channels:

3

Raster glyph

Control point �eld
Figure 3. Tar-
get x0

(a) the first channel is composed of an image
representing a grayscale rasterized image of
the target glyph (Figure 3, top).
(b) the rest of the channels store control
point fields (Figure 3, bottom), whose goal
is to encode information about the control
point location, multiplicity, and ordering.
During training, this control point field is
created by rendering each control point as
a Gaussian blob centered at the 2D coordi-
nates (x,y) of the control point. The coordi-
nates are normalized in [0, 1]2. We also modulate the color
of the blob based on (a) the index of the control point in
the sequence of control points of its vector path (e.g., first,
second, third etc control point), and (b) its multiplicity. A
look-up function is used to translate the ordering indices
and multiplicities of control points to color intensities. In
our implementation, we use 3 channels for this control point
field, which can practically be visualized as an RGB image
(Figure 3, bottom). These channels are concatenated with
the raster image of the glyph, forming a 4-channel image.

Raster denoiser. The denoiser is formulated as a UNet ar-
chitecture [11]. The network takes the 4-channel image xt

as input and is conditioned on the embedding of time step
t. Following [37], we add the character’s codepoint embed-
ding g to time step embedding and pass it to each residual
block in the UNet. For the font style conditioning, we add
it to the time step embedding if it is a single embedding. If
the font style is encoded as a spatial feature map, following
[37], we flatten the feature map and inject it to the UNet via
cross-attention.

The denoiser network predicts the per-channel noise
component of the input image, which is also a 4-channel
image (see Appendix section: 5).

Training loss The network is trained to approximate
an optimal denoiser under the condition that the im-
ages x1,x2, ...xT are created by progressively adding
Gaussian noise to the image of the previous step [15]:
q(xt|xt−1) = N

(
xt;

√
(1− βt)xt−1, βtI

)
, where βt rep-

resents the variance of the Gaussian noise added at each
step. The image xT converges to a unit Gaussian distri-
bution as T → ∞, or practically a large number of steps
[15]. Following [15], we train the denoiser network with
the training objective ||ϵ(xt, t, f ,g) − ϵ||2 i.e. the mean-
squared error loss between the added training noise ϵ at each
step and the predicted noise ϵ(xt, t, f ,g) from the network.
The loss is used to train the denoiser and the look-up tables.

Inference. At test time, given sampled unit Gaussian
noise xT , a target character embedding g and font style con-

ditioning f , the network is successively applied in T steps
to generate the target raster image.

Implementation details. In all our experiments, we use
the following hyperparameters. Following [32], we set the
number of diffusion steps T to 1000 and used cosine noise
schedule in the forward diffusion process. We used the
AdamW optimizer [28] with learning rate 3.24 · 10−5. The
feature embeddings for character identifiers are set to be
896-dimensional. The control points are rendered as Gaus-
sian blobs with radius of 2 pixels. The raster image resolu-
tion is set to 64 × 64. Lower resolutions cause increasing
overlaps between the rendered blobs, making the control
point field more ambiguous. Increasing the resolution in-
creases the computational overhead for the raster denoiser.
The above resolution represented a good trade-off, as we
practically found in our experiments. As mentioned above,
we use 3 channels to encode control point ordering and mul-
tiplicity as colors. We practically observed that 3 channels
were enough to guide the vector diffusion stage. Depending
on the dataset, fewer channels could be used instead e.g.,
in cases of glyphs with few control points, or no multiplic-
ities. In general, these hyperparameters can be adjusted for
different vector graphics tasks – our main point is that the
raster images and fields are useful as guidance to produce
high-fidelity vector fonts, as shown in our ablation.

3.2. Vector diffusion stage

Given the raster image generated in the previous stage, the
vector diffusion stage creates a tensor y0 representing the
target glyph in vector graphics format (Figure 2 “Vector-
DM”). The reverse diffusion process gradually transforms a
noise tensor yT sampled from a unit Gaussian noise distri-
bution towards a tensor y0 in a series of denoising steps. In
this domain, the noise represents noise on the spatial posi-
tion and path membership of the control points, rather than
the intensity of the pixel values as in the raster domain. In
the next paragraphs, we explain the tensor representation,
the denoiser, training and inference of this stage.

Target tensor. The target tensor y0 is a M × D tensor
(Figure 4), where M represents an upper bound to the to-
tal number of control points a glyph can have. Each entry
in the tensor contains a D-dimensional representation of a
control point. Specifically, each entry stores the following
information:
(a) the index of the vector path the control point belongs to
i.e, its path membership. During training, each vector path
is assigned a unique index. Since the vector paths can be
re-ordered arbitrarily without changing the resulting glyph,
to reduce unnecessary variability during learning, we lexi-
graphically sort vector paths using the coordinates of their
control point closest to the top-left corner of the glyph raster

4

Vector glyph Target representation

grid cell X index path index

0.34 0.47

0.15 0.20

0.00 0.00

0.00 0.00

1 1 0 0 0 1 0 0
0 1 1 0 0 1 0 0

0 0 0
0 0 0

00 0 0 00 0 0
00 0 0 00 0 0

1 1 1
1 1 1

CP1

CP2

NULL

NULL

CP21 0.03 0.5001 0 1 01 1 10 0 1

grid cell Y index

Figure 4. Target tensor representation y0. Our vector diffusion
model “denoises” this tensor representation which includes both
path membership and spatial position for control points. The dis-
crete values (path membership, grid cell coordinates) are denoised
in the continuous domain and then discretized. The control point
locations are computed from the predicted grid cell coordinates
plus continuous displacements (∆x,∆y) from them.

image as sorting keys. Following [8], the resulting sorted
path index is converted to binary bits. For each control point
entry, we store the binary bits of its vector path. A null en-
try (i.e., all-one bits) is reserved for entries that do not yield
control points – in this manner, we model vector fonts with
a varying number of control points and paths.
(b) the index of the grid cell containing the control point.
We define a coarse P × P grid over the image, with P 2

corresponding grid cell centroids. We assign each control
point to the grid cell that has the closest centroid. In case
the control point lies on the boundary of two cells, we use a
round operation that assigns it in the second cell. Similar to
path membership, the grid cell index is converted to binary
bits. For each control point entry, we store the binary bits
of its assigned grid cell.
(c) the continuous coordinates of the control point ex-
pressed relative to the center of the grid cell it belongs to.
These are two continuous values capturing the location of
each control point. We found that capturing control point
locations relative to cell centers achieves the best perfor-
mance. Since the generated raster control point field (ap-
proximately) highlights regions storing control points, map-
ping the control point field to discrete cell indices plus small
continuous residuals, or displacements, is an easier task and
reduces the continuous coordinate variability needed to be
captured by the model.

Denoiser. The denoiser for this stage is formulated as an
encoder-only transformer [10], which takes the tensor yt as
input and is conditioned on the embedding of time step t,
and the generated raster image x0 from the raster diffusion
model. We use a ConvNet to encode the raster image x0

into high-dimensional features, which are input to the trans-
former via cross-attention similar to [37]. The transformer
predicts the noise content as a M ×D tensor at each step 5.

Training loss. We train the denoiser network according
to mean-squared error loss between training noise and pre-

dicted one at sampled time steps: ||ϵ(yt,x0, t)− ϵ||2.

Inference. At test time, given a sampled tensor yT from
unit Gaussian noise and a generated raster image x0 of the
previous stage, the denoiser network is applied in a series of
T steps to generate the target tensor y0. Following the Ana-
log Bits approach [8], the discrete binary bits in the target
tensor representation are modeled as real numbers. These
are simply thresholded to obtain the final binary bits at in-
ference time. Given the predicted path membership, we cre-
ate a set of vector paths according to the largest generated
control path index number. Each non-null entry in the gen-
erated tensor yields a control point. The control points are
implicitly ordered based on their entry index. The location
of the control point is defined as the coordinate center of
the assigned cell in the generated tensor plus the predicted
relative displacement. Given this generated information, we
directly reconstruct the vector paths without requiring any
further refinement or post-processing. 3

Implementation details. In our implementation, we set
the upper bound for the number of control points to M =
256, which was sufficient for the datasets we experimented
with. We use 3 bits to represent the path membership, which
can support up to 7 distinct vector paths. This was also suf-
ficient for the datasets in our experiments. We set P to 16,
resulting in 256 grid cells which can be represented by 8
binary bits. Together with the two-dimensional relative dis-
placement, the final dimension of our target tensor D is 13
in our experiments. Similar to our raster diffusion model,
we set the number of diffusion steps T to 1000, used co-
sine noise schedule, and the AdamW optimizer [28] with
learning rate 3.24 ·10−5. During testing, we use the DDPM
sampler [15] with 1000 steps.

4. Results

In this section, we present experiments in three different ap-
plication scenarios for our method. In the first scenario, we
address the problem of missing glyph generation for a font
(Section 4.1). Many users often experience a frustrating sit-
uation when they select a font they prefer, only to discover
that it lacks certain characters or symbols they wish to uti-
lize. This issue is particularly prevalent when it comes to
non-Latin characters and mathematical symbols. As a sec-
ond application, we apply our method for few-shot font style
transfer (Section 4.2), where the desired font is specified in
the form of a few exemplar raster glyphs, and the goal is
to generate vector glyphs in the same font. Finally, we dis-
cuss interpolation of font styles (Section 4.3) i.e., generate
glyphs whose style lies in-between two given fonts.

5

4.1. Generation of missing Unicode glyphs

Existing public datasets or benchmarks to evaluate glyph
generation are limited to a specific alphabet (e.g., Latin).
Below we discuss a new dataset for evaluating generation of
glyphs across different languages, math symbols, and other
signs common in the Unicode standard. Then we discuss
comparisons, ablation study, metrics for evaluation, and re-
sults.

Dataset. We collected a new dataset of 1424 fonts from
Google Fonts. The dataset contains 324K glyphs, cover-
ing 577 distinct Unicode glyphs in various languages (e.g.,
Greek, Cyrillic, Devanagari), math symbols and other signs
(e.g. arrows, brackets, currency). We randomly partition
the dataset into 314K-5K-5K glyphs for training, valida-
tion, and testing respectively.

Comparison. We compare with “ChiroDiff” [9], which
applies diffusion models to generate Kanji characters as
polylines. Their method uses a set-transformer [23] to ob-
tain a latent embedding from a 2D point set as the input con-
dition. We replace their input condition to their diffusion
model with the embeddings of characters and fonts using
look-up tables, as done in our raster diffusion model. We
trained and tuned their method, including the embeddings,
to predict Bézier curve control points using our dataset, as
in our method.

Ablation. In addition, we evaluate the following alterna-
tive variants of our method: (a) Vector only: in this ablation,
we remove the raster diffusion model and use the vector
diffusion model only – in this case, the font and character
embeddings are used as input conditions to the vector dif-
fusion model. (b) No control point fields: we remove the
RGB control point field from the target raster image of our
raster diffusion model – in this case, we condition the vector
diffusion model only on the single-channel raster image of
the glyph. (c) Predict continuous coordinates only: in the
vector diffusion model, instead of predicting discrete grid
cell indices plus displacements relative to cell centers, we
directly predict the absolute coordinates x and y per control
point.

Evaluation metrics. We compare the generated glyphs
with ones designed by artists in the test split. We use the
following metrics:
(a) L1: we compare the image-space absolute pixel differ-
ences of glyphs when rasterized. We use the same rasterizer
for all competing methods and variants. This reconstruction
error was also proposed in [45] for glyph evaluation.
(b) CD: we measure the bidirectional Chamfer distance be-
tween artist-specified control points and generated ones.

Method L1 ↓ CD ↓ #cp diff ↓ #vp diff ↓
Ours 0.014 0.16 3.05 0.03
Ours (cont. coord. only) 0.020 0.18 3.30 0.03
Ours (no cp fields) 0.016 0.60 12.46 0.13
Ours (vector only) 0.016 0.68 9.36 0.11
ChiroDiff [9] 0.044 1.66 56.37 0.77

Table 1. Missing glyph generation evaluation on the full test set.

Method L1 ↓ CD ↓ #cp diff ↓ #vp diff ↓
Ours 0.021 0.35 3.92 0.04
Ours (cont. coord. only) 0.028 0.40 4.11 0.04
Ours (no cp fields) 0.026 0.83 12.90 0.16
Ours (vector only) 0.025 0.84 9.72 0.15
ChiroDiff [9] 0.072 3.63 71.97 1.02

Table 2. Missing glyph generation evaluation on a more challeng-
ing subset of our test set where test glyphs are from different glyph
families compared to any glyphs in the training set.

Method L1 ↓ CD ↓ #cp diff ↓ #vp diff ↓

Ours 0.069 0.46 15.05 0.033
DeepVecFont-v2 [46] 0.098 1.05 34.84 0.052

Table 3. Few-shot font style transfer evaluation.

(c) #cp diff: we measure the difference between the number
of artist-made control points and predicted ones averaged
over all paths.
(d) #vp diff: we measure the difference between the number
of artist-specified vector paths and predicted ones.

For all the above measures, we report the averages over
our test split. We propose the last three metrics for compar-
ing glyphs in terms of the control point and path character-
istics, which are more relevant in vector font design.

Quantitative Results. Table 1 shows the quantitative re-
sults for ChiroDiff and the alternative variants of our
method on the full test set. The full version of our method
outperforms ChiroDiff and our reduced variants on all eval-
uation metrics. We note that a glyph in one family variation
e.g., italics might have a different variation in the same font,
e.g., bold. Although two different family variations of the
same glyph often have largely different control point loca-
tions and distributions, we create an even more challeng-
ing subset of the test set where we removed all test glyphs
that had a different family variation in the same font within
the training set. The results on this subset are reported in
2. Chirodiff and other variants still have much higher er-
ror than ours. This indicates that our two-stage approach,
and the mixed discrete-continuous representation of vector
paths along with the control point fields are all important to
achieve high performance.

6

Bitter †

Orbitron ‡

Yellowtail ∗

Vidaloka ∗

G ₫ ₤ ¾ ₡ Ħ Ψ β ξ Φ ‰

Figure 5. An incomplete font matrix from the Google Font dataset, each row represents a font and all glyphs in one column have the same
Unicode. Glyphs in the green boxes are missing glyphs generated by our method. ∗: Regular, ‡: ExtraBold, †: ItalicVariableFontWidth.

GT Ours Ours ChiroDiff
full No cp field vector only

Ours Ours
cont. coord.

only

Figure 6. Glyph generation results for test cases from the Google
font dataset. We compare our method to ChiroDiff [9] and de-
graded variants of our method. Our full method is able to generate
glyphs that are much closer to artist-made (“ground-truth”/“GT”)
ones compared to alternatives.

Existing glyphs Generated missing glyphs
₤

K

Figure 7. Stochastic sampling: the results are generated with three
different random seeds.

Qualitative Results. Figure 6 shows qualitative compar-
isons for missing glyph generation. Compared to our
method, we observe that ChiroDiff produces imprecise con-
trol points and curve structure, resulting in significant dis-
tortions and artifacts in the synthesized glyphs. We also
observed degraded results in all alternative variants of our

Input reference (a) (b) (c)

Figure 8. Few-shot style transfer results. On the left, we show the
reference glyphs belonging to a novel font style. On the right, we
show (a) the artist-made (“ground-truth”) glyphs, (b) our gener-
ated ones, and (c) the ones produced by DeepVecFont-v2 [46].

method in terms of misplaced or skipped control points.
Figures 1,5 show additional results of missing glyph gener-
ation for our method on the Google Font dataset for various
target fonts and characters. Figure 7 demonstrates multiple
samples generated by our diffusion pipeline with random
seeds. The samples adhere to the same font style, while

7

Arimo-
MediumItalic

DancingScript

Courgette-
Regular

Orbitron-Medium

Orbitron-Bold RobotoSlab-
ExtraLight

Figure 9. Font interpolation. We perform linear interpolation in embedding space from source font (left) → target font (right).

having subtle variation in the glyph proportions and control
point distributions. From a practical point of view, a de-
signer can explore multiple such samples, and choose the
most preferred variant.

In Figure 12, instead of using the vector diffusion model,
we use off-the-shelf vectorization methods on the raster
glyph image produced by the raster diffusion stage. As
shown in the comparison, this approach often fails to pro-
duce coherent curve topology and structure.

4.2. Few-shot font style transfer

For this application, we compare with DeepVecFont-v2
[46], which previously demonstrated few-shot font style
transfer. To perform the comparison, we use the dataset pro-
posed in the DeepVecFont-v2 paper. The dataset includes
52 lowercase and uppercase Latin characters in various font
styles – there are total 8, 035 training fonts and 1, 425 test
ones. Each test case contains 4 reference characters from
a novel font (unobserved during training). The reference
characters are available in both vector and raster format.
Methods are supposed to transfer this novel font style to
testing characters. We note that DeepVecFont-v2 requires
the vector representation of the reference characters as addi-
tional input condition, while our method only uses the raster
reference images. From this aspect, our method can be con-
sidered as disadvantaged in this comparison.

Quantitative results. Table 3 shows numerical compar-
isons based on the same evaluation metrics as in the missing
glyph generation application. Despite the disadvantage, our
method outperforms DeepVecFont-v2 on all metrics.

Qualitative results. Figure 8 demonstrates font style
transfer results. We observed that DeepVecFont-v2 tends to
succeed in capturing the font style of the reference glyphs,
yet still often produces subtle distortions in the vector paths.
Our method produces results that match the style of refer-
ences glyphs with less artifacts, even in challenging styles.
Additional results are in Figure 1 and 11.

4.3. Font style interpolation

Finally, we experimented with interpolating two given font
styles. To perform interpolation, we first obtain the font
emdeddings from our trained look-up table, then perform
linear interpolation of these embeddings. Our diffusion
model is then conditioned on the interpolated embedding
vector for font style. We demonstrate qualitative results in
Figure 9. Our results smoothly interpolates artistic proper-
ties of the source and target font, such as the variable stroke
width and local curvature, while preserving structural and
topological properties of the glyphs e.g., their genus.

5. Conclusion
We presented a generative model of vector fonts. We show
that a cascade of a raster and vector diffusion model can
overcome the challenges of neural parametric curve predic-
tion, and generate editable vector fonts with precise geom-
etry and control point locations.

Cinzel font Ours -

Figure 10. Failure case.

Limitations. We require
vector paths as supervision
and cannot take advantage of
raster images as additional
supervision that may be
available. Another limitation
is shown in Figure 10. Cinzel is an uppercase font. For
the missing glyph ₫(dong), a lowercase glyph, our method
produces an uppercase glyph. While the generated glyph
preserves the style of the font and the structure of the glyph
(the stroke), it does not preserve the symbolic meaning of
the glyph.

Future work. Generative models of images in the raster
domain have been successfully used to learn complex pri-
ors about the visual world that can be used in various tasks
such as inpainting and 3D tasks. We believe that a gen-
erative model for vector fonts could also have additional
downstream applications, such as automatic completion of

8

vector logos or icons, or be extended to produce 3D para-
metric curves or surfaces.

References
[1] Samaneh Azadi, Matthew Fisher, Vladimir G Kim, Zhaowen

Wang, Eli Shechtman, and Trevor Darrell. Multi-content
gan for few-shot font style transfer. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 7564–7573, 2018. 2

[2] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat,
Jiaming Song, Karsten Kreis, Miika Aittala, Timo Aila,
Samuli Laine, Bryan Catanzaro, et al. ediffi: Text-to-image
diffusion models with an ensemble of expert denoisers. arXiv
preprint arXiv:2211.01324, 2022. 2

[3] Mikhail Bessmeltsev and Justin Solomon. Vectorization of
line drawings via polyvector fields. ACM Trans. Graph., 38
(1):9:1–9:12, 2019. 2, 11, 12

[4] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dock-
horn, Seung Wook Kim, Sanja Fidler, and Karsten Kreis.
Align your latents: High-resolution video synthesis with la-
tent diffusion models. arXiv preprint arXiv:2304.08818,
2023. 2

[5] Neill DF Campbell and Jan Kautz. Learning a manifold of
fonts. ACM Transactions on Graphics (ToG), 33(4):1–11,
2014. 2

[6] Alexandre Carlier, Martin Danelljan, Alexandre Alahi, and
Radu Timofte. Deepsvg: A hierarchical generative network
for vector graphics animation. Advances in Neural Informa-
tion Processing Systems, 33:16351–16361, 2020. 1, 2

[7] Junbum Cha, Sanghyuk Chun, Gayoung Lee, Bado Lee,
Seonghyeon Kim, and Hwalsuk Lee. Few-shot compo-
sitional font generation with dual memory. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XIX 16, pages
735–751. Springer, 2020. 2

[8] Ting Chen, Ruixiang ZHANG, and Geoffrey Hinton. Analog
bits: Generating discrete data using diffusion models with
self-conditioning. In The Eleventh International Conference
on Learning Representations, 2023. 5

[9] Ayan Das, Yongxin Yang, Timothy Hospedales, Tao Xi-
ang, and Yi-Zhe Song. Chirodiff: Modelling chirographic
data with diffusion models. In International Conference on
Learning Representations, 2023. 2, 6, 7

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 5, 11

[11] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in Neural Informa-
tion Processing Systems, 34:8780–8794, 2021. 4, 11

[12] Yiming Gao and Jiangqin Wu. Gan-based unpaired chinese
character image translation via skeleton transformation and
stroke rendering. In proceedings of the AAAI conference on
artificial intelligence, pages 646–653, 2020. 2

[13] Yue Gao, Yuan Guo, Zhouhui Lian, Yingmin Tang, and Jian-
guo Xiao. Artistic glyph image synthesis via one-stage few-

shot learning. ACM Transactions on Graphics (TOG), 38(6):
1–12, 2019. 2

[14] David Ha and Douglas Eck. A neural representation of
sketch drawings. arXiv preprint arXiv:1704.03477, 2017.
2

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. arXiv preprint arxiv:2006.11239,
2020. 2, 4, 5

[16] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang,
Ruiqi Gao, Alexey Gritsenko, Diederik P Kingma, Ben
Poole, Mohammad Norouzi, David J Fleet, et al. Imagen
video: High definition video generation with diffusion mod-
els. arXiv preprint arXiv:2210.02303, 2022. 2

[17] Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet,
Mohammad Norouzi, and Tim Salimans. Cascaded diffusion
models for high fidelity image generation. J. Mach. Learn.
Res., 23(47):1–33, 2022. 2

[18] Ka-Hei Hui, Ruihui Li, Jingyu Hu, and Chi-Wing Fu. Neural
wavelet-domain diffusion for 3d shape generation. In SIG-
GRAPH Asia 2022 Conference Papers, pages 1–9, 2022. 2

[19] Yue Jiang, Zhouhui Lian, Yingmin Tang, and Jianguo Xiao.
Scfont: Structure-guided chinese font generation via deep
stacked networks. In Proceedings of the AAAI conference on
artificial intelligence, pages 4015–4022, 2019. 2

[20] Byungsoo Kim, Oliver Wang, A Cengiz Öztireli, and Markus
Gross. Semantic segmentation for line drawing vectorization
using neural networks. In Computer Graphics Forum, pages
329–338. Wiley Online Library, 2018. 2

[21] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013. 2

[22] Yuxin Kong, Canjie Luo, Weihong Ma, Qiyuan Zhu, Sheng-
gao Zhu, Nicholas Yuan, and Lianwen Jin. Look closer to
supervise better: One-shot font generation via component-
based discriminator. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
13482–13491, 2022. 2

[23] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Se-
ungjin Choi, and Yee Whye Teh. Set transformer: A frame-
work for attention-based permutation-invariant neural net-
works. In International conference on machine learning,
pages 3744–3753. PMLR, 2019. 6

[24] Tzu-Mao Li, Michal Lukáč, Michaël Gharbi, and Jonathan
Ragan-Kelley. Differentiable vector graphics rasterization
for editing and learning. ACM Transactions on Graphics
(TOG), 39(6):1–15, 2020. 2

[25] Zhouhui Lian, Bo Zhao, Xudong Chen, and Jianguo Xiao.
Easyfont: a style learning-based system to easily build your
large-scale handwriting fonts. ACM Transactions on Graph-
ics (TOG), 38(1):1–18, 2018. 2

[26] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa,
Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja Fi-
dler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-
resolution text-to-3d content creation. arXiv preprint
arXiv:2211.10440, 2022. 2

[27] Raphael Gontijo Lopes, David Ha, Douglas Eck, and
Jonathon Shlens. A learned representation for scalable vec-
tor graphics. In Proceedings of the IEEE/CVF International

9

Conference on Computer Vision, pages 7930–7939, 2019. 1,
2

[28] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 4, 5

[29] Xu Ma, Yuqian Zhou, Xingqian Xu, Bin Sun, Valerii Filev,
Nikita Orlov, Yun Fu, and Humphrey Shi. Towards layer-
wise image vectorization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 16314–16323, 2022. 2

[30] Xu Ma, Yuqian Zhou, Xingqian Xu, Bin Sun, Valerii Filev,
Nikita Orlov, Yun Fu, and Humphrey Shi. Towards layer-
wise image vectorization. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 2022.
11, 12

[31] Haoran Mo, Edgar Simo-Serra, Chengying Gao, Changqing
Zou, and Ruomei Wang. General virtual sketching frame-
work for vector line art. ACM Transactions on Graphics
(TOG), 40(4):1–14, 2021. 2

[32] Alexander Quinn Nichol and Prafulla Dhariwal. Improved
denoising diffusion probabilistic models. In International
Conference on Machine Learning, pages 8162–8171. PMLR,
2021. 4

[33] Song Park, Sanghyuk Chun, Junbum Cha, Bado Lee, and
Hyunjung Shim. Multiple heads are better than one: Few-
shot font generation with multiple localized experts. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 13900–13909, 2021. 2

[34] Ivan Puhachov, William Neveu, Edward Chien, and Mikhail
Bessmeltsev. Keypoint-driven line drawing vectorization
via polyvector flow. ACM Transactions on graphics, 40(6),
2021. 2

[35] Pradyumna Reddy, Michael Gharbi, Michal Lukac, and
Niloy J Mitra. Im2vec: Synthesizing vector graphics without
vector supervision. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
7342–7351, 2021. 2

[36] Leo Sampaio Ferraz Ribeiro, Tu Bui, John Collomosse, and
Moacir Ponti. Sketchformer: Transformer-based representa-
tion for sketched structure. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 14153–14162, 2020. 2

[37] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022. 4, 5, 11

[38] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
et al. Photorealistic text-to-image diffusion models with deep
language understanding. Advances in Neural Information
Processing Systems, 35:36479–36494, 2022. 2

[39] Rapee Suveeranont and Takeo Igarashi. Example-based au-
tomatic font generation. In Smart Graphics: 10th Interna-
tional Symposium on Smart Graphics, Banff, Canada, June
24-26, 2010 Proceedings 10, pages 127–138. Springer, 2010.
2

[40] Licheng Tang, Yiyang Cai, Jiaming Liu, Zhibin Hong, Ming-
ming Gong, Minhu Fan, Junyu Han, Jingtuo Liu, Errui Ding,
and Jingdong Wang. Few-shot font generation by learning
fine-grained local styles. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 7895–7904, 2022. 2

[41] Xingze Tian and Tobias Günther. A survey of smooth vector
graphics: Recent advances in representation, creation, ras-
terization and image vectorization. IEEE Transactions on
Visualization and Computer Graphics, 2022. 2

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 3

[43] Qiang Wang, Haoge Deng, Yonggang Qi, Da Li, and Yi-Zhe
Song. Sketchknitter: Vectorized sketch generation with dif-
fusion models. In The Eleventh International Conference on
Learning Representations, 2023. 2

[44] Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan.
Real-esrgan: Training real-world blind super-resolution with
pure synthetic data. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 1905–1914,
2021. 11, 12

[45] Yizhi Wang and Zhouhui Lian. Deepvecfont: Synthesizing
high-quality vector fonts via dual-modality learning. ACM
Transactions on Graphics, 40(6), 2021. 2, 6

[46] Yuqing Wang, Yizhi Wang, Longhui Yu, Yuesheng Zhu, and
Zhouhui Lian. Deepvecfont-v2: Exploiting transformers to
synthesize vector fonts with higher quality. arXiv preprint
arXiv:2303.14585, 2023. 1, 2, 6, 7, 8, 11

10

Appendix

A: Implementation Details
Here we provide additional implementation details of our
network architecture. Our model is implemented in Py-
Torch.

Raster diffusion denoiser. Our raster diffusion denoiser
follows the UNet architecture in [11, 37]. The UNet model
uses a stack of residual layers and downsampling convolu-
tions, followed by a stack of residual layers with upsam-
pling convolutions, with skip connections connecting the
layers with the same spatial size. We provide an overview
of the hyperparameters in Table 4. To condition the model
on the character identifier, we use a look-up table to project
it to an 896-dimensional embedding and then add it together
with the time step embedding to modulate the feature maps
of each residual block.

Few-shot font style encoder. In the application of few-
shot font style transfer, we used a ConvNet to encode ref-
erence raster glyphs into a font style feature map. We used
the encoder part of the UNet architecture in [11, 37]. The
ConvNet encoder encodes the 64 × 64 input image into an
8× 8× 512 high-dimensional feature map via 3 downsam-
pling layers.

Vector diffusion denoiser. Our vector diffusion denoiser
is an encoder-only transformer following BERT [10]. We
set the number of transformer layers and the number of at-
tention heads to 8 and 12 respectively. To condition the
vector diffusion denoiser on the raster guidance x0, we first
encode the 64 × 64 × 4 raster image to a 16 × 16 × 768
high-dimensional feature map with a ConvNet encoder. The
ConvNet encoder has two downsampling layers with self-
attention layers at resolution 32×32 and 16×16. The Con-
vNet encoder is trained with the transformer jointly. After
obtaining the 16× 16× 768 high-dimensional feature map,
we flatten it to a shape of 256× 768, then we add it to each
transformer layer via cross-attention following [37].

B: Additional Results
Additional comparisons with DeepVecFont-v2 [46].
Please see Figure 11 for more comparisons with
DeepVecFont-v2 [46] on the task of few-shot font style
transfer.

Comparison with a vectorizer approach. As an alterna-
tive comparison, we tried the following approach: instead
of using the vector diffusion model, we use PolyVec [3] or
LIVE [30] on the rasterized font image produced by our

Input shape 64 × 64 × 4
Diffusion steps 1000
Noise Schedule cosine
Channels 224
Depth 2
Channel Multiplier 1,2,3,4
Attention resolutions 32,16,8
Head Channels 32
Batch Size 448
Learning Rate 3.24e-5

Table 4. Hyperparameters for raster diffusion denoiser

Input reference (a) (b) (c)

Figure 11. Few-shot style transfer results. On the left, we show
the reference glyphs belonging to a novel font style. On the right,
we show (a) the artist-made (“ground-truth”) glyphs, (b) our gen-
erated ones, and (c) the ones produced by DeepVecFont-v2 [46].

raster diffusion stage. We also tried upsampling the 64×64
output raster image to 256×256 using ESRGAN [44] before
passing it to the vectorizer. We show qualitative comparison
in Figure 12. In both cases, PolyVec and LIVE often failed
to produce coherent curve topology, structure, and plausible
control point distributions.

11

Raster-DM Output Ours PolyVec LIVE ESRGAN + PolyVec ESRGAN + LIVE

Figure 12. We compare our results (Ours) with PolyVec [3] and LIVE [30] applied to the raster image produced by our raster diffusion stage
(left-most column). We also compare with PolyVec and LIVE applied to a higher-resolution version of the raster image upsampled via
ESRGAN [44]. For each glyph, we show the predicted control points as well. Using our vector diffusion stage instead of an off-the-shelf
vectorizer produces higher-quality glyphs and much more plausible control point distributions. Compared to our vector diffusion model,
ESRGAN + PolyVec requires about ten times more control points for effective glyph reconstruction but sacrifices user editability and SVG
compactness. We recommend the viewer to zoom in for better clarity.

12

	. Introduction
	. Related Work
	. Method
	. Raster diffusion stage
	. Vector diffusion stage

	. Results
	. Generation of missing Unicode glyphs
	. Few-shot font style transfer
	. Font style interpolation

	. Conclusion

