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Abstract. We introduce Temporal Residual Jacobians as a novel repre-
sentation to enable data-driven motion transfer. Our approach does not
assume access to any rigging or intermediate shape keyframes, produces
geometrically and temporally consistent motions, and can be used to
transfer long motion sequences. Central to our approach are two coupled
neural networks that individually predict local geometric and tempo-
ral changes that are subsequently integrated, spatially and temporally,
to produce the final animated meshes. The two networks are jointly
trained, complement each other in producing spatial and temporal sig-
nals, and are supervised directly with 3D positional information. Dur-
ing inference, in the absence of keyframes, our method essentially solves
a motion extrapolation problem. We test our setup on diverse meshes
(synthetic and scanned shapes) to demonstrate its superiority in gen-
erating realistic and natural-looking animations on unseen body shapes
against SoTA alternatives. Supplemental video and code are available at
https://temporaljacobians.github.io/.

1 Introduction

A major challenge in character animation is to transfer the motion of a source
(skeletal) system to a diverse range of target characters in a realistic manner.
The traditional approach to achieve this involves using a rig, which connects a
skeleton to the character’s surface and manages the surface motion through a
variety of constraints and parameters. Target movement is then conveyed from
the skeleton to the surface by either simulating the physics of the muscles and
fat or by using tailored sets of skinning weights. These weights can be manually
created by skilled artists or derived from pre-existing rigged models [36, 37].
Despite its simplicity, rigging can be time consuming to set up and complicated
to transfer to new target shapes; it may also fail to accurately capture dynamics.

There has been growing interest in developing surface deformation techniques
that are more flexible and efficient than traditional rigging-based approaches and
can utilize available volumes of full-body motion capture data. One possibility
is to train data-driven methods to learn a low-dimensional parameterization,
such as a morphable humanoid template [20] or a neural space deformation [38],
to provide controllable handles for shape and pose-aware manipulations. How-
ever, such methods do not capture continuity over time and can overlook subtle
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Target Motion

Transferred Motions using Temporal Residual Jacobians

Target Characters

Fig. 1: Given a stick figure dance motion (top-right), Temporal Residual Jacobians
retarget the animation to unseen, unrigged meshes (top-left) across time, producing
realistic motion dynamics. Please refer to the supplemental webpage for videos. Our
method can be trained on limited data, does not require rigged models or skinning
weights during training or inference, and does not assume paired sequences or registra-
tion to any canonical template mesh. The method was trained on other bodyshapes:
no target characters were seen during training. All results in the paper and supplemen-
tal material were obtained with automatic feature correspondences and without any
postprocessing or smoothing applied.

motion dynamics essential for enhancing the realism of the generated motion se-
quences. To add time-dependent effects, corrective vertex deformations, similar
to DMPLs [20] and SoftSMPL [31], have been introduced in multistage work-
flows. Unfortunately, such methods do not account for elementwise temporal
inter-relations and have limited generalization to unseen characters.

We aim to transfer a source motion, expressed as joint angles on a stick
figure, onto a target shape, specified as a (rig-free) mesh. We want to do so
without access to any rigging on the target shape, and we also want to avoid any
fixed template or morphable shapes. A desirable solution should address sev-
eral challenges: (i) handle rig-free meshes and/or scans with arbitrary topology;
(ii) produce plausible transfers to diverse shapes; (iii) achieve continuity over
space and time and thus avoid artifacts (e.g., broken meshes, jittery motion);
and (iv) work with long motion sequences without significant drift. The first
two problems are partially handled by rig-free pose transfer (i.e., transferring a
pose to a target mesh) methods [2,19,34]. While such methods produce plausible
single frames, they lead to jittery motion transfer and motion-induced geometric
artifacts like shearing.

We propose a novel approach that learns local spatio-temporal changes to
produce natural-looking motion transfers. Technically, we achieve this via a new
representation in the form of Temporal Residual Jacobians that temporally links
spatial predictions and is directly supervised using example motion sequences.
We jointly train two neural networks to individually predict local spatial and
temporal changes. They are coupled by spatial integration with a differentiable
Poisson solve, and temporal integration with a neural ODE. A key technical
insight is that instead of having the neural ODE predict per-frame mesh de-
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formations, it is more effective to predict initial deformations independently of
time via a base posing model (we use Neural Jacobian Fields [2]), and then have
the neural ODE predict residual deformations, linked over time, as corrective
factors that improve temporal coherence. Figure 1 shows how a stick-figure con-
trol motion produces target motions for different characters, without requiring
registration to any standard template or character rigs.

We evaluate the effectiveness of our method for motion generation to differ-
ent character bodies (e.g., humanoids, animals, Mixamo characters, scans) and
different motions (walk, run, jump, punch, dance). We compare our approach
to alternatives, when available. We provide qualitative and quantitative results
using the AMASS [21], COP3D [32], and 4DComplete [17] datasets.

In summary, our primary contributions are: (i) a novel method that enables
motion transfer via Temporal Residual Jacobians and can be trained directly
using positional data; (ii) local predictors that can be integrated in space and
time to create natural looking character animations; and (iii) a robust pathway
to transfer realistic character motion without the need for explicit rigging or
learning a parameterization using any canonical template shape.

2 Related Work

Parametric Shape Deformation. These methods express 2D or 3D shapes as
a known function of a set of common parameters, and model deformations as
variations of these parameters. Such methods include cages, explicit [14] or neu-
ral [38], blendshapes [15], skinned skeletons [13], Laplacian eigenfunctions [30],
and several other variations. Linking the parameters to the shape’s surface often
requires manual annotation of weights (commonly known as weight painting) in
3D authoring tools. Alternately, given sufficient data (i.e., meshes, rigs, skinning
weights), end-to-end training can produce realistic neural rigs, as demonstrated
by Pinocchio [4], RigNet framework [36], skinning-based human motion retarget-
ing [22], and skeletal articulations with neural blend shapes [16]. Unsupervised
shape and pose disentanglement [42] proposes to learn a disentangled latent
representation for shape and pose, which can be further used to transfer motion
using shape codes. This requires meshes to be registered and have the same con-
nectivity. To animate these parametrized shapes through time, the parameters
are varied over time and the dynamic weights animate the mesh. These methods
require access to body templates and/or rigs and can produce results that are
jittery due to loose coupling of the individual frame predictions.

Dynamic Motion. It is possible to model temporal surface effects by simulat-
ing the underlying soft tissues using finite element methods (FEM) [6, 9]. This
direct simulation is typically slow and requires artists to design the underlying
bone and muscle structure [1]. Approaches have been developed to overcome the
stiffness problem in FEM to accelerate simulating these systems [23] or to solve
the problem in a lower-dimensional subspace [25]. For the specific case of rigged
human characters, Santesteban et al. [31] add soft-tissue deformation as an ad-
ditive per-vertex bump map on top of a primary motion model; AMASS [21]
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imparts secondary motion using the blending coefficients of the DMPL shape
space [20]; and Dyna [26] learns a data-driven model of soft-tissue deformations
using a linear PCA subspace. These efforts, however, assume access to primary
motion via a skeleton rig and are restricted to humans, registered to a canonical
template. Complementary dynamics [5, 40] models physically-based secondary
motion in the subspace complementary to that spanned by an animation rig.
This approach adds automatic secondary motion to arbitrary animated objects,
but requires the target shape to be rigged, is not designed for deformation trans-
fer (the base animation is part of the input), and is tied to a specific hand-coded
secondary physics model. DeepEmulator [41] achieves a similar effect using a
local-patch-based neural network to learn the secondary behavior, but again re-
quires the primary motion as input and does not support deformation transfer.

Discrete Time Motion Models. Given their ability to model time, deep recurrent
neural networks have also been used to model shape sequences. Fragkiadaki et
al. [10] use LSTMs to predict short human joint motions given initial frames.
Harvey et al. [11] leverage LSTMs for in-betweening to predict intermediate joint
motions. He et al. [12] learn a motion field for joints through time. In all these
methods, the mesh itself is deformed via rigging, and since joint motion does not
encode bodyshape, they do not sufficiently represent secondary motion. Also, be-
ing discrete time representations, these approaches must train on large datasets
of joint motion. Qiao et al. [27] instead use mesh convolutions with LSTMs to de-
form vertices through time. In our work, we use neural ODEs as they can model
time continuously instead of discretizing time and modeling the sequence using
LSTMs. Further, vertex-based deformation models are susceptible to artifacts
like normal-inversion as we demonstrate in our evaluation section.

3 Approach

Given an unrigged, triangulated mesh of a 3D character, we aim to animate it by
motion transfer from an available motion described by relative joint angles (stick
figure motion) at each time step. The relative joint angles are represented as
Euler angles and are defined at each joint with respect to its hierarchy in SMPL’s
kinematic tree (cf. [12]). We obtain these joint-based motion representations
from the AMASS dataset [21]. Since we aim to animate the mesh itself from
the joints’ motion, we seek to learn a mapping from the joint representation to
the positions of the given mesh’s vertices, and to do so at each time step while
ensuring we generate a smooth and artifact-free mesh animation. We supervise
our setup with ground-truth meshes from the AMASS dataset [21].

We parameterize such a character X ∈ RN×3 as assigning positions to each
of its N vertices of the underlying mesh. Thus to impart a motion to a mesh, we
perform this assignment at every time step. Given a shape X0 as a triangulated
mesh, in its initial pose configuration, along with per-frame pose configuration
Mt that describes the target pose at time t, we aim to predict the shape Xt at
each time t generating the full motion sequence; essentially learning a mapping
from relative joint orientations to mesh deformations (typically, from 30-50 joints
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to 50-100k vertices). We aim for a data-driven method that generalizes to new
characters and does not rely on shape rigging or intermediate shape keyframes.
Another desirable property is to do so with limited data (e.g., working with 5-10
motion examples), as obtaining full-body 3D motion data is non-trivial.

Our key observation is that we can robustly train neural networks to pre-
dict changes local in both space and time, which can then be integrated across
space, using a differentiable Poisson solve; and across time, using Euler equa-
tions to handle an ODE numerically. Integrating across space helps maintain
plausibility of the entire shape, while integrating across time helps model a real-
istic, time-coherent motion. Further, local predictions help higher generalization
capability to unseen body shape; while the spatio-temporal integration ensures
smoothness of the sequence, without jitters or undesirable shearing artifacts. Our
end-to-end differentiable formulation allows training the networks directly using
example training sequences, without requiring factorized spatial and temporal
motion signals. For spatial handling, we extend the representation from local de-
formation encoding [33] and affine mapping framework Neural Jacobian Fields
(NJF) [2], which learns an affine transformation field that is sampled at each
mesh face and integrated into vertex positions via a Poisson solve. For tempo-
ral coherence and consistency in these predicted Jacobians, we couple temporal
signals across the character motions using a neural ODE framework [7] via a
novel Temporal Residual Jacobian representation. Predicting residual deforma-
tions that correct the predictions of a base model for time-coherence turns out
to be more effective than trying to make the base model itself time-coherent.

3.1 Overview

Training: Since our goal is to map temporally varying joint angles to full mesh
animation, during training we assume this mapping is available i.e., we have
one-to-one mapping across time between joint orientations and the correspond-
ing meshes. Thus, we use the motion sequences in AMASS [21] as our training
dataset for humanoid shapes. Thus, during training, our algorithm takes in the
joint angles at each time step, the mesh itself at time t = 0 in its starting pose,
and the full mesh sequence is used for supervising our neural networks.

Inference: At inference time, our algorithm simply takes in an unrigged character
provided as a triangulated mesh. Our trained method is then used to animate
this mesh from joint-sequences of motions sampled from AMASS. These meshes
can be obtained in-the-wild or from character datasets like Mixamo. For shapes
in the AMASS dataset since we have the ground-truth motions, we evaluate our
framework quantiatively. We only show qualitative motion generation for other
shapes in the work, as there is no ground-truth solution.

Motion and Shape parameters: The motion sequences in AMASS were obtained
from live captures of subjects performing different motions; these were then
parametrized in SMPL’s [20] shape and pose space, thus providing a mapping
from joint orientations to 3D mesh pose - i.e., vertices of the mesh oriented
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to match the pose represented by the provided joint orientations. We use this
mapping to supervise our framework. Specifically, this data framework allows
us to sample motions across both shapes and poses, by varying the respective
low-dimensional parameters β and α. In our work, the α translate to joint angles
at each time step and we use the source live-capture subject’s β as is, and pass
it as a conditioning variable to our method.

3.2 Preliminaries

Our framework uses two components – one to learn spatial mesh deformations
(re-posing) and the other to learn temporal signals to generate a temporally
coherent mesh motion. We describe these below.

Neural Jacobian fields, as introduced in [2], encode local deformations by defin-
ing a field via map ϕ, defined over space, that can be sampled at the N vertices
of the surface mesh. Specifically, given ϕ, we compute Jacobians in the basis of
the triangles of the surface mesh as,

Ji = ϕ∇T
i (1)

where ∇i is defined as the gradient of triangle ti in its basis Bi defined at
the triangle’s centroid. Thus, given a learned map, we obtain each triangle’s
(estimated) affine transformations Ji. Recovering the vertex positions from this
per-triangle assignment of affine transformations is then done via a least-squares
formulation that reduces to solving a Poisson system given by (cf. [39]),

ϕ∗ = L−1ρ∇TJ (2)

where ρ is the mesh’s mass matrix, L = ∇T ρ∇ is the cotangent Laplacian, and
J is a stack of (estimated) Jacobians Ji. This solution gives a unique mesh up to
a translation, which we fix using X0, the mesh at t = 0. Mesh positions directly
supervise the neural map ϕ via a differentiable Poisson solver [24].

Thus, NJF allows us to learn affine deformations of a given mesh. In our
work, the map ϕ is a trainable neural network that predicts local deformations
of the mesh’s triangles. Given conditioning parameters, the trained map can then
be used to predict the Jacobians of each triangle in the mesh at each time step,
generating a time-coherent animated 3D mesh.

Neural ODEs Chen et al. [7] represent differential equations with neural networks
to model the dynamics of time-varying systems (motion sequences in our setting).
Specifically, given a function f(t; θ) := ∂J

∂t , where f is a neural network with
parameters θ and t being time, the variable J can be integrated out at t as

J(t) =

∫ t

0

∂J

∂t
dt =

∫ t

0

f(t; θ)dt+ J0. (3)

The neural network can be directly supervised with J values as the net-
work output utilizes a black box differential equation solver without explicitly
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Fig. 2: Method overview. Starting from input stick figure motion ({Mi}) and a
target body shape (X0), Residual Temporal Jacobians makes local predictions, using
primary fP and residual fR MLPs, to predict spatial and temporal changes to per-
triangle Jacobians. These are then integrated in space, via a Poisson solve, and in time,
via numerical Euler stepping, to predict motion dynamics at time frame t. These two
learnable modules are trained simultaneously with only direct object-level supervision
using a combination of positional and Jacobian losses. We use the ground-truth meshes
from AMASS to supervise the predictions. The time t input is positionally encoded.

discretizing the dynamic system. This leads to better estimation, benefits from
constant memory updates (as opposed to explicit hidden states in RNNs, LSTMs,
etc.), and trades numerical precision for speed.

Our work seeks to learn how the triangle Jacobians move through time.
Thus, our neural ODE operates in the Jacobian space, with Jacobians being the
variables to integrate across time.

3.3 Motion Transfer with Space-time Integration

Without keyframes, we have to solve a temporal extrapolation problem. Our goal
is to produce shape-preserving realistic motion sequences, as well as to learn such
a motion model from a very sparse dataset. Not surprisingly, if each frame were
independently predicted, the resulting motion would not be consistent across
time, resulting in a jittery and artifact-ridden sequence (see Section 4). We,
therefore, propose a novel framework wherein independent frame predictions are
improved by providing temporal signals from a neural ODE. The two networks
work in lockstep, each boosting the other’s predictions, and are trained together.

Independent posing: We estimate each frame’s Jacobians independent of tempo-
ral information. Given a shape X0, pose configuration (relative joint angles with
respect to SMPL’s kinematic tree) Mt and features describing each mesh face,
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we predict JP
t as the primary Jacobians at time t. Specifically,

∆JP
t = fP (J

P
0 ,Mt, C; θP ) (4)

JP
t = JP

0 +∆JP
t (5)

where JP
0 is the first frame Jacobian computed from X0, Mt is the pose con-

figuration given as relative joint angles, and C are per-face features defined at
the centroid of the mesh faces, of the mesh at t = 0. In our tests, as features
C, we jointly learned PointNet features on the centroids and normals of X0 and
augmented them with pre-computed Wave Kernel Signatures [3]. Our feature
network (a shallow PointNet) learns geometric features that enable mapping to
an unseen shape via correspondence in this learned feature space. We note that
conditioning the posing network on JP

0 and adding the predicted delta via a
residual connection significantly improves pose prediction and generalization to
unseen pose configurations. We additionally note that the Jacobians are com-
puted in the local basis defined at each face’s centroid. Thus, JP

0 is the Jacobian
of the identity deformation in the local basis (a rotation). Henceforth, we do not
update the basis in the sequence and express all Jacobians on this chosen basis.

In practice, we analytically compute the triangle Jacobians of only the first
frame X0 in the sequence. We then predict the Jacobians at each time instance
t in the coordinate frame of X0 and solve Equation 2 to obtain the shape Xt at
time t. Importantly, we augment NJF with temporal learning signals, by linking
these independent per-frame predictions via a neural ODE, as described next.

Stitching across time: Our key observation is that learning local changes in
time generalizes better to unseen shapes. Central to our method is a neural
ODE that provides temporal training signals to the primary NJF and integrates
across time to learn a smooth, arbitrary-length motion sequence. We found inde-
pendent per-frame predictions are prone to artifacts and do not generalize well
(see Section 4). We also observe that a neural ODE, in isolation, cannot predict
the entire sequence due to the drift problem inherent to estimating functions
using numerical ODE methods. Specifically, given an initial state and per-frame
control parameters (in our case, joint angles), predicting the mesh sequence is
an extrapolation problem. As such, ODEs are prone to drifting away from the
underlying function. This problem is exacerbated as the length of the motion
increases – the longer the motion, the larger the accumulated drift.

As a solution, we propose a novel formulation to address both the incoher-
ence of per-frame predictions and the drift problem. Specifically, we direct the
neural ODE to learn only Residual Jacobians at each time step conditioned on
the predictions from Eq 5 and on a window of past Jacobians. The Residual
Jacobians are corrective factors which are directly added to the per-frame Jaco-
bians. We predict Residual Jacobians local in time as outputs of a Neural ODE
to ensure temporal coherence. This allows us to handle much longer motions,
spanning 1-3k frames, without noticeable drift. We describe our method below.

ODE formulation: To handle arbitrary length sequences, in the interest of mem-
ory and training speed, we train and infer a given sequence in windows of consec-
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utive frames. A given sequence is broken into fixed window sizes. We initialize J0
in Eq 3 as the first frame’s Residual Jacobian. Since the first frame is stationary
and given as input, we set the first frame’s Residual Jacobian as,

JR
0 = 0 ∈ R3×3. (6)

We then task the neural ODE to learn Residual Jacobian JR
t at each t, by extrap-

olating from JR
0 using Euler’s integration. We then extract the final Jacobians

in terms of the base Jacobians corrected by the Residual Jacobians as

Jt = JP
t + JR

t . (7)

We predict the residuals JR
t by integrating over time the bodyshape-specific

local changes predicted by fR which is defined as,

∂JR
t

∂t
= fR(J

P
0 , EP

W , ER
W−1, β, t; θR) (8)

where β is the shape signature that defines the given body shape, and JP
0 ,

as defined previously, are the Jacobians of the first frame; EP
W and ER

W−1are
attention encodings of current-window pose predictions and previous-window
residual predictions. We integrate the local changes (see Eq 8) over time using
Euler’s method to obtain JR

t at each t as,

JR
t =

∫ t

0

∂JR
t

∂t
dt+ JR

0 =

∫ t

0

fR(J
P
0 , EP

W , ER
W−1, β, t; θR)dt. (9)

Our jointly trained attention encoders are defined as,

EP
W = AP (JP

W , TW ) (10)
ER

W−1 = AR(JR
W−1, TW−1) (11)

where AP and AR are multi-head attention networks, JP
W and JR

W−1 are a block
of sequential Jacobians in the current window W and past window W − 1, re-
spectively; TW and TW−1 are correspondingly blocks of time instances in these
windows and are positionally encoded using time. In all our experiments we use
a window size of 32 frames.

Note that we use the attention networks to encode a window of Jacobians
to a single encoding. Since the encoding sizes are thus constant, we can handle
arbitrary window/sequence lengths without overflowing memory. These encoders
distill the current posed Jacobian predictions from Eq 5 and previously predicted
Residual Jacobians obtained from Eq 9.

We pass the output of the attention networks as conditioning to Eq 8 to
integrate and obtain the residuals in Eq 9. The predicted residuals are then added
to the posed Jacobians in Eq 7. Finally, we spatially integrate the predicted
Jacobians Jt using a differentiable Poisson solve [24], in the coordinate frame of
the first frame, to obtain the predicted shape Xt at t.
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Fig. 3: Generalization across bodyshapes. We show results of different motion
transfers on meshes found in-the-wild (blue), FAUST scans (pink) and Mixamo char-
acters (green). We observe a smooth motion consistent with the target geometry in
each case. Please see supplemental materials.

Loss function: Our pipeline is trained end-to-end using only a shape loss over
vertices of Xt and a Jacobian loss. Thus, our final objective function is simply

Lvertex = ∥Xt −XGT
t ∥2 and LJacobian = ∥Jt − JGT

t ∥2, (12)

L = Lvertex + αLJacobian. (13)

We use α = 0.05 in our tests.
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4 Evaluation

Motion datasets. We train and evaluate our method on motion sequences from
three different datasets. First, the AMASS dataset [21] for humanoid motions,
which is based on the SMPL body model [20] that allows us to vary body-
shapes by changing its shape parameter β, for a given sequence. Thus, we train
our model for a given motion category (like running) to predict the sequences
on varying body-shapes (indicated as the β-predictor in Figure 2). During train-
ing, each sequence in the category is trained with only one body-shape. During
inference, given an unknown test shape X0 and a motion {Mt}, we synthesize
the full body motion for the target shape. Second, we also tested on a synthetic
DeformingThings4D dataset [18], which provides animal 4D meshes as deform-
ing sequences. Finally, we also present results on motions extracted from video
recordings of animals in the COP3D dataset [32] where our inputs are meshes
fitted to the video recordings to train Temporal Residual Jacobians.

Target shapes. We evaluate our method on various forms of target shapes,
namely sampled SMPL models, scans from the FAUST dataset, characters from

Fig. 4: Generalization across shapes with very sparse training sets. Here, we
show motion transfer from two animal sequences (in yellow) sampled from the Deform-
ingThings4D dataset [18], to animal meshes found in the wild (in blue). Our method
was trained on only two sequences from this dataset and yet generates plausible motion
transfer to unseen shapes. Rigs were not available to our algorithm at training and/or
test time. (Note: blue sequences have been slightly globally rotated for visibility.)
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the Mixamo library, various models from online 3D repositories (e.g., wolf, tricer-
atop, monster, hole-man, etc.). Non-manifold inputs were converted to manifold
meshes before running our algorithm. All correspondences were as inferred by
the signature module (i.e., combination of PointNet features on centroids and
normals of faces along with WaveKernel Signatures, previously defined as C).

Implementation details. All the networks we use are shallow MLPs to aid train-
ing speed. For our independent posing network, we use a 4-layer MLP with
ReLU activation, with the final layer being linear. For the residual Jacobian pre-
diction, we use a 3-layer MLP similarly with intermediate ReLU activations and
a final linear layer. Both our attention networks follow the same architecture –
we use two attention heads, with a 32-neuron wide feed forward layer and 32-
dimensional features for the keys and values. Our PointNet network from which
we obtain per-face features similarly has 3 ReLU layers followed by a linear layer
at the end. Our method and the baselines are trained until Lvertex converges to
less than 3e-4 or upto 300 iterations. On a 12 GB TitanX our typical training
time is 6-8 hours, varying by the lengths of the sequences.
For the walking and dancing motions, we set the root orientation in AMASS to
zero, so all subjects are front facing, making it easier to train (similar to [12]), as
our Jacobian-based formulation cannot, on its own, infer global rotation and/or
translation. We do not, however, predict global transformations; we obtain the
global transforms from the source AMASS sequences and apply them to our final
outputs at inference after appropriate scaling according to the target’s height.

Qualitative results. We show various examples of deformation transfer by our
method in Figures 1, 4, and 5. Please refer to the videos in the supplemental
webpage. Our method generalizes to new shapes of varied body types, includ-
ing non-humans completely unseen during training, while preserving the source
motion. We show examples on monsters, a 4-armed character, etc. Additionally,
as different humans perform the same motion in different manners, we capture
those varying dynamics in the deformation of the new shape as well. We can also
learn and apply motions from animals, both from synthetically generated mesh
sequences as well as motions extracted from monocular video recordings.

Fig. 5: Motion transfer from COP3D dataset. We train on only four sequences
of dogs obtained from the COP3D dataset [32], which are monocular video recordings
of animal motion, and transfer the observed regressed motion (in yellow) to creature
meshes found in the wild (in blue).
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Comparisons. Our method Temporal Residual Jacobians, due to the space-time
coupled formulation, is designed to produce natural-looking motion retargeting.
Although we are unaware of any other method that performs the specific mo-
tion extrapolation problem (i.e., without access to keyframes), we compare with
possible baseline design variations. First, VertexODE, where an MLP predicts
the rate of change of vertex positions (velocity) at time t, followed by a Neural
ODE [7] that takes numerical steps by Euler’s method to integrate to the vertex
positions at t. This baseline directly displaces the vertices (i.e., without triangle
Jacobians). As seen in Figure 6, this method produces significant artifacts and
leads to degenerate shapes. It also loses the intended motion after some time, as
seen in the videos. Second, NJF(Mt), where we extend the original NJF frame-
work to be additionally conditioned on per-frame relative joint orientations Mt,
to predict the Jacobians at each time step. Framewise prediction leads this ap-
proach to suffer from jitters (please refer to supplemental videos) and a tendency
to overfit to training data. Although the individual frames are mostly plausible,
they occasionally suffer from frame-level artifacts as shown in Figure 6. The
primary limitation, however, is jittery output as seen in the video results since
the frames are independently generated. Note that a method without spatial or
temporal derivatives wherein a simple MLP is trained to predict vertex defor-
mations given the initial geometry and time t performs poorly, with numerous
artefacts due to vertex-level predictions.

Fig. 6: Observed artifacts in baselines. For each motion, we show results from an
intermediate frame of the motion transfer for our baselines. VertexODE (left, yellow)
completely distorts the shape, while not following the target motion. NJF (right, brown)
suffers from temporal discontinuity resulting in motion-driven geometric artifacts –
extended or shrunken parts as it tends to a linear path in later time steps – and jitter.

Quantitative comparison: We evaluate our method on several types of sequences
and compare ours against other baselines in Table 1 by computing the residual
error with respect to the ground-truth sequences. We compare five different mo-
tion categories from the AMASS dataset - running, jumping jacks, walking,
hopping, and punching. We achieve the best on all metrics.

Human motion to non-humanoid characters. We show results on human mo-
tion applied to non-humanoid characters (e.g., 4-armed monster, alien-reptile)
in supplemental videos. Please note the quality of automatic transfer without
manual landmark specification.
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Table 1: Quantitative evaluation. Average vertex-to-vertex error in cm, L2 error of
predicted Jacobians and angular error of normals in degrees, measured against ground
truth sequences, for different motion categories and averaged over multiple sequences
within the same target motion category. Here we compare against neural ODE [7] and
an extended version of NJF [2]. Lower values indicate better generalization.

Method Jump Run Punch Walk Dance
L2-V L2-J L2-N L2-V L2-J L2-N L2-V L2-J L2-N L2-V L2-J L2-N L2-V L2-J L2-N

VertexODE 22.59 1.22 48.21 14.23 0.83 42.11 17.66 0.65 40.04 23.92 1.01 46.12 26.15 1.26 50.17
NJF(Mt) 5.52 0.41 9.66 3.61 0.32 7.38 4.95 0.38 7.42 6.85 0.34 8.12 4.86 0.44 11.24

TRJ (Ours) 2.64 0.28 7.31 1.73 0.24 5.63 2.86 0.26 6.65 1.48 0.22 6.33 3.96 0.37 9.88

Handling long sequences. One advantage of our space-time coupled formulation
is the ability to handle long motion sequences. We show examples of motion
transfer from a few hundred to a couple of thousand frames (dance and walk) in
the supplemental.

Design variation. A seemingly possible variation of ours is to choose a residual
Jacobian representation, but expressed in terms of the previous predicted frame.
While this seems attractive, we found it very slow to train as we have to back-
propagate through time, and convergence is very slow (when using moderate
computational resources). Hence, we found this approach to be infeasible with
the current memory requirements for attention (and transformer) modules.

Alternatives to Euler Solve. We experimented with higher-order ODE solvers,
namely Runge-Kutta and Runge-Kutta-Fehlberg. However, we noticed no sig-
nificant improvements, even with the noticeably increased training time. We use
the simpler Euler’s method for temporal integration for our tests.

5 Conclusion

We have presented Temporal Residual Jacobians, a spatially-coupled, neural
ODE-based, motion transfer framework conditioned on body type and target
motion to produce local Jacobians that are subsequently integrated across space
and time to deform the target geometry. The resultant motions are robust, real-
istic, and generalize to different body types. We extensively tested our method
on both synthetic and real data captures, and enabled generic motion transfers
to an extent which is not possible using existing methods.

Our method has limitations. (i) We do not impose physics constraints, there-
fore, our animation can have self-intersections (see webpage videos). An inter-
esting direction is to incorporate constraints for collision detection, e.g., via
subspace-based contact handling [29]. We want to incorporate such an approach
directly into the method, possibly via an attention mechanism, as motion dy-
namics are affected by earlier collisions. (ii) Although our Temporal Residual
Jacobians, along with windowed attention modules, keep drifts low, error still
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accumulates over long motion sequences. A possible solution is to couple our
method with a keyframe-based workflow [35]. (iii) Finally, our current formu-
lation implicitly establishes correspondences and uses them to infer temporal
Jacobians for surface triangles. This step may incur errors as shown in project
webpage (e.g., flapping ear of the mouse). These spurious correspondences can
be overridden by artists, possibly directly by “paintbrushing” correspondences
or materials (e.g., indicating that the ear of the bunny model should be floppy)
or using semantic features learned from untextured meshes [8, 28].
Acknowledgement This project has received funding from the UCL AI Center,
gifts from Adobe Research, and EU Marie Skłodowska-Curie grant agreement
No 956585.
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