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Abstract
Tangent vector fields are an essential ingredient in controlling
surface appearance for applications ranging from anisotropic
shading to texture synthesis and non-photorealistic rendering. To
achieve a desired effect one is typically interested in smoothly
varying fields that satisfy a sparse set of user-provided constraints.
Using tools from Discrete Exterior Calculus, we present a simple
and efficient algorithm for designing such fields over arbitrary
triangle meshes. By representing the field as scalars over mesh
edges (i.e., discrete 1-forms), we obtain an intrinsic, coordinate-
free formulation in which field smoothness is enforced through
discrete Laplace operators. Unlike previous methods, such a for-
mulation leads to a linear system whose sparsity permits efficient
pre-factorization. Constraints are incorporated through weighted
least squares and can be updated rapidly enough to enable in-
teractive design, as we demonstrate in the context of anisotropic
texture synthesis.

Keywords: Discrete exterior calculus, discrete differential 1-
forms, constrained Laplace and Poisson problems for 1-forms,
texture synthesis

1 Introduction
Smoothly varying tangent vector fields appear in many applica-
tions that control the appearance of surfaces. Examples include
anisotropic shading [Schlick 1994], texture synthesis [Turk 2001;
Wei and Levoy 2001], non-photorealistic rendering [Hertzmann
and Zorin 2000], line integral convolution [Cabral and Leedom
1993], and spot noise [van Wijk 1991] among many others. In
some settings one starts with a given vector field, while in others
the user must first design a vector field. We present a method for
designing smooth vector fields over triangle meshes from inter-
actively specified user constraints (see Figures 1 and 9 for some
examples from texture synthesis).

Vector field interpolation A common approach in user-driven
vector field design calls for specifying a sparse set of vector
constraints at selected mesh vertices, followed by interpola-
tion of these vectors over all vertices of the mesh. Praun et
al. [2000] use radial basis functions to form this interpolation,
while Turk [2001] uses hierarchical low pass filtering. One may
also perform such interpolation or alignment optimizations di-
rectly in the (2D) tangent spaces [Pedersen 1995; Hertzmann and
Zorin 2000; Wei and Levoy 2001], though coordinate transfor-
mations between different tangent spaces must be accounted for
carefully. All these approaches rely on explicit coordinate frames
and vectors represented through coefficients in these frames, be
they 2D or 3D. The parallel transport of tangent vectors between

Figure 1: Examples from texture synthesis. Curves are drawn on
the surface to control the flow lines of the underlying vector fields.
Features, such as vortices (blue), can be added by marking them on
the surface. (Insets show the exemplars.)

these coordinate frames generally makes vector field optimiza-
tion a nonlinear problem, and hence prior techniques have not
supported interactive global design.

In contrast, we are able to formulate vector field design as a lin-
ear problem by using an intrinsic, coordinate-free approach based
on discrete differential forms and the associated Discrete Exterior
Calculus (DEC) [Desbrun et al. 2006]. The central concept in
this approach is the representation of fields through measure-
ments on cells: a 0-form represents a scalar function through
its values at vertices (0-dim cells), while a 2-form represents
area density through its area integral over triangles (2-dim cells).
More relevant to our goals, a 1-form represents a tangent vector
field through its line integral along edges (1-dim cells). This
implies that tangent vector fields are specified as a single scalar
per edge on the mesh. Since measurements are by their very
nature independent of the coordinate frame in which they were
taken, so are these scalar coefficients. All relevant computations
are then performed on these coefficients and the results recon-
structed with piecewise linear (PL) interpolation. For relatively
fine triangle meshes such PL interpolation is generally sufficient
and certainly the easiest. For coarser meshes, smoother inter-
polants are more appropriate, and suitable constructions were
introduced by [Wang et al. 2006]. (If desired, these smoother
bases can be used with the same mathematical framework that
we describe in this paper.)

Vector field topology Vector fields can also be designed using
vector field topology, i.e., by considering the relative arrangement
of singularities, their indices and how singularities can be merged,
split, and moved [Theisel 2002; Zhang et al. 2006]. In particular,
Zhang et al. [2006] design smooth tangent vector fields on non-
flat triangle meshes. Their principal design tool is the placement
of singular basis vector fields, which are mapped to the surface
from their planar domain via the use of polar geodesic maps
and parallel transport. This allows precise placement of sink,



source, vortex, and saddle singularities, resulting in a superposed
field that generally has additional singularities. Emphasis is then
placed on reducing these singularities through careful vector field
topology analysis and harmonic smoothing over appropriately
defined regions.

While our approach also supports direct placement of sinks,
sources, vortices, and saddles, we focus less on the relationships
between singularities as a way to drive the design, and instead
place emphasis on shaping the field through direct interactive
control. Specifically, we let the user draw sparse flow curves on
the surface to intuitively guide the vector field creation. We then
find the global field as the minimizer of the Dirichlet vector field
energy subject to the provided constraints. While Zhang and
co-workers use a posteriori harmonic smoothing to remove singu-
larities, we directly seek harmonic vector fields, thus preventing
the appearance of superfluous singularities.

Foundations of our approach The desired smoothly varying
fields are constructed as minimizers of a quadratic energy with
user supplied constraints incorporated through weighted least
squares (wLSQ). When applied to 0-forms, i.e., functions given as
values at vertices, such approaches are well known in geometric
modeling and editing [Botsch and Kobbelt 2004; Sorkine et al.
2005], where they are based on the Laplace and higher-order
Laplace operators. In essence the same ideas work for 1-form
data using the corresponding Laplace operators, as we demon-
strate here for the first time.

We chose a wLSQ approach for robustness reasons: it is easy for
a user to specify constraints that “fight” one another or which are
outright incompatible. For example, on a genus 0 surface one
cannot have a harmonic field with a single source and no match-
ing sink. In such situations the wLSQ approach still produces the
“best possible” solution that can be further manipulated through
adjustment of the relative weights of the constraints. This is
much preferable over a more stringent setup where incompatible
constraints would lead to no solution at all. We will show in
Section 2.2 that a wLSQ approach to constraints is naturally com-
patible with the construction of harmonic vector fields since the
latter can be understood as LSQ solutions to a global requirement
of zero curl and divergence.

Contributions We give simple and efficient algorithms for the
design of smoothly varying discrete differential 1-forms on un-
structured triangle meshes (2-manifold with or without bound-
ary, compact, bounded, and of arbitrary genus). Smoothness
is achieved through the use of the 1-form Laplace operator, re-
quiring only the solution of a sparse linear system. We intro-
duce appropriate boundary conditions and in particular a novel
free-boundary condition. In a PL reconstruction step the dis-
crete 1-forms are turned into tangent vector fields. User supplied
constraints are enforced through wLSQ. Solution of the linear
systems relies on pre-factored Cholesky decompositions, with
incremental factor updates, to accommodate rapidly changing
constraint sets during interactive design sessions. For ease of
implementation we use a black-box solver. For design we pro-
vide a small but rich set of intuitive “shape” constraints. The
technical details (system setup, details of constraint enforcement,
boundary conditions, solver, etc.) as well as performance metrics
are discussed in the context of interactive, anisotropic texture
synthesis on arbitrary-topology surface meshes.

2 Mathematical Tools
Our approach has its mathematical foundation in Discrete Exte-
rior Calculus [Mercat 2001; Hirani 2003; Desbrun et al. 2006],
which defines discrete differential k-forms (here k = 0,1,2) on

triangle meshes and expresses relevant operators such as diver-
gence, curl, gradient, and Laplacian, as simple sparse matrices
acting on intrinsic (coordinate-free) coefficients “living” on ver-
tices, edges, and triangles. It also gives us discrete versions of
such important tools as the Hodge decomposition. Previously
this machinery has been used successfully in settings such as
surface parameterization (e.g., [Gu and Yau 2003; Gortler et al.
2006; Tong et al. 2006]), physical simulation [Elcott et al. 2007],
and vector field decomposition and smoothing [Tong et al. 2003;
Polthier and Preuß 2003]. A rigorous treatment of the connection
between discrete and continuous settings can be found in the sur-
vey of Arnold et al. [2006], where finite element techniques are
used to establish such essential properties as consistency, stability,
and convergence of DEC based approaches.

2.1 Setup

The main ingredients we need for our treatment here are the
discrete k-forms, the discrete differential d and its L2-adjoint, the
co-differential δ, as well as PL interpolators to perform recon-
struction on the discrete data.

The triangle mesh on which we work is assumed to be of arbi-
trary topology, orientable, bounded, compact, and 2-manifold
(possibly with boundary). We denote its vertex set V = {vi}, its
edge set E = {ei j} and its triangle set T = {t i jk} (1 ≤ i, j, k ≤
n = |V |). Each triangle and edge carry an arbitrary but fixed
intrinsic orientation, while vertices always have positive intrinsic
orientation. Note that index order matters since ei j has opposite
orientation from e ji (and similarly for triangles). Vertices are
given positions P = {pv ∈ R3|v ∈ V}, which define the surface
through PL interpolation over each triangle. The intrinsic vol-
umes of edges and triangles will be denoted |e| (length) and |t|
(area), and we assume these are all nonzero, i.e., there are no
degenerate edges. For a vertex, |v|= 1 by definition.

Discrete k-forms are given as scalars on k-cells, which represent
measurements

ci =ω
0(pi), ci j =

∫

pi j

ω1, ci jk =

∫

pi jk

ω2.

Here ωk denotes a k-form (k = 0,1,2) and the scalars the cor-
responding measurements: ci is the value of a scalar function
(k = 0) at position pi belonging to vertex vi; ci j the line integral
of a vector field (k = 1) along the segment pi j belonging to ei j

∫

pi j
~u · ~ds =
~ui+~u j

2
· ~pi j

~ui ~u j

~uk
(the inset Figure at right illustrates the
computation of the line integral of a PL
vector field specified with 2-vectors at ver-
tices); and ci jk an area integral of a density
(k = 2) over pi jk belonging to t i jk. (We
reserve bold symbols for continuously de-
fined objects while discrete objects will be typeset non-bold.)
Note that coefficients change sign when the orientation of their
respective integration cells changes (k = 1,2). We treat these
coefficients as arrays cv , ce, and ct using an arbitrary but fixed
indexing for the vertices (v = 1, . . . , |V |), edges (e = 1, . . . , |E|)
and triangles (t = 1, . . . , |T |).

The discrete differential d, which maps k-forms to (k+1)-forms,
is given by the transpose of the signed incidence matrices of the
triangle mesh: d0 = (∂ 1)T maps 0-forms (coefficients at vertices)
to 1-forms (coefficients at edges), while d1 = (∂ 2)T maps 1-
forms (coefficients at edges) to 2-forms (coefficients at triangles).
Here (∂ 2)et = ±1 if edge e is incident on triangle t and their
intrinsic orientations agree/disagree and zero otherwise (and
correspondingly for ∂ 1). In standard vector calculus d0 ≡ ∇
and d1 ≡ ∇× and the fact that the boundary of a boundary is



empty results in d1d0 = 0, which in turn corresponds to the
vector calculus fact that ∇×∇= 0. (To simplify notation we will
generally drop the subscript on d since the type of d, i.e., d0 or
d1, follows from its argument.)

We also need inner products for discrete forms cv , ce, resp. ct ,
which correspond to the L2 inner products of continuous forms
ω0, ω1, resp. ω2. For our purposes the diagonal matrices

(?0)vv = |v∗|/|v|, (?1)ee = |e∗|/|e|, (?2)t t = |t∗|/|t|,

are sufficient (the superscript ∗ denotes the Voronoi dual of a
given cell). These so called diagonal Hodge-star matrices may be
regarded as lumped mass matrices [Bossavit and Kettunen 1999]
and are nothing more than ratios of dual to primal intrinsic
volumes. (We will use the symbol ? to denote either ?0, ?1, or ?2
depending on the type of its argument.)

We can now consider the L2-adjoint of the exterior derivative
d. This co-differential δ, maps (k + 1)-forms to k-forms and is
defined through

〈dωk,ξk+1〉= 〈ωk,δξk+1〉.

The corresponding discrete operators are δ2 = ?−1
1 dT

1 ?2, the ad-
joint of d1, and δ1 = ?−1

0 dT
0 ?1, the adjoint of d0 (and generically

δ = ?−1dT?). In the language of vector calculus we have δ1 ≡∇·
and δ2 ≡∇.

2.2 Harmonic Vector Fields

A vector field is harmonic iff it is both curl- and divergence-free.
In the language of 1-forms this corresponds to requiring

dω1 = 0 and δω1 = 0.

(We ignore boundary issues for now and postpone their discus-
sion to Section 4.1.) To incorporate this requirement into our
wLSQ setup we consider the bilinear form

E(ω1,ξ1) = 〈dω1,dξ1〉+ 〈δω1,δξ1〉.

A harmonic 1-form ω1 then satisfies E(ω1,ω1) = 0. The con-
nection with the Laplace operator, ∆ = δd + dδ, is established
through its weak formulation: a form ω has vanishing Laplacian
if its inner product with any of a set of test forms ξ vanishes

0= 〈∆ω,ξ〉= 〈δdω,ξ〉+ 〈dδω,ξ〉= 〈dω,dξ〉+ 〈δω,δξ〉.

In other words, E describes the bilinear form appearing in the
weak formulation of the Laplacian: E(ω1,ω1) measures the
Dirichlet energy of the underlying vector field.

Translating the expression for E into the setting of discrete forms
we arrive at

E(ce, ce) = cT
e Mce = cT

e

�

dT
1 ?2 d1 + ?1d0 ?

−1
0 dT

0 ?1

�

ce, (1)

and M is the discrete version of the 1-form Laplace operator. For
later use we note that M = M∇×+M∇· consists of a first summand
encoding the squared curl magnitude, while the second summand
encodes the squared divergence magnitude.

Assembly of M Practically speaking M is a straightforward as-
sembly of diagonal matrices and signed incidence matrices. More
concretely, for a given edge ei j with associated 1-form coefficient
ci j a row of M reads as (see also Figure 2)

Mei j
=

ci j + c jk + cki

|t i jk|
−

ci j + c jl + cl i

|t i jl |

+
|e∗i j |

|ei j |







|v j |
|v∗j |

∑

e jl3v j

|e∗jl |

|e jl |
c jl −
|vi |
|v∗i |

∑

eik3vi

|e∗ik|
|eik|

cik






. (2)

M has an average of ≈ 11 nonzero entries per row.

l

ji

k

1/|t i jk |
−1/|t i jl |

1/|t i jk |

−1/|t i jl |

1/|t i jk |

−1/|t i jl |
i j

k

l

v∗i

. . .

. . .

. . .

. . .

|e∗i j |

|ei j |

|e∗ik |

|eik |

|e∗il |

|eil |

i j

l

k

v∗j
|e∗ji |

|e ji |

|e∗jl |

|e jl |

|e∗jk |

|e jk |

. . .

. . .

. . .

. . .

Figure 2: The 1-form Laplace stencil, Eq. (2), for a given ei j depends
on data at the two incident triangles (left) as well as the edges
incident on vi and v j (middle and right).

2.3 Hodge Decomposition

Given proper boundary conditions, any 1-form can be written
uniquely as an orthogonal sum

ω1 = dω0 +δω2 + h

where ω0 and ω2 are scalar potentials (0- and 2-forms respec-
tively), and h a harmonic 1-form. The latter is nontrivial only
in the case of surfaces with genus g > 0, for which the space of
such harmonic 1-forms is 2g dimensional. The corresponding
statement for discrete 1-forms holds as well

ce = dcv +δct + h. (3)

Such decompositions have been used to manipulate individual
components of given vector fields [Polthier and Preuß 2003; Tong
et al. 2003]. In the context of design we will use this decomposi-
tion to give us access to the curl-free (dcv) and divergence-free
(δct) parts of a vector field (see Section 3.1).

2.4 Reconstruction

Discrete k-forms can be PL interpolated with the aid of Whitney
elements [Whitney 1957]. For 0-forms these are the standard PL
hat functions φv = {φi |vi ∈ V}. Appropriate 1-form interpolators
φe = {φi j |ei j ∈ E} follow as

φi j = φidφ j −φ jdφi .

The φi j are supported on the triangle(s) incident to the given
edge and vary linearly within them. Their projection along edges
is continuous when crossing an edge while their line integral is
1 along ei j and 0 along all other edges, giving us linear interpo-
lators for discrete 1-form data. For data at triangles (discrete
2-forms) the corresponding Whitney interpolators are the con-
stant functions φ t = {φi jk|t i jk ∈ T} supported on individual
triangles (Figure 3).

φi

i

φi j

i j

k

l

φi jk

i j
k

Figure 3: The bases for 0- and 2-forms are standard PL hat func-
tions resp. constant functions. 1-form bases may be visualized as
vector fields once a metric is supplied (Euclidean in this case).

Given the support of φi j the interpolated 1-form ω1 within a sin-
gle triangle is determined by the three incident edge coefficients

ω1|ti jk
= ci jφi j + c jkφ jk + ckiφki .

Using a metric (the standard Euclidean metric in all our exam-
ples) one can turn the 1-form ω1 into a vector field ~u ∈ R2. With
barycentric coordinates αi , α j , αk (associated to vertices i, j, and
k resp.) we get

2 |t i jk| ~u(αi ,α j ,αk) = (4)

(ckiαk − ci jα j)~p
⊥
jk + (ci jαi − c jkαk)~p

⊥
ki + (c jkα j − ckiαi)~p

⊥
i j



where ~pi j = p j − pi represents the edge as a vector; ⊥ indicates
a π/2 rotation in the plane of pi jk; and we used dφi ≡ ∇φi =
~p⊥jk/(2|t i jk|). This can be understood as an equation giving a
3-vector. However, since the vector lives in the plane of pi jk it can
equally well be treated as a 2-vector equation when expressing it
in a tangent plane frame. From now on we will no longer distin-
guish between these two interpretations unless stated otherwise.

In some applications vector fields computed on the surface are
used in the texture domain. In that case tangent vectors can be
pushed forward through the Jacobian of the mapping from the
surface to the parametric domain. However, there is an even
simpler approach. It suffices to replace all spatial quantities in
Eq. (4) with their corresponding texture domain counterparts

2 | t̃ i jk| ~u(αi ,α j ,αk) =

(ckiαk − ci jα j)~̃p
⊥
jk + (ci jαi − c jkαk)~̃p

⊥
ki + (c jkα j − ckiαi)~̃p

⊥
i j

where we used ˜ to indicate that these quantities are to be taken
in the texture domain rather than on the mesh in 3-space. This
automatically accounts for the effects of the Jacobian.

Continuity The vector fields reconstructed with Whitney 1-forms
are piecewise linear, but in general not continuous along edges
or at vertices. Traditional approaches to vector fields on meshes
often use 2 coefficients (u1

i , u2
i ) per vertex and define the vector

field coordinate-wise by interpolating these linearly over each
triangle. As pointed out by Zhang et al. [2006], this does not re-
sult in continuous tangent vector fields either when a vertex has
nonzero Gaussian curvature. Zhang and co-workers addressed
this issue by using geodesic polar maps and nonlinear inter-
polants on triangle interiors to maintain continuity. Instead we
opt to stay in a linear framework, taking advantage of the fact
that the edge coefficients arise from the solution of a discrete Pois-
son problem for which we, in effect, use a discontinuous Galerkin
method [Arnold et al. 2000]. This connection with finite element
theory ensures that the Whitney-interpolated fields approximate
the underlying smooth solution arbitrarily well so long as the
mesh is suitably fine. More generally, Dodziuk et al. [1976] show
that Whitney 1-forms can approximate any smooth vector field
arbitrarily well in the L∞ norm (see also [Hildebrandt et al. 2006;
Arnold et al. 2006]). For very coarse triangulations, however, it is
likely better to use either the nonlinear interpolants of Zhang et
al. or smoother DEC bases [Wang et al. 2006]. The latter are
always continuous and have the advantage that their discrete
differential is still realized with the adjoint of the incidence ma-
trices, though a discrete Hodge-star with higher-order accuracy
(and necessarily larger support) is required to avoid a drop in
approximation order.

For display purposes it may be desirable to post-process the com-
puted solution the same way one computes vertex normals from
(discontinuous) incident triangle normals: using Eq. (4) we can
evaluate the vector field at vi in each triangle incident to vi and
average based on areas

~ui = |v∗i |
−1
∑

ti jk3i

|v∗i ∩ t i jk|
2|t i jk|

(ci j~p
⊥
ki − cki~p

⊥
i j). (5)

This equation is well defined only if the tangent spaces of the
triangles incident to vi can be identified, as is the case when vi
has zero Gaussian curvature. For a non-flat surface the necessary
identification of tangent spaces can be performed with the help
of a parameterization. If an application calls for tangent vectors
at vertices expressed in R3 one may still use Eq. (5) by treating
the ~pi j as 3-vectors. The unavoidable errors due to curvature may
remain acceptable if the neighborhood of vi is sufficiently flat.

3 Constrained Design of Vector Fields
In this section we discuss the details of the different constraints
we have found useful during design, and the overall setup of
the equations we need to solve. In all cases we seek a field that
minimizes a quadratic energy while meeting the given constraints
in a wLSQ sense.

Consider first an arbitrary discrete 1-form ce = dcv + δct + h
(Eq. (3)). Its curl is dce = dδct =: rt while its divergence is
δce = δdcv =: sv since h is both curl- and divergence-free. Al-
lowing arbitrary linear functionals Zce—which will account for
constraints as discussed below—we arrive at a “stack” of matrices
acting on the unknown vector of edge coefficients ce







d
δ
Z






ce =







rt
sv
cz







where the right hand side encodes the desired curl (at triangles),
divergence (at vertices) and the inhomogeneous part of the lin-
ear functionals (cz). The solution with minimum residual norm
satisfies the associated normal equations

(?δ ?d Z TW )







d
δ
Z






ce = (?δ ?d Z TW )







rt
sv
cz






⇐⇒

(M + Z TW Z)ce = ?δrt + ?dsv + Z TW cz . (6)

where W is a diagonal weight matrix containing non-negative
weights for the constraints, i.e., how much each constraint should
be enforced relatively to others.

3.1 Control of Sources, Sinks and Vortices

We first examine the setting of no constraints (absence of any
Z). In that case the right hand side can encode desired loca-
tions for sources and sinks through sv and similarly for vortices
through rt as follows. Let sv be a vector of vertex coefficients
with positive entries for selected sink vertices and negative en-
tries for selected source vertices with their magnitude repre-
senting strengths and satisfying a weighted (by Voronoi area)
zero mean condition, i.e., s̄v = A−1

∑

i si |v∗i | = 0, where A is the
total area of the mesh. (“Anything that is produced must be
consumed.”) In practice, if the user specifies a vector sv with
s̄v 6= 0 we perturb it as ŝi = si − s̄v . This deals with “impossi-
ble” right hand sides and ensures that the computed solution
ce is LSQ optimal: the perturbation from sv to ŝv minimizes
〈δce − sv ,δce − sv〉. For vortices we proceed similarly. Let rt
be a vector of (selected) triangle coefficients with positive en-
tries for vortices whose orientation coincides with the triangle
orientation and negative entries for opposing orientation (with
ri jk/|t i jk| indicating the strength). This time we enforce an un-
weighted zero mean for rt , if not already satisfied, through a
perturbation r̂i jk = ri jk− r̄t |t i jk| for r̄t = A−1

∑

i jk ri jk, minimizing
〈dce − rt , dce − rt〉. If the user supplied sv and rt satisfy the zero
mean condition up front then the resulting vector field has only
those sources, sinks and vortices. (This follows from the unique-
ness of the underlying 0-form and 2-form Poisson problem.)
An example demonstrates this for the
sphere where two vortices (blue marks),
one source (red mark) and two sinks
(green marks) were set. For the horse
(genus 0), with only a single source
placed by the user, adjustment of sv leads
to a solution with additional singulari-
ties at the hoofs (Figure 4 shows a com-
parison of single source and matching
source/sink behavior).



Figure 4: Example of user specified single source (left) and matching
source/sink (right) on the horse. The LSQ solution in the case of
only a single source places sinks at the hoofs. The inset shows the
texture synthesis exemplar used for all visualizations in this Section.

Vortices, sources and sinks are important features in a vector field
and can produce an overall field with little user supplied data,
but they do not provide enough detail control. For this we need
direct constraints on the edges.

4 Edge Constraints
Consider now the case of using constraints Z . If both sv and
rt are zero then we are seeking a field which is harmonic, i.e.,
free of curl and divergence, while approximating the given Z
constraints. What constraints are useful?

In the least squares setup constraining an individual edge value
amounts to the trivial row

Zce := ci j = chosen value. (7)

Fixing an edge coefficient in this manner leads to a vector field
whose line integral along the edge matches the given value,
but does not imply that the vector field is parallel to the edge.
Stronger control though can be imposed by using several edge
constraints in concert (Figure 5).

Vector constraints At times it is desirable to specify a particular
vector at a particular location as a constraint. Suppose we want
to specify a vector ~u on some triangle t i jk. Taking advantage of
dce = ci j + c jk + cki = 0 on t i jk, i.e., the zero curl condition, and
using Eq. (4) we find the desired constraints as

Z1ce := ci j = ~u · ~pi j , Z2ce := c jk = ~u · ~p jk, Z3ce := cki = ~u · ~pki ,

where the inner products are taken in the plane of pi jk.

Strokes The most important means to
control the appearance of a vector field
are sequences of edge constraints given
through a curve drawn on the mesh, sig-
nifying the vector field should follow it.
Let ~t be the velocity vector to the curve
as it crosses edge ei j , then

Zce := ci j = ~t · ~pi j

gives the constraint for each edge crossed. In this manner, e.g.,
it is easy to place a saddle (inset image) or perform editing
operations such as on the bunny (Figure 6).

4.1 Boundaries

To properly deal with boundaries we must modify M (Eq.(1))
according to the type of boundary condition we wish to enforce.
We support two different types: free and arbitrary (fixed) angle.
For free boundaries neither fluxes across boundary edges, nor
line integrals along them are constrained. The angle boundary
conditions enforce a zero line integral in a freely chosen direction
relative to each boundary edge. Special cases of this setting

Figure 5: A single edge constraint induces a global field (left).
Adding 3 closely spaced edge constraints creates a spiral.

include tangential boundary conditions, which force the vector
field to have zero flux across the boundary edges, and normal
boundary conditions, which force the field to meet the boundary
edges orthogonally. Examining M we see that M∇× needs no
modification since it is defined on a per triangle basis. On the
other hand, M∇·, which encodes the square of the divergence at
every vertex, must be changed for boundary vertices.

To see what is needed for the different boundary conditions we
first consider the general relationship between edge coefficients
on boundary triangles and the resulting flux across the boundary
edge. Given a boundary edge ei j with incident triangle t i jk the
line integral along the boundary edge is simply ci j . The flux
across the boundary edge can be found by exploiting the curl-
free condition (ci j+c jk+cki = 0) on t i jk to eliminate ci j in Eq. (4).
Integrating the inner product against ∇φk/|∇φk| along ei j yields
the net flux

fi j = c jk cotθ i
jk − cki cotθ j

ki ,

where θ i
jk indicates the angle at vi across from e jk.

Given the line integral ci j along ei j and the flux fi j across ei j the
line integral in any direction is completely determined

cβi j
= ci j cosβi j + fi j sinβi j

where βi j is the angle through which pi j is rotated in the plane
of pi jk. Setting this line integral to zero for a given angle forces
the vector field to be orthogonal to the direction of pi j rotated
through βi j without constraining the magnitude in the orthogonal
direction. Special cases of interest are normal boundary condi-
tions (βi j = 0) and tangential boundary conditions (βi j = π/2).

For free boundary conditions we do not want to constrain the
field in any direction but rather have it “choose” the direction. To
get the necessary linear equations at the boundary we consider
the computation of divergence at boundary vertices directly. At

Figure 6: A single source/sink pair produced the field on the left
which is then reshaped with a curve constraint drawn on the body.



an interior vertex vi the divergence is a sum over scaled edge
coefficients incident to vi

(dT
0 ?1 ce)i =
∑

eim

|e∗im |
|eim |

cim,

which is equivalent to the sum of fluxes across the boundary
of the associated Voronoi cell. If vi is a boundary vertex its

vi
Voronoi cell is bounded by edges dual to the inci-
dent edges, just as in the sum above, and 1/2 of
the two incident boundary edges (see inset Figure).
The flux across these two incident boundary edges
(say ei j and eil) must be accounted for and makes an additional
contribution of 1/2( fi j + fil) to the above sum.

Figure 7: Comparison of tangential, normal, and free boundary
conditions with two different strokes as constraints, rendered with
the method of [Mebarki et al. 2005] (inset shows mesh resolution).

4.2 Assembly of Boundary Modified Laplacian

As indicated earlier, M∇× is assembled without modification. M∇·

is assembled as the product of dT
0 ?1 with its transpose using an

intervening ?−1
0 and must be modified.

For free boundaries all vertices participate in dT
0 ?1, but each

boundary vertex “picks up” the extra flux contributions from its
incident boundary edges

(dT
0 ?1)vi e jk

+= 1
2

cotθ i
jk (dT

0 ?1)vi eki
−= 1

2
cotθ j

ki

(dT
0 ?1)v j e jk

+= 1
2

cotθ i
jk (dT

0 ?1)v j eki
−= 1

2
cotθ j

ki

before multiplying with ?−1
0 and the transpose of the modified

dT
0 ?1 (and addition of M∇×) to yield M b

free.

In the case of fixed angle conditions only interior vertices partici-
pate in M∇· before addition to M∇×. Only afterward do we add
the boundary edge conditions

0= ci j cosβi j + (c jk cotθ i
jk − cki cotθ j

ki) sinβi j

as Zβe
ce = 0 type constraints, one for each boundary edge, to

yield M b
β
= M + Z T

βe
W Zβe

. (For the special case of β = 0, i.e.,
ci j = 0 for boundary edges, one may instead simply drop all
boundary edge rows and columns.)

Figure 7 demonstrates the effect of β = π/2 (tangential), β = 0
(normal), and free boundary conditions on two prototypical fields
specified with a curve constraint. Shown here are the integral
curves of the underlying vector fields. Figure 8 shows the effect
of different boundary conditions on the (damaged) neck of the
Planck dataset. In the rightmost image we exploited the ability
to set βe on a per edge basis, choosing the desired angle for each
boundary edge to match a global down direction.

Figure 8: The Planck dataset with a single source and varying
boundary conditions: free (left), normal (middle), and fixed angle
(right). In the latter case the desired angle was set on a per edge
basis ensuring that the field flows off the boundary in the global
down direction.

5 Numerical Implementation
In this section we document some of our numerical, algorithmic,
and implementation choices, and include details on the “transla-
tion” from mathematical statement to concrete computation.

5.1 Numerical Linear Algebra

The linear system of Eq. (6) is symmetric positive (semi-)definite
and sparse. In the case of 0-form Laplace (as well as bi-Laplace)
systems, approaches based on Cholesky factorization have been
shown to exhibit excellent performance [Botsch et al. 2005], and
we chose such a (black-box) solver as well (TAUCS [Toledo 2003]
with a modification supplied by Olga Sorkine).

One could factor the entire left hand side of Eq. (6) as one mono-
lithic matrix. Changing right hand sides then requires only cheap
backward/forward substitution. Unfortunately only the M matrix
is constant for a given mesh while the constraint part (Z TW Z)
changes frequently due to user interaction. In general, the num-
ber of constraints |Z |=: k will be far smaller than |E|, the dimen-
sion of M . This favors a Cholesky pre-factorization strategy for
M = CC T coupled with incremental modification of the Cholesky
factor C [Davis and Hager 1999; Davis and Hager 2001]. For
general Zi this can be quite involved and may even change the
sparsity structure of the Cholesky factor. We are in the fortunate
setting that all our constraints are very simple: each Zi is a vec-
tor (of length |E|) that is zero in every slot but one. Updating
a Cholesky factorization when only a diagonal entry changes
through addition of a (positive) weight wi is particularly efficient
and numerically stable [Sorkine et al. 2005, Section III].

To summarize, we compute the Cholesky factorization CC T = M
(where M may be boundary modified) upfront. At runtime chang-
ing right hand sides require only backward/forward substitution
while changing Z (add/remove/change weight) constraints re-
quire an incremental update of C .

Rank deficiency of M There is one
final issue to deal with: M is only
positive (semi-)definite, as it has a
2g dimensional kernel for a genus g
surface. We address this issue by fix-
ing very small values (≈ 10−9 relative
magnitude) for 2g random edges. This “ties down” the kernel
with negligible impact on the computed solutions for edges in
general position. (The probability of failure vanishes in the limit
of increasing mesh size and we have not observed any failures.)
No less, fields in the kernel of M can still be recovered by speci-
fying an appropriate curve constraint, even if short, as illustrated
with the 3-holed torus, showing a harmonic vector field induced
by the red curve constraint.



5.2 Operator Assembly

While it is possible to assemble the M matrix directly (Eq. (2))
it is needlessly complex (and prone to implementation errors).
Instead we assemble M as a sum of products of the much simpler
constituent matrices (Eq. (1)) along the lines of the approach
described in [Elcott and Schröder 2006] and only then “compile”
them into compressed column storage format for use by TAUCS.
This only requires knowledge of the incidence matrices as well
as the diagonal Hodge-star matrices.

Hodge-star matrices, since they are diagonal, are represented
as vectors. For ?2 the corresponding vector of length |T | simply
contains the inverses of the triangle areas, while ?0 (length |V |)
contains the areas of the Voronoi cells of the vertices. These
cells are defined by sequences of dual vertices at the triangle
circumcenters. Note that these are not guaranteed to be interior
to their triangles (even in an intrinsically Delaunay [Bobenko
and Springborn n. d.] mesh) and may even “fold back” on
themselves. Nonetheless, there is a simple approach to compute
these areas correctly by iterating over all triangles and accumu-
lating signed elementary areas into each vertex [Meyer et al.
2002, Section 3.3]. Consider pi jk together with its circumcentric
dual vertex p∗i jk. Decompose pi jk into 6 smaller triangles each
formed by a corner (e.g., pi), the midpoint of an adjacent edge
(i.e., (pi + p j)/2), and the circumcenter p∗i jk. The signed height
of p∗i jk above pi j is hk

i j = |ei j |/2 cotθ k
i j , where the sign depends

on whether p∗i jk is to the triangle interior side of pi j (+) or not

Figure 9: Gallery of surface texture synthesis results based on vector
fields specified with a variety of constraints, demonstrating that
even just a few constraints can quickly build overall fields with
pleasing flows.

(−). The signed area of such a sub-triangle is |ei j |2/4 cotθ k
i j (and

correspondingly for the other 5 sub-triangles induced by t i jk).
A simple iteration over all triangles then computes the correct
Voronoi areas. To summarize, knowledge of the cotangents of
each triangle corner angle together with the lengths of all edges
is sufficient to compute the Voronoi areas.

Similarly, we can reduce the computation of ?1 to knowing these
cotangents since |e∗i j |/|ei j |= 1/2(cotθ k

i j + cotθ l
i j) for incident tri-

angles t i jk (and t i jl). Note that this expression represents the
correct lumped mass matrix and preserves the positive (semi-)de-
finiteness of M , even if there are negative coefficients in ?1. (The
only drawback of negative cotan weights is the increased condi-
tion number of the resulting matrices [Fisher et al. 2006].)

6 Results
We have implemented all the algorithms described above and
used the resulting fields to drive interactive texture synthesis,
employing the method of Lefebvre and Hoppe [2006]. In this
application only a direction field is needed so all vectors were
normalized before being passed on to the texture synthesis code.
(See Section 6.3 for a scenario where magnitudes are taken into
account.)

6.1 Performance

The following timings were taken on an AMD Athlon XP at
2.08GHz:

Model |E| | 6= 0|/ | 6= 0|/ Factor Solve
row M row C time (s) time (s)

Garg. 15000 11.2 56.3 0.13 0.02
Hygea 24798 11.8 59.3 0.25 0.02
David 74985 11.2 64.6 0.89 0.06
Planck 76245 11.4 68.2 1.11 0.06
Beetle 88771 11.0 60.8 1.02 0.06
Bunny 104288 11.1 71.3 1.69 0.09
Feline 149598 11.5 64.0 1.89 0.13

(Here C denotes the Cholesky factor of M .) Cholesky updates
with Zi constraints with a single nonzero entry take < 3 ms.

From these timings we can see that the solve time is a linear func-
tion of the original model complexity with a constant depending
on the sparsity of the Cholesky factors. The number of nonzero
entries in C is approximately 5 to 6 times larger than the number
of nonzero entries in M . The pre-processing cost (factorization),
while significant with respect to the other parts of the algorithm,
is quite small even for meshes as large as Feline. Of the online
parts of the algorithm, individual Cholesky updates are essen-
tially negligible while solve times range from tens of ms to over
100 ms, and these times dominate the texture synthesis times
(20− 40 ms each). Given that texture synthesis is performed on
the GPU, while our solver runs on the CPU, the user perceived
time is dominated by the back substitution timings.

6.2 Discussion of Examples

Figures 1 and 9 show a gallery of textured models created in all
cases by using only a few constraints. The VW model texture
was controlled through placement of two vortices (top of hood
and cabin) and a curve on the side. The boundary conditions
were of the free type, allowing the vector field to approach the
boundary, consisting of multiple connected components, in a
natural way. In the case of the horse a source was placed at the
nose (compare with the figure in Section 3.1) and more precise
control over the flow on the legs exerted through two additional
curve constraints. For the Planck head two vortices (on the eyes)
and a curve constraint were placed while the boundaries used the



free boundary conditions. The initial field for the Gargoyle was
created through a sink on each of the wing tips and a source on
the nose. The upward flowing field on the torso was then turned
by approximately π/2 through a additional curve constraint. In
the Bunny example the vector field was constructed using just
three curves placed on the side of the torso. Similarly the fields
on the David and Hygea dataset used only curve constraints.

The quality of solutions depends little on the constraint weights
wi (diagonal elements of the matrix W ). However, finer design
control can be obtained by changing the weights of our least-
squares solution as they directly correspond to how well a given
constraint is enforced. This behavior is indeed verified numeri-
cally; for the Bunny example we computed the maximum devia-
tion along the curves when using given weights: wi = 1600 leads
to 9.63 % maximum deviation, while at wi = 10, 000 this reduces
to 0.37 % and for wi = 1,000,000 to 0.0018 %. The results for
wi > 10,000 are visually indistinguishable. (We note however
that the fields are harmonic, i.e., curl- and divergence-free only
in the limit of increasing weights on the constraints.)

In these examples no attention was paid by the designer to ques-
tions of global topology or index theory and consequently the
wLSQ framework was essential in producing any solutions at all
(see the discussion in Section 3.1). Of course in the end the math-
ematical constraints imposed on smooth vector fields cannot be
cheated (“you can’t comb a hairy ball”) and consequently singu-
larities (vortices, sinks, sources, saddles) do appear at potentially
undesirable locations, but it is then an easy matter to manipulate
the field further with additional constraints to reshape the flow
or place appropriate singularities in regions that are less objec-
tionable. We have found that a fluid flow analogy—sources eject
a certain amount of mass per unit time, etc.—is often helpful in
understanding why a field forms as it does.

6.3 Extensions

For most texture synthesis scenarios, only the local direction of
the field matters. We normalized all computed vectors before
passing them on to the texture synthesis code, thus ignoring
the computed magnitudes. Instead one can use the magnitudes
to control the local scale of the texture. When using only the
Laplacian the vector magnitudes tend to decay rapidly away from
constraints. The corresponding observation for functions has
led researchers in geometric modeling, for example, to consider
solutions of the bi-Laplacian to provide more control over the
change in magnitudes. In the case of vector fields that same
philosophy can be applied. The corresponding bi-Laplacian,∆2 =
(δd)2 + (dδ)2, then corresponds to

B = M ?−1 M .

This matrix has ≈ 44 nonzero entries per row on average and, in
the spirit of splines under tension, one may add a small multiple
(γ > 0) of B to M , yielding a modified system

(M + γB+ Z TW Z)ce = ?δrt + ?dsv + Z TW cz

Figure 10 demonstrates the effect of B on the computed field
magnitudes, while Figure 11 shows the resulting effects during
texture synthesis. Manipulating the relative scale of the texture
in this manner is a yet largely unexplored territory, but may
prove crucial in applications based on flows such as texture ad-
vection and crowd control in animation. (Local scale factors for
magnitude control could of course also be based on separately
computed 0- or 2-form fields.)

The guarantees of topological simplicity coming with the use of
the Laplacian alone are not valid anymore once a small multiple
of the bi-Laplacian is added, so the value of setting γ > 0 is likely

Figure 10: Hedgehog rendering of a constrained vector field using
the Laplacian (left). Adding a small multiple of the bi-Laplacian
(γ= 0.01, middle; γ= 0.05, right), vector magnitudes decay more
gently. (Here free boundaries were used and the inset on the left
shows the mesh resolution.)

Figure 11: The local scale of texture synthesis can be controlled
through vector magnitudes. On the left the result of texture synthe-
sis using no magnitude information. In the middle the magnitude
of the Laplace solution is used for local scale control, while on the
right the magnitude resulting from a γ= 0.1 solution is used.

very application specific. It should also be noted that the sparsity
of the overall linear system decreases to that of B and the timings
increase correspondingly.

Model | 6= 0|/ | 6= 0|/ Factor Solve
row B row C time (s) time (s)

Garg. 42.4 204.0 0.80 0.03
Hygea 47.1 227.0 1.78 0.05
David 42.5 241.4 6.13 0.19
Planck 44.1 268.9 8.67 0.20
Beetle 40.6 212.9 5.48 0.19
Bunny 41.8 271.4 11.92 0.30
Feline 44.3 246.7 13.88 0.41

(Here C denotes the Cholesky factor of M + γB for γ > 0.) Now
an individual Cholesky update takes 5− 18 ms, still sufficient for
real time update. A subsequent solve though does take a good
fraction of a second.

7 Conclusion
Methods of Discrete Exterior Calculus have become quite success-
ful in geometry processing because of their algorithmic simplicity
and their solid mathematical foundations. Here we put them to
use for the design of tangent vector fields by solving for harmonic
vector fields subject to user constraints in a wLSQ framework.
Our method is straightforward to implement, as it involves only
a single degree of freedom per edge, easy-to-assemble sparse
matrices, and black-box sparse linear solvers.

Anisotropic texture synthesis is an obvious application in which
design of the detailed flow of the principal texture directions on
the surface is highly desirable and we used this application to
generate our examples using the GPU based method of Lefebvre
and Hoppe [2006]. In future work we look forward to applying
our method to other vector field applications. Examples include
random vector noise generation (along the lines of [Cook and
DeRose 2005]), flow based crowd control, and further texturing
methods based on advection as well as reaction and diffusion.
The latter integrate physical simulation ideas into the discrete



k-form setting which appears to be a promising avenue.
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