
One Noise to Rule Them All:
Learning a Unified Model of Spatially-Varying Noise Patterns
ARMAN MAESUMI, Brown University, USA
DYLAN HU∗ and KRISHI SARIPALLI∗, Brown University, USA
VLADIMIR G. KIM, Adobe Research, USA
MATTHEW FISHER, Adobe Research, USA
SÖREN PIRK, CAU, Germany
DANIEL RITCHIE, Brown University, USA

leaky paint / galvanic grunge map 2 / messy fibers grunge map 5 / scale parameterclouds 1 / damas

Fig. 1. Our method enables the synthesis of a wide range of noise patterns with spatially-varying characteristics. Here we show the flexibility of our
unified noise model, allowing one to art-direct their noise in a granular fashion. Our model creates semantically meaningful interpolations between noise
configurations; above we see the Siggraph logo written with hay fibers that are nested inside of Damascus steel striations – the scale and distortion of the
steel pattern naturally interpolates into a denser pattern before transitioning into fibers. We also show renderings of a clay shader that incorporates our
spatially-varying noise patterns. The first three images make use of class-interpolated noise, the final image uses parameter-interpolated noise. Please zoom
into the figures for full visual detail.

Procedural noise is a fundamental component of computer graphics pipelines,
offering a flexible way to generate textures that exhibit “natural” random
variation. Many different types of noise exist, each produced by a separate
algorithm. In this paper, we present a single generative model which can
learn to generate multiple types of noise as well as blend between them. In
addition, it is capable of producing spatially-varying noise blends despite
not having access to such data for training. These features are enabled by
training a denoising diffusion model using a novel combination of data
augmentation and network conditioning techniques. Like procedural noise
generators, the model’s behavior is controllable via interpretable parameters
∗Both authors contributed equally to this research.

plus a source of randomness. We use our model to produce a variety of
visually compelling noise textures. We also present an application of our
model to improving inverse procedural material design; using our model
in place of fixed-type noise nodes in a procedural material graph results in
higher-fidelity material reconstructions without needing to know the type
of noise in advance.
Project page: https://armanmaesumi.github.io/onenoise/

CCS Concepts: • Computing methodologies→ Texturing; Neural net-
works.

1

HTTPS://ORCID.ORG/0000-0001-7898-8061
HTTPS://ORCID.ORG/0009-0001-9456-9470
HTTPS://ORCID.ORG/0009-0000-5224-2632
HTTPS://ORCID.ORG/0000-0002-3996-6588
HTTPS://ORCID.ORG/0000-0002-8908-3417
HTTPS://ORCID.ORG/0000-0003-1937-9797
HTTPS://ORCID.ORG/0000-0002-8253-0069
https://armanmaesumi.github.io/onenoise/

Maesumi et al.

Additional Key Words and Phrases: Procedural noise, texture synthesis,
texture acquisition, deep generative model

1 INTRODUCTION
Procedural noise has long been a fundamental building block in
computer graphics, serving as a versatile tool for modeling fine,
naturalistic details in a range of applications. It finds widespread
use in creating albedo textures, bump and normal maps, terrain
height fields, and density fields for volumetric phenomena such as
clouds and smoke. There exists a zoo of algorithms for generating
such noise patterns, for instance Perlin, Worley, and Gabor noise
[Lagae et al. 2009; Perlin 1985; Worley 1996], along with systems
for composing and transforming these noise patterns to synthesis
more complex shaders (e.g. Blender, Adobe Substance 3D Designer,
and other material editors [Adobe 2023a; Blender 2023]).

Despite the advancement of these tools, a fundamental limitation
remains in the design process: the necessity to make discrete choices
regarding the types of noise to employ. This constraint poses chal-
lenges in creative design, where the ideal noise type may not be
immediately present among the provided “zoo”, or where desired
visual characteristics fall between the behaviors of existing noise
types. Designers might envision patterns exhibiting different noise
characteristics in various regions, transitioning smoothly without
abrupt or artificial blending. The standard technique for blending
between noise types—alpha blending—often yields unsatisfactory
results, where features do not naturally interpolate in the image
(see Figure 2). This limitation also complicates inverse design tasks,
such as recovering a procedural representation (i.e. a material node
graph) of a texture from observed data. Such graphs often use multi-
ple noise generator nodes; if the types of these nodes aren’t known
in advance, the search space for the inverse design problem grows
combinatorially, and the need to search over discrete possible noise
types limits the applicability of gradient-based optimization.

In this paper, we address these challenges by introducing amethod
for learning a continuous space of spatially-varying noise patterns
from data that lacks any spatially-varying observations. We leverage
a denoising diffusion probabilistic model (DDPM) [Ho et al. 2020]
equipped with a spatially-varying conditioning module, which is
trained via a novel application of CutMix data augmentation [Yun
et al. 2019]. Our method enables the generation of noise that can
vary smoothly across the canvas, offering a greater level of control
over the resulting noise pattern. Just as with traditional procedural
noise generators, the model can be controlled by changing a set of
interpretable parameters or by changing the input source of ran-
domness (i.e. random seed). Importantly, our method can generate
noise images at any requested image size (beyond the size of the
training data) and can also produce seamlessly tileable images.

We evaluate our model by using it to generate a variety of noise
blends and spatially-varying noise patterns (including spatial varia-
tion driven by image-based masks). We also present a user interface
for painting spatially-varying noise patterns, videos of this inter-
face are included in the supplemental material. Finally, we show an
application of our method to inverse procedural material design,
demonstrating that using our model as a noise generator node in a
material graph to be optimized can result in higher-fidelity material

al
ph

a-
bl

en
di

ng
ou

rs

blend map

noise A

noise B

Fig. 2. Our model produces noise patterns whose characteristics (i.e. scale,
ripples, distortion, etc.) interpolate naturally, creating seamless and coherent
transitions. By contrast, traditional alpha-blending results in images with
overlapping features, inconsistent feature opacity, and a lack of sensible
transitions between the noise characteristics.

reconstructions without needing to know the particular noise type
for that node in advance.

In summary, our contributions are:
(1) A generative model which can learn to generate spatially-

varying noise patterns.
(2) A training scheme for the model using a novel application

of CutMix augmentation, allowing the model to learn to
generate spatially-varying noise patterns without having
any spatially-varying training data.

(3) An application of our model to inverse procedural material
design, showing improved material reconstructions without
pre-specified discrete noise types.

2 RELATED WORK
Procedural noise. “Noise is the random number generator of com-

puter graphics” [Lagae et al. 2010]. Procedural noise functions col-
lectively form a body of techniques for algorithmically synthesizing
patterns that mimic the randomness and irregularities in natural
phenomena. These noise functions have become foundational to
many applications within computer graphics, facilitating the synthe-
sis of natural materials [Dorsey and Hanrahany 2006; Perlin 1985],
terrain [Fournier et al. 1982; Galin et al. 2019; Génevaux et al. 2013;
Van Der Linden et al. 2013], and motion [Hinsinger et al. 2002].

There are a wide variety of noise functions that synthesize distinct
patterns, for example, Perlin [Perlin 1985, 2002], Wavelet [Cook and
DeRose 2005], and Gabor noise [Lagae et al. 2009]. Such noises are
often composed and transformed using various primitive operations
(e.g. scalar functions and domain warping), forming patterns that are
colloquially referred to as noise in computer graphics — while these
resulting patterns may not strictly fall under the formal definition
of noise [Ebert et al. 2002], we continue to use the term in this
established, albeit technically imprecise sense, throughout the paper.
A selection of various noise patterns is shown in Figure 5. For further
background, we refer to the survey by Lagae et al. [2010].

Neural parametric texture synthesis. As noise is a central build-
ing block for textures, our work is related to methods for texture

2

One Noise to Rule Them All

synthesis. Texture synthesis has a deep, decades-long history, a full
discussion of which is outside the scope of this paper. The most
relevant methods to our work are parametric texture synthesis meth-
ods which use neural networks as their parametric model. Most
of this prior work focuses on example-based texture synthesis, i.e.
generating textures which are similar in some statistical sense to
an input exemplar. Some methods do this by optimizing an image
such that the features produced by passing it through a certain
pre-trained neural network match those produced by the exemplar
image [Gatys et al. 2015; Sendik and Cohen-Or 2017]. Others train
feedforward neural networks to directly generate texture similar to
an input exemplar [Li and Wand 2016; Rodriguez-Pardo and Garces
2023; Ulyanov et al. 2016; Zhou et al. 2023a, 2018]. The closest work
to ours is a generative adversarial network (GAN) that does not
perform example-based synthesis, but rather learns a continuous
latent space of textures [Bergmann et al. 2017]. This model sup-
ports interpolation between textures, but it is not controllable by
a combination of interpretable noise parameters and a source of
randomness (its latent space entangles texture “style” with spatial
randomness). We initially experimented with a GAN-based architec-
ture and found that it struggled to capture a data distribution with
the many different modes represented by a set of highly distinct
noise types. Prior work suggests that diffusion models such as ours
fare better at modeling such distributions [Xiao et al. 2022].

We also acknowledge the role of non-parametric methods in this
field. These approaches synthesize textures by using the structures
present within an image, without relying on a learned parametric
model. For instance, Matusik et al. [2005] frame the texture interpo-
lation problem through morphable models [Jones and Poggio 1998],
and define a space of interpolatable textures via a simplicial com-
plex induced by a texture similarity metric. ImageMelding [Darabi
et al. 2012], on the other hand, proposes a patch-based method that
smoothly “in-fills” regions of a texture via a regularized screened
Poisson equation. For a more comprehensive review of this body of
work, we refer to the survey by Raad et al. [2018].

Inverse procedural material design. Recovering procedural rep-
resentations of materials from observations (i.e. photographs) has
become an increasingly promising area of research.Material graphs—
the procedural representation of choice—feature nodes that gen-
erate, transform, and filter various signals that ultimately become
spatially-varying material maps (SVBRDFs). Authoring and editing
these material graphs is not only time consuming, but also requires
mastery of complex software [Adobe 2023a; Blender 2023]. Inverse
procedural material design aims to alleviate this difficulty by recov-
ering a material graph from a given image. Recent works tackle
this problem in various ways, either by 1) directly predicting the
parameters of a given material graph [Guo et al. 2020; Hu et al.
2019], 2) optimizing the continuous parameters of the graph via
gradient-based optimization [Hu et al. 2022; Shi et al. 2020], or 3)
by synthesizing a material graph from scratch [Guerrero et al. 2022;
Zhou et al. 2023b].
Most relevant to our work are learned differentiable proxies,

which serve as continuous relaxations for gradient-based optimiza-
tion strategies to the inverse design problem. Hu et al. [2022] train
several GAN-based generative models to act as differentiable proxies

for pattern generators (i.e. a brick tiling generator node). However,
these proxies are deterministic, meaning they cannot model noise
functions, and critically, each pattern is represented by a separate
generative model. Our unified noise DDPM is able to simultaneously
capture many non-deterministic noise functions in the same con-
tinuous space, acting as a relaxation over an entire space of unique
noise functions.

3 METHOD
Given a collection of procedural noise textures sampled from various
parametric noise generating functions, we seek to learn a condi-
tional generative model that captures the noise textures given their
accompanying parameter configurations, enabling the synthesis of
a wide range of noises from a single universal function. Our condi-
tional generative model will be formulated in a way that facilitates
synthesizing spatially-varying noise textures (i.e. spatial blends be-
tween the categorical noise type as well as noise parameters), even
though the training collection does not contain such samples. That
is, we assume our given collection of noise samples only exhibits
globally uniform semantic properties, as shown in Figure 5.

We make use of a denoising diffusion probabilistic model (DDPM)
that incorporates a spatially-varying conditioning mechanism. The
model is trained using a data augmentation scheme that regulates
the behavior of this conditioning module, ensuring that it behaves
appropriately when given granular conditioning signals. In the
following sections, we first detail the spatially-varying conditioning
module, followed by the aforementioned data augmentation strategy.
We defer details pertaining to our DDPM training to Section 4.

3.1 Spatially-varying conditioning
At training time, our conditioning signal is given by two vectors, f𝑐 ,
a class embedding that encodes the categorical label of a particular
noise type, and f𝑝 , a list of parameters that determine semantic
properties of the generated noise image (i.e. scale, distortion,
etc.). Providing these parameters as explicit input to the model
allows interpretable user control; it also disentangles control over
the “style” of the generated noise (via these parameters) from the
“seed” (i.e. stochastic component) of the noise functions via the initial
Gaussian noise provided to the DDPM.

To facilitate synthesis of noise maps with spatially-varying prop-
erties, we employ spatially-adaptive denormalization (SPADE) [Park
et al. 2019]. We first map the class and parameter vectors into a
shared feature space with a small MLP, call the resulting feature
vector f . The feature vector is tiled into a spatial grid, F, of shape
|f | × 𝐻 ×𝑊 , where 𝐻 ,𝑊 are the height and width respectively.
This feature grid is used as input to the SPADE module. Following
Dhariwal et al. [2021], we modulate the intermediate feature maps
of our network’s Group Normalization layers, making the SPADE
conditioning function

𝑆 (h, F) = 𝛾 (F) ⊙ GroupNorm(h) + 𝛽 (F)

GroupNorm𝑔 (h) =
h𝑔 − 𝜇𝑔√︃
𝜎2𝑔 + 𝜖

3

Maesumi et al.

sample dataset MLP

parameters
noise

U-Net

CutMix

augmentation
× +

conv

SPADE Block

Group norm

conv

embeddings

Fig. 3. Our DDPM is trained using CutMix data augmentation. We first transform the current data sample (highlighted in blue) by cutting and patching
together a set of other random samples from the dataset, resulting in a training image x0. The noise parameters for each image patch are passed to an MLP,
which projects the parameter sets into an embedding space that encodes both the noise type (class) and the noise parameters. The resulting feature vectors
are tiled to form a feature grid, which is used as a conditioning signal in the U-Net’s SPADE blocks, as outlined in Section 3.1.

where 𝛾, 𝛽 are convolutional layers that transform the feature grid
into element-wise scales and shifts respectively, and h is the incom-
ing activations of the previous layer. The scales and shifts act on the
output of a Group Normalization [Wu and He 2018] block, which
is computed using the mean, 𝜇, and standard deviation, 𝜎 , of each
group of channels 𝑔.
Our training data only contains noise textures that exhibit spa-

tially uniform properties, meaning that all feature entries in the grid
F are identical at training time. However, at inference time we may
query the network with an artificially constructed feature grid – for
instance, we can spatially blend between multiple feature vectors to
produce a conditioning signal that smoothly interpolates between
noise types and noise parameters, as shown in Figure 4.

3.1.1 Spherical class embeddings 1. As previously mentioned, the
network is conditioned on a class embedding, f𝑐 , that is learned
for each noise type during training. We find that regularizing this

1The following subsection introduces an enhancement to our original method, identified
post-publication, which improves results in many cases.

embedding space leads to substantial improvements when inter-
polating between classes. In particular, we penalize the deviation
of the norms of these embeddings from a target norm. For embed-
ding vectors of dimension 𝑑 that are initialized from f𝑐 ∼ N𝑑 (0, I𝑑),
we define the target norm, 𝑇 , as the expected squared norm of a
d-dimensional Gaussian vector according to the identity,

𝑇𝑛
𝑑

≔ E f𝑐∼N𝑑 (0,I𝑑)
[
| |f𝑐 | |𝑛2

]
= 2𝑛/2

Γ((𝑑 + 𝑛)/2)
Γ(𝑑/2) ,

where Γ denotes Euler’s gamma function. During training we then
penalize the embeddings according to

Lreg =
1
|𝐶 |

∑︁
𝑐∈𝐶
(∥f𝑐 ∥22 −𝑇

2
𝑑
)2, (1)

this imposes a spherical structure on the embeddings, which means
that interpolating between them can be done via spherical linear
interpolation [Shoemake 1985]. We find that imposing this structure
greatly improves texture blending between classes. This is likely
because the MLP (which acts on these embeddings) can now learn a

embeddings

{
 class = “voronoi”
 scale = 0.25
 distortion = 0.75
 …
 warp = 0.0
 waves = 0.0
}

Conditioning Parameters

MLP U-Net

Fig. 4. At inference time, we query our network using artificially constructed feature grids, enabling a flexible way to synthesize spatially-varying noise patterns.
Here we embed four sets of noise parameters, pictorially shown as one of four colors. We blend the feature vectors using bilinear interpolation, creating a
smoothly-varying feature grid, which our U-Net is able to transform into a Voronoi noise pattern with non-uniform scale and distortion characteristics.

4

One Noise to Rule Them All

smoother mapping into the final conditioning signal. As mentioned
in note 1, this regularization was identified post-publication; hence,
our primary results do not make use of this change. We demonstrate
its effectiveness in Figure 13 specifically.

3.2 Enhancing localized conditioning
Ideally, locally modifying the conditioning feature grid, F, within a
confined region should correspondingly alter the generated noise
texture solely within that region. However, our empirical observa-
tions revealed that such localized adjustments in the conditioning
signal often lead to global (or near-global) changes in the resultant
noise textures. This phenomenon can be primarily attributed to the
architectural design of the employed U-Net neural network – in
particular, its bottleneck shape in combination with having many
convolutional layers causes the receptive field of each output pixel to
be relatively wide. This enables the conditioning signal to spatially
propagate across the majority of the canvas, which is undesirable
for the quality and controllability of our synthesized noise textures.
To address this, we incorporate a modified version of CutMix

data augmentation [Yun et al. 2019] into our training procedure.
CutMix, a technique that is used to enhance performance in image
classification tasks, involves creating synthetic training examples
by stitching together axis-aligned crops of different dataset samples.
Notably, the application of CutMix has been predominantly in clas-
sification tasks, with its use in generative models being relatively
unexplored and confined to augmenting the performance of GAN
discriminators [Huang et al. 2021; Schonfeld et al. 2020]. In our
context, we apply CutMix by combining noise textures and their
corresponding conditioning feature grids, as illustrated in Figure
3. This approach not only enriches the diversity of our training
dataset, but also imparts a crucial capability to our model: the ability
to respond correctly to spatially localized conditioning signals.
We train our network with CutMix data augmentation applied

with a probability of 0.5, i.e. for half of the training samples we train
without applying CutMix. When augmenting a training image, we
sample one to four (uniformly at random) auxiliary noise textures
from the dataset, which are then randomly cropped (cut) into rectan-
gular patches with a randomly sampled rotation 𝜃 ∼ U(0, 2𝜋). Note
that only the crop mask is rotated, not the texture itself. The result-
ing mixed sample is then a composition of a base noise texture, and
one to four texture patches. It is important that all sampled patches
belong to unique noise types, otherwise the resulting training image
would be invalid, that is, the image would no longer belong to the
distribution that we are trying to capture.

4 IMPLEMENTATION DETAILS
Noise dataset. We procure a dataset of ∼1.2 million noise images,

covering 18 unique noise functions, along with dense samplings of
their respective parameter sets (listed in Appendix Table 1). In partic-
ular, we sample the following noise functions from Adobe Substance
3D Designer: cells 1, cells 4, voronoi, microscope view,
grunge galvanic small, liquid, bnw spots 1, grunge leaky
paint, grunge rust fine, grunge map 002, grunge map 005,
grunge damas, messy fibers 3, perlin, gaussian, clouds
1, clouds 2, clouds 3. A preview of our dataset is shown in

cells 4 cells 1 voronoi microscope galvanic small

liquid

clouds 3

bnw spots 1 leaky paint rust fine

grunge map 2 grunge damasgrunge map 5 messy fibers perlin

gaussian

clouds 2clouds 1

Fig. 5. Samples from our noise dataset, procured from Adobe Substance 3D
Designer. We sample 18 noises along with a variety of their parameters. Note
that our dataset does not contain samples with spatially-varying properties.

Figure 5. For each noise type, we deterministically sample 16,384
parameter sets using the low-discrepancy Halton number sequence,
ensuring better coverage over the space of parameters. Each param-
eter set is sub-sampled four times, i.e. we query the noise functions
with four different seeds for each parameter set, resulting in 65,536
image samples per noise type, and 1,179,648 samples across the
entire dataset. We sample at a resolution of 512 × 512px.

Network architecture. Our U-Net model is composed of three spa-
tial levels in the encoder and decoder, each level (including the
bottleneck) consists of two ResNet blocks that are conditioned on
the diffusion timestep, 𝑡 , and the block’s respective SPADE module.
The two conditioning signals are composed together as

𝛾2 (Z) ⊙ (𝛾1 (𝑡) · GroupNorm(h) + 𝛽1 (𝑡)) + 𝛽2 (Z)
where 𝛾1, 𝛽1 operate on 𝑡 and 𝛾2, 𝛽2 belong to a SPADE block. Note
that the former functions produce scalar quantities, whereas the
latter functions produce spatial modulation maps. Time values are
first encoded using sinusoidal positional encoding. The noise pa-
rameter MLP is defined by three layers of size 128. The parameter
vector f𝑝 is a concatenation of all noise parameters present in the
dataset, with entries zeroed out when not applicable. In total our
U-Net has ∼5.1 million parameters.

Training. Following Song et al. [2020] we formulate the U-Net as
a noise predictor 𝜖𝜃 (x𝑡 , 𝑡, f𝑐 , f𝑝) making the training objective

L = E𝜖∼N(0,1),𝑡∼U(0,1) ∥𝜖 − 𝜖𝜃 (x𝑡 , 𝑡, f𝑐 , f𝑝)∥2 + 𝜆Lreg (2)

We make use of offset noise [Guttenberg 2023], which replaces
the noise sampling, 𝜖 ∼ N(0, 1), with a slightly modified distri-
bution, N(0.1𝛿, 1), where 𝛿 ∼ N(0, 1). We find that offset noise
greatly helps our network resolve noise types that are extremely

5

Maesumi et al.
O

ur
s

PS
G

A
N

Im
gM

el
d

O
ur

s
PS

G
A

N
Im

gM
el

d
O

ur
s

PS
G

A
N

Im
gM

el
d

parameter interpolation class interpolation

Fig. 6. We compare our method to a neural texture synthesizer, PSGAN [2017], as well as a non-parametric texture blending method, Image Melding [2012]. In
the case of Image Melding, the first and last quarter of the image are given, only the remaining interior region is filled in. Both prior methods suffer from
artifacts and repeated visual details, whereas our method is able to blend smoothly while synthesizing novel details throughout the canvas. We note that
PSGAN produces anisotropic features that are not characteristic of the data distribution (e.g. horizontal streaks in bottom left example).

dark or bright (see Appendix Figure 16). We also note that more
principled alternatives to offset noise are now available [Lin et al.
2024]. In practice the timestep sampling, 𝑡 ∼ U(0, 1), is discretized
– we make use of a standard number of timesteps, i.e. 1000. We
employ the cosine-beta schedule proposed by Nichol et al. [2021].
The spherical embedding regularization loss is weighted by 𝜆 = 0.02
in Equation 2. Training is done in PyTorch; we use the AdamW
optimizer [Loshchilov and Hutter 2017] with a learning rate of
8 · 10−5, 𝛽1 = 0.9, 𝛽2 = 0.99, and a weight decay of 0.01. We train
on 8 NVIDIA RTX 3090 GPUs for ∼300,000 optimization steps with
batches of size 128. Noise images are downsampled to 256 × 256px
resolution for training.

Inference details & performance. Our model can perform 80 diffu-
sion steps per second on a single NVIDIA RTX 3090 GPU at 256×256
resolution at full precision (fp32), scaling quadratically with the res-
olution. We use the DDIM sampler proposed by Song et al. [2020]
– unless otherwise specified, our noise figures and visualizations
use 30 diffusion steps. To produce tileable noise maps, we modify
all conv2d layers in our network to use a circular padding mode,
making the canvas topologically toroidal.

5 RESULTS AND EVALUATION
Spatially and temporally varying noise. We demonstrate the capa-

bilities of our noise generator by synthesizing noise patterns using
an assortment of blending maps, shown in Figures 1 and 9. Our noise
generator is able to be conditioned flexibly, allowing one to gener-
ate large noise patterns with diverse patterns and blends between
them. We additionally show that our model is able to synthesize
continuously-varying noise by interpolating the conditioning maps
and/or diffusion noise (see Figure 15 and supp. video). Finally, in
Figure 6 we qualitatively compare our spatially-varying noise to a
GAN-based texture synthesis method, PSGAN [2017], as well as a
non-parametric texture blending method, ImageMelding [2012].

Quantitative evaluation. Weevaluate our noise generator’s spatially-
uniform noise textures against the ground truth textures fromAdobe
Substance 3D Designer using Frechet Inception Distance (FID),
which measures the distributional similarity between synthetic sam-
ples and the data distribution [Heusel et al. 2017]. We sample 20,000
synthetic images for each noise type and evaluate the FID of each
noise type separately. FID scores are reported in Appendix Table
2, alongside analogous scores for PSGAN. Our method achieves a
mean FID of 20.9 and median of 13.1, while PSGAN scores 99.2 and

6

One Noise to Rule Them All

Initial MATch Ours Target Initial MATch Ours Target

0.909

0.337

0.308

0.281

0.306

0.392

0.313

0.411

0.420

0.325

0.330

0.2630.374

0.059

0.040

0.046

0.042

0.114

0.027

0.026

0.069

0.023

0.020

0.045

Fig. 7. We demonstrate the utility of our method in material graph optimization. Given a procedural material graph and a target photograph, our noise
generative model serves as a useful prior over the space of noise functions, facilitating the recovery of non-trivial patterns that are present in the target
photos, and improving the baseline result given by MATch [2020]. Two similarity scores are reported for each result with respect to the target image: MATch’s
feature-based texture similarity metric (left) and LPIPS [2018] (right). Lower is better for both scores.

87.5 respectively (lower is better). We note that, for many noise
types, PSGAN suffers from mode collapse, which causes virtually all
of the synthesized results to have similar visual features and hence
its FID is severely impacted. As mentioned in Section 2, GAN-based
methods struggle to faithfully capture our dataset due to the pres-
ence of many disjoint data modes [Xiao et al. 2022]. Finally, we show
additional results with modified U-Net architectures in Appendix C.

Inverse material graph design. We incorporate our noise generator
into the differentiable material graph library MATch [Shi et al. 2020].
Given a target photo, we select a template material graph from a se-
lection of 88 graphs using the MATch-provided texture descriptors.
In the graph, we replace one noise generator node with our model,
and expose optimizable parameters for the class vector f𝑐 , parameter
vector f𝑝 , and the diffusion model’s latent noise z. We include an L1
regularization on the former vectors to encourage sparsity in the
optimized parameters. In Figure 7 we show that our noise generator
provides a valuable prior over the space of noise functions, allowing
end-to-end optimization to recover more accurate reconstructions
of the target photo. We additionally show results of editing oper-
ations on an optimized material graph in Figure 8. Target photos
are sampled from the Glossy dataset by Zhou et al. [2023b]. Further
details for this application are in Appendix A.3.

Tileability and texture size agnosticism. Our model is able to pro-
duce noise images that are tileable, which is crucial for many down-
stream graphics applications. Additionally, we are able to synthesize
noise at arbitrary sizes (within computational limits). In tandem,
these two properties are highly desired, as it allows one to generate
large tileable images that do not contain excessive repeated visual
patterns, which is a common problem with tileable images. We
demonstrate these capabilities in Figure 10, where we show tileable

Initial Ours Target

resample noiserecolor modify noise params

Fig. 8. After optimization, we can easily modify the resulting procedural
material graphs. Here a marble material graph is optimized (first row), and
edited in various ways (second row). We show the results of editing the noise
colorization, resampling our diffusion noise, and modifying our model’s
conditioning inputs.

grunge map 5 and microscope noise images, as well as the same
noises synthesized on canvases that are twice as large, eliminating
the repeated visual content. Additionally, in Figure 14 we show a
much larger Damascus pattern that fills a 2048 × 2048 canvas – we
highlight that fine-grained details are not at this size.

CutMix augmentation. We demonstrate the affect of our modified
CutMix data augmentation strategy by training models with: no

7

Maesumi et al.

Fig. 9. Several instances of spatially-varying noise, which arise from various blended feature grids. Blend maps are shown in the top right of each panel.

8

One Noise to Rule Them All

tileable noise 2x larger canvas and tileable

Fig. 10. Our model is able to produce seamless tileable images, as shown by
the green regions, which are tiled into 2-by-2 noise maps. We also support
synthesizing noise on an arbitrary canvas, avoiding noticeable repeated
patterns, which is a common problem with tileable textures.

augmentation, augmentation with only one patch (CutMix 𝑛 = 1),
and augmentation with one to four patches sampled uniformly at
random (CutMix 𝑛 ∈ [1, 4]). In Figure 11, we see that removing the
augmentation strategy severely hinders our model’s ability to re-
spond to the conditioning signal in a local manner, producing noise
patterns whose characteristics are not well-pronounced. Intuitively,
this is because the conditioning signal becomes “blurred” as it prop-
agates through the network’s layers. Due to the lack of meaningful
ground-truth data, we qualitatively observe that Cutmix 𝑛 = 1 and
Cutmix 𝑛 = 4 produce similar results, with the latter being able to
interpolate noise characteristics more smoothly in some cases.

6 CONCLUSION
We presented a new method for learning a single generative model
for a wide range of procedural noise types. The continuous space
of noise patterns learned by our model allows for smooth blending
between noise types; the characteristics of the output noise are
still controllable by interpretable parameters provided as input to
the model. In addition, our novel approach for spatially-varying
conditioning allows the model to generate spatially-varying blends
between different noises despite never having seen such data at
training time. We used this model to produce a variety of visually
compelling textures, and we showed a proof-of-concept application
of how it can be used to improve inverse procedural material design.

Our model is not without limitations. Not all pairs of noise types
can be interpolated well: if the geometric features of two noise
patterns are too dissimilar, the intermediate regions of a blend be-
tween them can look blurry or otherwise visually awkward (see

class blending parameter blending

uniform
(control)

close-up

w/o CutMix CutMix n=4CutMix n=1w/o CutMix CutMix n=4CutMix n=1

w/o CutMix CutMix n=4CutMix n=1

Fig. 11. Ablation study of CutMix data augmentation. Without CutMix, the
U-Net fails to resolve noise maps that contain non-uniform characteristics.
For instance, in row 3 of the class blending panel, the network cannot ade-
quately blend between noise classes, causing the galvanic noise pattern
to disappear entirely. We include models with one and four applications of
CutMix, as detailed in Section 5. Finally, the uniform panel (no blending)
acts as a control group – as expected, all outputs are similar.

Fig. 12. Our method is unable to smoothly blend between some noise types.
In the configurations above, we see artifacts in the transition regions.

Fig. 12). It may be possible to reduce these artefacts with further
improvements to our CutMix-based data augmentation (e.g. non-
rectangular patches; adaptive patch sampling to focus more training
time on “difficult” transitions). But to some extent, such behavior
is inevitable, and finding good noise pairs for interpolation is an
artistic decision. It may be possible to leverage the structure of our
noise embedding space to suggest good candidates for blending.
Finally, diffusion models are known to model low-density modes of
the data distribution less accurately [Song 2021; Um et al. 2024]; in
Appendix B we demonstrate our model on additional noise types,
and observe that some low-density modes of these noise functions
are poorly captured. More careful data sampling techniques may be

9

Maesumi et al.

needed when the desired noise distribution exhibits such modes; e.g.
by sampling some regions of the parameter space more frequently.
Procedural material authoring tools such as Adobe Substance

Designer often have deterministic pattern generators in addition
to stochastic noise generators. Could our model include these in
its learned space of blendable output? The deterministic nature of
these patterns makes them an unnatural fit for generation via de-
noising diffusion model; modifications to our model and/or training
procedure would be necessary to achieve this goal.

It would also be interesting to explore more techniques for interac-
tively creating spatially-vary noise textures. For example, one might
consider an interaction metaphor where the user places ‘droplets’
of noise on a canvas, and those droplets spread an interact with one
another by e.g. solving a diffusion equation.

Finally, the application to inverse procedural material design that
we presented is an early proof-of-concept; much more could be
done in this direction. Distilling our model into a one-shot diffusion
model [Liu et al. 2023] would make it tractable to replace every
noise generator node in a procedural material graph with our model.
Provided other graph operations are differentiable, this would open
up the possibility of solving for the structure of a material graph via
continuous optimization: initializing the graph to be over-complete,
assigning weights to edges, and imposing a sparsity prior on edge
weights. Similar approaches have been successfully employed for
inferring procedural representations of 3D shapes [Kania et al. 2020;
Ren et al. 2021]. In addition, allowing the optimization of spatially-
varying noise generators within material graphs might allow for
recovering smaller, easier-to-use graphs while still retaining the
benefits of interpretable parameters.

ACKNOWLEDGMENTS
This material is based uponwork that was supported by the National
Science Foundation Graduate Research Fellowship under Grant No.
2040433. Part of this work was done while Arman Maesumi was an
intern at Adobe Research.

REFERENCES
Adobe. 2023a. Adobe Substance 3D Designer. https://www.adobe.com/products/

substance3d-designer.html.
Adobe. 2023b. Adobe Substance 3DDocumentation. https://helpx.adobe.com/substance-

3d-designer/substance-compositing-graphs/nodes-reference-for-substance-
compositing-graphs/node-library.html.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein Generative
Adversarial Networks. In Proceedings of the 34th International Conference on Ma-
chine Learning (Proceedings of Machine Learning Research, Vol. 70), Doina Precup
and Yee Whye Teh (Eds.). PMLR, 214–223. https://proceedings.mlr.press/v70/
arjovsky17a.html

Urs Bergmann, Nikolay Jetchev, and Roland Vollgraf. 2017. Learning Texture Manifolds
with the Periodic Spatial GAN. In Proceedings of the 34th International Conference
on Machine Learning (Proceedings of Machine Learning Research, Vol. 70), Doina
Precup and Yee Whye Teh (Eds.). PMLR, 469–477. https://proceedings.mlr.press/
v70/bergmann17a.html

Blender. 2023. Blender. https://www.blender.org.
Robert L Cook and Tony DeRose. 2005. Wavelet noise. ACM Transactions on Graphics

(TOG) 24, 3 (2005), 803–811.
Soheil Darabi, Eli Shechtman, Connelly Barnes, Dan B Goldman, and Pradeep Sen. 2012.

Image Melding: Combining Inconsistent Images using Patch-based Synthesis. ACM
Transactions on Graphics (TOG) (Proceedings of SIGGRAPH 2012) 31, 4, Article 82
(2012), 82:1–82:10 pages.

Prafulla Dhariwal and Alexander Nichol. 2021. Diffusion models beat gans on image
synthesis. Advances in neural information processing systems 34 (2021), 8780–8794.

Fig. 13. Noise interpolations that arise from our spherically regularized
embedding space, as described in Section 3.1.1. The blending between noise
types appears organic and is largely free of the artifacts noted in Figure 12.

Julie Dorsey and Pat Hanrahany. 2006. Modeling and rendering of metallic patinas. In
ACM SIGGRAPH 2006 Courses. 2–es.

David Ebert, Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steve Worley. 2002.
Texturing And Modeling. A Procedural Approach (3 ed.). Morgan Kaufmann.

Alain Fournier, Don Fussell, and Loren Carpenter. 1982. Computer rendering of sto-
chastic models. Commun. ACM 25, 6 (1982), 371–384.

Eric Galin, Eric Guérin, Adrien Peytavie, Guillaume Cordonnier, Marie-Paule Cani,
Bedrich Benes, and James Gain. 2019. A review of digital terrain modeling. In
Computer Graphics Forum, Vol. 38. Wiley Online Library, 553–577.

10

https://www.adobe.com/products/substance3d-designer.html
https://www.adobe.com/products/substance3d-designer.html
https://helpx.adobe.com/substance-3d-designer/substance-compositing-graphs/nodes-reference-for-substance-compositing-graphs/node-library.html
https://helpx.adobe.com/substance-3d-designer/substance-compositing-graphs/nodes-reference-for-substance-compositing-graphs/node-library.html
https://helpx.adobe.com/substance-3d-designer/substance-compositing-graphs/nodes-reference-for-substance-compositing-graphs/node-library.html
https://proceedings.mlr.press/v70/arjovsky17a.html
https://proceedings.mlr.press/v70/arjovsky17a.html
https://proceedings.mlr.press/v70/bergmann17a.html
https://proceedings.mlr.press/v70/bergmann17a.html
https://www.blender.org

One Noise to Rule Them All

Fig. 14. Our model is capable of synthesizing noise maps at resolutions that far exceed the training resolution, thus facilitating one to paint “infinite” canvases.
Here we see a 2048 × 2048px Damascus steel noise pattern with intricate fine details, which was generated via a single diffusion process. Please zoom into the
figure for full details.

parameter interpolation t=1t=0t=1t=0

se
ed

 in
te

rp
ol

at
io

n
t=

0
t=

1

Fig. 15. Our model is able to synthesize continuously-varying textures via interpolation of the conditioning parameters and diffusion noise (analogous to the
“seed” in a traditional noise function). Here we show three noise types with 1) parameters interpolating (horizontal axis), and 2) the noise seed interpolating
(vertical axis). We also note that, when using the same noise seed across different noise types, we observe that similar structures appear in the output – we
suggest zooming out to see this effect clearly. Noise interpolation videos are included in supplemental material.

11

Maesumi et al.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. 2015. Texture Synthesis Using
Convolutional Neural Networks. In NeurIPS.

Jean-David Génevaux, Éric Galin, Eric Guérin, Adrien Peytavie, and Bedrich Benes. 2013.
Terrain generation using procedural models based on hydrology. ACM Transactions
on Graphics (TOG) 32, 4 (2013), 1–13.

Paul Guerrero, Miloš Hašan, Kalyan Sunkavalli, Radomír Měch, Tamy Boubekeur, and
Niloy J Mitra. 2022. MatFormer: A generative model for procedural materials. arXiv
preprint arXiv:2207.01044 (2022).

Yu Guo, Miloš Hašan, Lingqi Yan, and Shuang Zhao. 2020. A bayesian inference
framework for procedural material parameter estimation. In Computer Graphics
Forum, Vol. 39. Wiley Online Library, 255–266.

Nicholas Guttenberg. 2023. Diffusion with Offset Noise. (2023).
Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp

Hochreiter. 2017. Gans trained by a two time-scale update rule converge to a local
nash equilibrium. Advances in neural information processing systems 30 (2017).

Damien Hinsinger, Fabrice Neyret, and Marie-Paule Cani. 2002. Interactive animation
of ocean waves. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium
on Computer animation. 161–166.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. Advances in neural information processing systems 33 (2020), 6840–6851.

Yiwei Hu, Julie Dorsey, and Holly Rushmeier. 2019. A novel framework for inverse
procedural texture modeling. ACM Transactions on Graphics (ToG) 38, 6 (2019),
1–14.

Yiwei Hu, Paul Guerrero, Milos Hasan, Holly Rushmeier, and Valentin Deschaintre.
2022. Node graph optimization using differentiable proxies. In ACM SIGGRAPH
2022 conference proceedings. 1–9.

Zhizhong Huang, Junping Zhang, Yi Zhang, and Hongming Shan. 2021. DU-GAN:
Generative adversarial networks with dual-domain U-Net-based discriminators for
low-dose CT denoising. IEEE Transactions on Instrumentation and Measurement 71
(2021), 1–12.

Michael J Jones and Tomaso Poggio. 1998. Multidimensional morphable models. In
Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271). IEEE,
683–688.

Kacper Kania, Maciej Zieba, and Tomasz Kajdanowicz. 2020. UCSG-NET- Unsupervised
Discovering of Constructive Solid Geometry Tree. In Advances in Neural Information
Processing Systems.

Ares Lagae, Sylvain Lefebvre, Rob Cook, Tony DeRose, George Drettakis, David S Ebert,
John P Lewis, Ken Perlin, and Matthias Zwicker. 2010. A survey of procedural noise
functions. In Computer Graphics Forum, Vol. 29. Wiley Online Library, 2579–2600.

Ares Lagae, Sylvain Lefebvre, George Drettakis, and Philip Dutré. 2009. Procedural
noise using sparse Gabor convolution. ACM Transactions on Graphics (TOG) 28, 3
(2009), 1–10.

Chuan Li and Michael Wand. 2016. Precomputed Real-Time Texture Synthesis with
Markovian Generative Adversarial Networks. In Computer Vision – ECCV 2016,
Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (Eds.). Springer International
Publishing, Cham, 702–716.

Shanchuan Lin, Bingchen Liu, Jiashi Li, and Xiao Yang. 2024. Common diffusion
noise schedules and sample steps are flawed. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision. 5404–5411.

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, and Qiang Liu. 2023. InstaFlow:
One Step is Enough for High-Quality Diffusion-Based Text-to-Image Generation.
arXiv:2309.06380 [cs.LG]

Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101 (2017).

Wojciech Matusik, Matthias Zwicker, and Frédo Durand. 2005. Texture design using a
simplicial complex of morphable textures. ACM Transactions on Graphics (TOG) 24,
3 (2005), 787–794.

Alexander Quinn Nichol and Prafulla Dhariwal. 2021. Improved denoising diffusion
probabilistic models. In International Conference on Machine Learning. PMLR, 8162–
8171.

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. 2019. Semantic
Image Synthesis with Spatially-Adaptive Normalization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.

Ken Perlin. 1985. An Image Synthesizer. In Proceedings of the 12th Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH ’85). Association for
Computing Machinery, New York, NY, USA, 287–296. https://doi.org/10.1145/
325334.325247

Ken Perlin. 2002. Improving noise. In Proceedings of the 29th annual conference on
Computer graphics and interactive techniques. 681–682.

Lara Raad, Axel Davy, Agnès Desolneux, and Jean-Michel Morel. 2018. A survey of
exemplar-based texture synthesis. Annals of Mathematical Sciences and Applications
3, 1 (2018), 89–148.

Daxuan Ren, Jianmin Zheng, Jianfei Cai, Jiatong Li, Haiyong Jiang, Zhongang Cai,
Junzhe Zhang, Liang Pan, Mingyuan Zhang, Haiyu Zhao, et al. 2021. CSG-Stump:
A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing. In

Proceedings of the IEEE/CVF International Conference on Computer Vision. 12478–
12487.

Carlos Rodriguez-Pardo and Elena Garces. 2023. SeamlessGAN: Self-Supervised Syn-
thesis of Tileable Texture Maps. IEEE Transactions on Visualization and Computer
Graphics 29, 6 (jun 2023), 2914–2925. https://doi.org/10.1109/TVCG.2022.3143615

Edgar Schonfeld, Bernt Schiele, and Anna Khoreva. 2020. A u-net based discriminator
for generative adversarial networks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 8207–8216.

Omry Sendik and Daniel Cohen-Or. 2017. Deep Correlations for Texture Synthesis. ACM
Trans. Graph. 36, 5, Article 161 (jul 2017), 15 pages. https://doi.org/10.1145/3015461

Zhuoran Shen, Mingyuan Zhang, Haiyu Zhao, Shuai Yi, and Hongsheng Li. 2021.
Efficient attention: Attention with linear complexities. In Proceedings of the IEEE/CVF
winter conference on applications of computer vision. 3531–3539.

Liang Shi, Beichen Li, Miloš Hašan, Kalyan Sunkavalli, Tamy Boubekeur, Radomir
Mech, and Wojciech Matusik. 2020. MATch: Differentiable Material Graphs for
Procedural Material Capture. ACM Trans. Graph. 39, 6 (Dec. 2020), 1–15.

Ken Shoemake. 1985. Animating rotation with quaternion curves. In Proceedings of the
12th annual conference on Computer graphics and interactive techniques. 245–254.

Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020. Denoising Diffusion Implicit
Models. arXiv:2010.02502 (October 2020). https://arxiv.org/abs/2010.02502

Yang Song. 2021. Generative Modeling by Estimating Gradients of the Data Distribution.
https://yang-song.net/blog/2021/score/.

Thibault Tricard, Semyon Efremov, Cédric Zanni, Fabrice Neyret, Jonàs Martínez, and
Sylvain Lefebvre. 2019. Procedural phasor noise. ACM Transactions on Graphics
(TOG) 38, 4 (2019), 1–13.

Dmitry Ulyanov, Vadim Lebedev, Vedaldi Andrea, and Victor Lempitsky. 2016. Texture
Networks: Feed-forward Synthesis of Textures and Stylized Images. In Proceedings
of The 33rd International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 48), Maria Florina Balcan and Kilian Q. Weinberger (Eds.).
PMLR, New York, New York, USA, 1349–1357.

Soobin Um, Suhyeon Lee, and Jong Chul Ye. 2024. Don’t Play Favorites: Minority
Guidance for Diffusion Models. In The Twelfth International Conference on Learning
Representations. https://openreview.net/forum?id=3NmO9lY4Jn

Roland Van Der Linden, Ricardo Lopes, and Rafael Bidarra. 2013. Procedural generation
of dungeons. IEEE Transactions on Computational Intelligence and AI in Games 6, 1
(2013), 78–89.

Steven Worley. 1996. A cellular texture basis function. In Proceedings of the 23rd
Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
’96). Association for Computing Machinery, New York, NY, USA, 291–294. https:
//doi.org/10.1145/237170.237267

Yuxin Wu and Kaiming He. 2018. Group Normalization. In Computer Vision - ECCV
2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings,
Part XIII (Lecture Notes in Computer Science, Vol. 11217), Vittorio Ferrari, Martial
Hebert, Cristian Sminchisescu, and Yair Weiss (Eds.). Springer, 3–19. https://doi.
org/10.1007/978-3-030-01261-8_1

Zhisheng Xiao, Karsten Kreis, andArash Vahdat. 2022. Tackling the Generative Learning
Trilemma with Denoising Diffusion GANs. In ICLR.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and
Youngjoon Yoo. 2019. CutMix: Regularization Strategy to Train Strong Classifiers
with Localizable Features. In International Conference on Computer Vision (ICCV).

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018.
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In CVPR.

Xilong Zhou, Milos Hasan, Valentin Deschaintre, Paul Guerrero, Yannick Hold-Geoffroy,
Kalyan Sunkavalli, and Nima Khademi Kalantari. 2023b. PhotoMat: A Material
Generator Learned from Single Flash Photos. In ACM SIGGRAPH 2023 Conference
Proceedings. 1–11.

Yang Zhou, Kaijian Chen, Rongjun Xiao, and Hui Huang. 2023a. Neural Texture
Synthesis with Guided Correspondence. In Conference on Computer Vision and
Pattern Recognition (CVPR). 18095–18104.

Yang Zhou, Zhen Zhu, Xiang Bai, Dani Lischinski, Daniel Cohen-Or, and Hui Huang.
2018. Non-stationary Texture Synthesis byAdversarial Expansion. ACMTransactions
on Graphics (Proc. SIGGRAPH) 37, 4 (2018), 49:1–49:13.

12

https://arxiv.org/abs/2309.06380
https://doi.org/10.1145/325334.325247
https://doi.org/10.1145/325334.325247
https://doi.org/10.1109/TVCG.2022.3143615
https://doi.org/10.1145/3015461
https://arxiv.org/abs/2010.02502
https://yang-song.net/blog/2021/score/
https://openreview.net/forum?id=3NmO9lY4Jn
https://doi.org/10.1145/237170.237267
https://doi.org/10.1145/237170.237267
https://doi.org/10.1007/978-3-030-01261-8_1
https://doi.org/10.1007/978-3-030-01261-8_1

One Noise to Rule Them All

Noise function Sampled parameters Range
cells 4 scale 𝑖 [5, 50]
cells 1 scale 𝑖 [10, 50]
voronoi scale 𝑓 [5.0, 15.0]

distortion intensity 𝑓 [0.0, 1.0]
distortion scale multiplier 𝑓 [1.0, 2.0]

microscope view scale 𝑖 [25, 64]
warp intensity 𝑓 [0.0, 1.0]

bnw spots 1 scale 𝑖 [1, 3]
liquid scale 𝑖 [10, 45]

warp intensity 𝑓 [0.1, 0.8]
grunge galvanic small crispness 𝑓 [0.0, 0.75]

dirt 𝑓 [0.0, 1.0]
micro distortion 𝑓 [0.0, 0.6]

grunge leaky paint leak intensity 𝑓 [0.0, 1.0]
leak scale 𝑖 [1, 8]

leak crispness 𝑓 [0.0, 0.8]

Noise function Sampled parameters Range
grunge rust fine base grunge contrast 𝑓 [−0.3, 0.3]

base warp intensity 𝑓 [0.0, 256.0]
grunge damas distortion 𝑓 [0.0, 1.0]

divisions 𝑖 [4, 16]
waves 𝑖 [1, 3]
details 𝑓 [0.0, 0.75]

rotation random 𝑓 [0.05, 1.0]
grunge map 002 N/A N/A
grunge map 005 N/A N/A
messy fibers 3 scale 𝑖 [1, 3]

perlin scale 𝑖 [10, 50]
gaussian scale 𝑖 [10, 50]
clouds 1 scale 𝑖 [1, 5]
clouds 2 scale 𝑖 [1, 5]
clouds 3 scale 𝑖 [1, 3]

Table 1. We enumerate the noise functions that are sampled from Adobe Substance 3D Designer, along with their parameters and accompanying ranges –
integer and real ranges are denoted by 𝑖 and 𝑓 respectively.

FID↓ FID↓
Noise PSGAN Ours Noise PSGAN Ours
cells 4 218.8 33.6 rust fine 88.5 12.3
cells 1 171.3 2.4 damas 56.1 71.0
voronoi 149.3 12.5 map 002 37.3 13.7

microscope 133.1 29.7 map 005 155.4 34.5
bnw spots 1 22.4 4.4 fibers 86.4 34.6

liquid 163.7 38.0 perlin 47.8 4.8
galvanic small 79.2 24.9 gaussian 45.2 1.7
leaky paint 155.1 44.3 clouds 1 20.4 1.5
clouds 3 38.4 2.9 clouds 2 110.8 9.0
Mean 99.2 20.9 Median 87.5 13.1

Table 2. We compare our FID scores for each noise type alongside PSGAN.
The mean and median of all values are shown as well.

A EXPERIMENTAL AND IMPLEMENTATION DETAILS

A.1 Noise dataset details
We include a table enumerating all sampled noise types, the param-
eters that we sample, as well as the parameter ranges (see Table 1).
In general, we choose to include any parameters that lead to notice-
able changes in the resulting noise, with exceptions to parameters
that simply act as color correction (i.e. grunge map 005’s contrast
parameter). We note that, despite their names, some of these noises
correspond to those that belong to graphics literature; for instance,
cells 4, cells 1, and voronoi are variants of Worley noise [Wor-
ley 1996]. For more details about these noises, please refer to the
Adobe Substance documentation [2023b].

The conditioning vector f𝑝 contains an entry for each unique
noise parameter – we treat identical parameter names as separate,
with the exception of scale, which is treated as a single entry in the
vector. Parameters are independently normalized to the range [0, 1]
before being passed to our conditioning MLP. Below we show many

w
/o

 o
�

se
t

no
is

e
w

/ o
�

se
t

no
is

e
grunge damas grunge map 002 microscope view

Fig. 16. Ablation of offset noise. Without offset noise, the network occasion-
ally fails to synthesize noise images with extreme intensity distributions (i.e.
intensely dark and bright images). We show representative examples above.

samples of our model’s outputs with all listed noise parameters
being sampled randomly (see Figs. 19 to 23).

A.2 PSGAN Baseline
We slightly modify the PSGAN [2017] architecture for the results
shown in Figure 6. Since PSGAN is a purely unconditional gen-
erative model (i.e. it has no class or parameter conditioning be-
yond randomized latent code inputs), we endow the PSGAN model
with SPADE conditioning blocks that are identical to the ones used
throughout our method. We made the discriminator slightly larger
to compensate for the added parameters in the generator. Finally,
we use the WGAN loss [Arjovsky et al. 2017]. The remaining parts
of the network and training are largely kept as-is from the open
implementation. In total the generator has 30 million parameters.

13

Maesumi et al.

A.3 Inverse Material Design Details
We expose three parameters to the MATch differentiable material
graph optimizer; a soft-class vector v𝑐 , the parameter vector f𝑝 ,
and the diffusion Gaussian noise image z. The soft-class vector rep-
resents a list of [0, 1] values that are used to index into our class
embeddings – this amounts to taking a convex combination over
the class embeddings. During optimization, we apply the SoftMax
function to v𝑐 to ensure the values are valid. In order to encourage
sparsity, we include an L1 regularization term on both v𝑐 and f𝑝 ,
using a weight of 0.1 for both L1 terms in the final optimization ob-
jective. Additionally, we include a scheduled temperature parameter
𝜏 into the SoftMax operator by performing element-wise division of
v𝑐 by 𝜏 , softmax(𝑣, 𝑡) = 𝑒𝑣𝑖 /𝑡∑𝐾

𝑗=1 𝑒
𝑣𝑗 /𝑡 . The temperature is initialized to

0.25 and is updated at every optimization step via the update rule
𝜏 ′ ← 𝜏 · 0.97. Finally we clamp 𝜏 to be at minimum 0.01. This sched-
uled temperature forces the optimization to “hone in” on a single
class. We use a learning rate of 0.01 for all graphs. After 𝜏 = 0.01
we perform a warm-restart of the optimizer and add noise to the
exposed parameters to avoid local minima.

B TRAINING WITH ADDITIONAL NOISE TYPES
We train our model on two additional noise types that are com-
monly used in graphics literature: Phasor noise [2019] and Gabor
noise [2009]. We utilize the same data sampling method as men-
tioned in Section 4. The parameters that we sampled for both noise
types, as well as their ranges, are enumerated in Table 3. We use
the released implementations for both noise types to accrue our
training data. Examples of spatially-varying images using parame-
ter interpolation and class interpolation for both Phasor and Gabor
noise are shown in Figs. 17 and 18.

We note that our model exhibits an FID of 93.6 and 129.3 on Pha-
sor and Gabor noise respectively, which is notably higher than the
FID scores for other noise types. Upon inspection of our model’s
outputs, we see that some parameter configurations are not well
captured by our training. For example, Gabor noise exhibits a sig-
nificantly different visual appearance when its principal frequency
and kernel width are very small; however, since this appearance
is only captured by a narrow subset of the parameter space, the
dataset thus contains much fewer of such samples. One drawback
of diffusion models is that they model low-density regions of the
data distribution less accurately (compared to higher-density re-
gions) [Song 2021; Um et al. 2024], and hence our performance is
worse in such situations. More careful data sampling methods may
be needed when the desired noise distribution exhibits low-density
modes; e.g. by sampling some regions of the parameter space more
frequently.

C MODEL ARCHITECTURES
The U-Net model detailed in Section 4 has just ∼5.1 million parame-
ters and is constructed using two downsampling blocks, a bottleneck
block, and two upsampling blocks. Each block contains two ResNet
sub-blocks. An additional ResNet sub-block is placed at the end of
the network. We use channel dimensions of 32 and 64 for the outer

Noise function Sampled parameters Range
phasor noise principal frequency, 𝐹 𝑓 [8.0, 32.0]

num cells 𝑖 [1, 12]
phasor density 𝑓 [0.3, 0.5]

factor angle spread, 𝜃 𝑓 [0.0, 1.0]
gabor noise principal frequency, 𝐹 𝑓 [0.02, 0.08]

kernel width, 𝛼 𝑓 [0.01, 0.35]
kernel orientation, 𝜔 𝑓 [0.0, 2𝜋]

Table 3. Parameters and sampling ranges for additional noise types.

Fig. 17. Examples of our model’s Phasor noise. From top to bottom: isotropic
Phasor to anisotropic Phasor (parameter interpolation), anisotropic Phasor
to Messy Fibers, and anisotropic Gabor to anisotropic Phasor (class interpo-
lation).

Fig. 18. Examples of our model’s Gabor noise. From top to bottom: Gabor
to Gabor (parameter interpolation), Gabor to Microscope View, and Gabor
to Grunge Rust Fine (class interpolation).

14

One Noise to Rule Them All

Architecture Block dimensions Attention Num. Parameters Mean FID↓ Median FID↓ Steps per second↑
Model-XS (32, 64, 128) ✗ 5.1M 20.9 13.1 79.5/s
Model-S (32, 64, 64, 128) heads = 4, dim = 32 6.5M 14.0 10.8 28.6/s
Model-M (64, 128, 128, 256) heads = 4, dim = 32 22.5M 10.3 10.4 20.1/s

Table 4. Three model architectures with varying parameter counts and design choices are shown. The Block dimensions column shows the dimension counts
for the downsampling blocks followed by the bottleneck block (the networks are symmetric; i.e. the upsampling blocks follow the same dimensions in reverse
order). Our primary model (first row) is significantly faster than the other models, but compromises slightly on FID.

blocks, and 128 for the bottleneck. The ResNet sub-blocks are glob-
ally conditioned on the diffusion time 𝑡 , and spatially conditioned
(via SPADE) by 128-dim noise embeddings. We will refer to this
model as Model-XS (extra small) below.
We train two additional model architectures to evaluate the po-

tential performance of larger and more complex models. Model-S is
identical to Model-XS, with the exception of added linear attention
layers inside of each block [Shen et al. 2021], and the addition of an
extra set of downsampling/upsampling blocks. Similarly, Model-M
is identical to Model-S, with the exception of larger channel dimen-
sions. In Table 4 we summarize these architectures as well as their

FID scores and inference performance. The models were trained
for the same number of optimization steps following the details in
Section 4.

For our inverse material design application, we found that using
Model-XS was most suitable due to the added memory cost of at-
tention layers. For consistency, we used this model for all figures
in the main text; however, in applications that do not require such
light-weight networks, the larger models may be suitable.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

15

Maesumi et al.

Fig. 19. Random samples of our model’s cells 4, cells 1, and voronoi noises at 256 × 256 resolution.

16

One Noise to Rule Them All

Fig. 20. Random samples of our model’s microscope view, bnw spots1, and liquid noises at 256 × 256 resolution.

17

Maesumi et al.

Fig. 21. Random samples of our model’s grunge galvanic small, grunge leaky paint, and grunge rust fine noises at 256 × 256 resolution.

18

One Noise to Rule Them All

Fig. 22. Random samples of our model’s grunge damas, grunge map 002, and grunge map 005 noises at 256 × 256 resolution.

19

Maesumi et al.

Fig. 23. Random samples of our model’s messy fibers 3, perlin, and gaussian noises at 256 × 256 resolution.

20

One Noise to Rule Them All

Fig. 24. Random samples of our model’s clouds 1, clouds 2, and clouds 3 noises at 256 × 256 resolution.

21

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Spatially-varying conditioning
	3.2 Enhancing localized conditioning

	4 Implementation Details
	5 Results and evaluation
	6 Conclusion
	Acknowledgments
	References
	A Experimental and Implementation Details
	A.1 Noise dataset details
	A.2 PSGAN Baseline
	A.3 Inverse Material Design Details

	B Training with additional noise types
	C Model architectures

