
Shape Unicode: A Unified Shape Representation

Sanjeev Muralikrishnan1∗ Vladimir G. Kim1 Matthew Fisher1 Siddhartha Chaudhuri1,2
1 Adobe Research 2 IIT Bombay

Abstract

3D shapes come in varied representations from a set of
points to a set of images, each capturing different aspects of
the shape. We propose a unified code for 3D shapes, dubbed
Shape Unicode, that imbibes shape cues across these rep-
resentations into a single code, and a novel framework to
learn such a code space for any 3D shape dataset. We dis-
cuss this framework as a single go-to training model for
any input representation, and demonstrate the effectiveness
of the learned code space by applying it directly to common
shape analysis tasks – discriminative and generative. In this
work, we use three common representations – voxel grids,
point clouds and multi-view projections – and combine them
into a single code. Note that while we use all three repre-
sentations at training time, the code can be derived from
any single representation during testing. We evaluate this
code space on shape retrieval, segmentation and correspon-
dence, and show that the unified code performs better than
the individual representations themselves. Additionally,
this code space compares quite well to the representation-
specific state-of-the-art in these tasks. We also qualitatively
discuss linear interpolation between points in this space, by
synthesizing from intermediate points.

1. Introduction
With advances in low-cost sensing devices and 3D au-

thoring tools, repositories of naturally acquired and synthe-
sized 3D shapes have steadily grown. This influx of 3D
shape data has brought about advancements in shape anal-
ysis and synthesis, and has led to several efficient ways of
storing and representing shapes, such as polygon meshes,
voxel grids, point clouds, depth maps, projected images,
and implicit functions. Each representation is best suited
to specific tasks, but none for all such tasks.

As shape data structures, different representations are de-
signed to optimize tasks such as efficient rendering, interac-
tive manipulation, level-of-detail retrieval, and functionality
analysis. The advent of deep learning has favoured repre-
sentations amenable to analysis and generation by neural

∗Corresponding author: samk@adobe.com

μ,σ μ,σ μ,σ

Unicode

Voxel Cross-Entropy Chamfer Distance Mean Squared Error

Binary
Cross

Entropy
P(Car)=0.9

EVoxel EPoints EViews

DVoxel DPoints DViews

Unicode Unicode

Figure 1: Overview of our Shape Unicode architecture. Dif-
ferent base shape representations (bottom) – voxel grids,
point clouds and multi-view images – are processed through
three encoder/decoder pairs that are trained to project all
three representations to the same unified code (middle).
We show that this code is a richly informative input for
a range of unified geometry processing pipelines – trans-
lation, synthesis, segmentation, correspondences, and re-
trieval/classification – and can be computed even if only one
base representation is available at test time.

networks. Further, 3D sensing of real objects added ease-
of-acquisition and completeness-of-information to the mix,
ranging from single images or depth maps of objects, to full
scans from all directions capturing both color and geometry.

Product applications and academic research have cho-
sen shape representations suited for each task and tailored
frameworks around them. When applied to deep networks,
this has produced modules specialized to each represen-
tation, including specialized convolution operations, ar-
chitectures, loss functions, and training procedures (e.g.
meshes [20], point clouds [23], voxels [38], multi-view im-
ages [34], octrees [26, 35]). These pipelines are specific
to the associated representations and technical innovations
developed for one representation rarely carry over to oth-
ers. Thus, the design cost of analysing data in different

representations is proportional to the number of such repre-
sentations. While translations between representations are
possible, this itself is a hard problem. Further, some rep-
resentations are simply less suited for a given task (e.g. if
they lack specific information important for that task, such
as high-resolution detail), yet may be the most natural form
in which shapes can be acquired.

In this work, we address these two challenges — pipeline
multiplicity and differential performance — by propos-
ing a single, unified, non-category-specific encoding of 3D
shapes that can be generated from any of a variety of base
representations. Unified analysis pipelines can then be
trained on this common code space. We show that such
analyses benefit from the collective strengths of different
representations injected into the code during training: they
outperform pipelines trained on individual representations,
and promote consistent performance regardless of the input
representation. Further, the encoding is invertible, and can
be used for translation and generation.

Our work is inspired by Hegde et al. [10], who train a
network that processes two representations of a single shape
(voxel grids and multi-view images) in parallel, and com-
bine the final classification predictions with an additional
layer. Each branch picks up cues best captured in the asso-
ciated representation, improving performance of the overall
ensemble. Similarly, Su et al. [32] combine point clouds
and RGB images to better segment facades and shapes. In
contrast to these works, our method does not assume mul-
tiple representations for a shape are available at test time:
thus, it is not an ensemble-based approach. Instead, a shape
can come in any supported representation, and still be pro-
jected accurately to the common code space. The strengths
of other representations are “hallucinated” in the construc-
tion of this code, because of the training process.

We learn such a code space by jointly training encoders
for different representations to converge to the same high-
dimensional code, that is then decoded by a decoder for
each representation. Translation losses on the decoded out-
put, in addition to direct similarity losses on the codes,
ensure that the learned code imbibes salient information
from each representation. We then perform shape classi-
fication, segmentation, and dense correspondences by train-
ing task-specific but representation-independent neural net-
works purely on top of the learned code. Although our
method can be used with any representation, for this pa-
per, we chose three common input representations – voxels,
point clouds and multiview projections.

Our main contribution is a unified encoding of a 3D
shape learned from a variety of base representations, and
we demonstrate that this encoding is:

• more informative than one learned from a single rep-
resentation, yet
• computed from a single representation at test time, and

• useful in a wide range of applications, such as classi-
fication, retrieval, shape generation, segmentation, and
correspondence estimation.

This offers a representation-invariant framework that per-
forms consistently well on different tasks, even if represen-
tations at training and testing time are different.

2. Related Work
We overview common representations used for shape

analysis, as well as recent methods that explore combining
these representations.

Shape Representations for 3D Learning. Unlike im-
ages, 3D shape representations, such as meshes, lack a com-
mon parametrization, which makes it hard to directly extend
2D deep learning methods to 3D. Early approaches con-
vert input shapes to 3D voxel grids which can be used with
natural extensions of 2D convolutional networks. Existing
methods tackle classification [38], segmentation [22], reg-
istration [40], and generation [37]. Since the shape surface
usually occupies a small fraction of the voxels, various ex-
tensions leverage data sparsity by directly processing more
efficient data structures such as octrees [26, 35, 36].

While voxel grids provide a natural parameterization of
the domain for learning convolutional filters, they tradition-
ally struggle to capture finer details. Multi-view shape anal-
ysis techniques demonstrate that many common problems
can be addressed by using 2D renderings or projections of
a 3D model as the input for a neural network. These rep-
resentations enabled new architectures for standard tasks:
shape classification [34, 13], segmentation [12], and corre-
spondences [11]. Surface parameterization techniques can
also be used instead of projections to map shapes to im-
ages [19, 30, 31, 9]. Image-based shape analysis methods
enable capturing finer details in higher resolution images.
However, they are typically memory intensive since many
viewpoints need to be captured for holistic shape under-
standing, and they are not ideal for 3D synthesis and design
tasks since the native 3D shape must be separately recon-
structed from its image collection.

Surface-based models have been proposed to directly an-
alyze point clouds [23, 25], meshes [17], and general Rie-
mannian surfaces [6, 20, 2]. Point-based methods are con-
venient for data preparation, and offer a compact represen-
tation. Hence, they are popular choices for common shape
analysis tasks [5, 4]. However, representing geometric de-
tails or learning convolutional filters to detect finer features
is typically difficult with existing point architectures.

Translation between representations is possible: e.g.
Girdhar et al. [7] chain encoders and decoders to map im-
ages to their corresponding 3D shapes. Su et al. [33] use
3D shape similarity to construct an embedding space and
learn to map images to that space, enabling cross-domain

retrieval. The limitation of these translation techniques is
that their low-dimensional shape codes are derived from a
single representation, and thus the embedding does not take
into account the additional information that might be avail-
able in alternative representations.

Hybrid representations. Several methods leverage the
complementary nature of various representations. For ex-
ample, Atzmon et al. [1] map point functions to volumet-
ric functions to enable learning convolutional filters, and
then project the learned signal back to points. The converse
is also possible: one can subdivide large point clouds us-
ing a coarse voxel grid, and then use point-based analysis
within each voxel to learn per-voxel features used in a voxel
CNN [21]. Volumetric CNNs can take advantage of higher-
resolution filters akin to multi-view networks by learning
anisotropic probing kernels that sample more coarsely along
particular dimensions [24]. Features obtained from im-
ages can be used as input to point-based architectures [39].
One can treat color information jointly with point coordi-
nates by representing them as sparse samples in a high-
dimensional space, a datastructure efficiently analyzed with
sparse bilateral convolutional layers [32]. These approaches
require deriving novel network layers, and are usually suited
only for some tasks. A more general meta-technique sim-
ply aggregates features derived from multiple representa-
tions [10, 29] or at multiple scales [41, 18].

All such methods require all representations to be avail-
able during testing. Instead, we show that one can map any
individual representation available at test time to a rich, in-
formative code on which discriminative or generative mod-
els can be trained, with consistent performance regardless
of input representation. Existing hybrid techniques also fo-
cus on one task, such as image-based shape generation or
classification. We demonstrate that our shape code trained
with cross-representation reconstruction loss extends well
to a variety of tasks, such as correspondence estimation and
segmentation, in addition to classification and generation.

3. Method
Our Shape Unicode model is based on an autoencoder

architecture, where encoders and decoders are defined for
all possible representations (see Figure 1). At a high level,
our method is designed around two central principles:

• Each representation’s code should incorporate infor-
mation from all input representations.

• At test time, we should be able to obtain this shape
code from any input representation, in the absence of
the other representations.

To achieve these goals, we add an additional loss function
that favors the codes for the same shape obtained from dif-
ferent representations to be the same. During training, we

feed the output of each encoder through each of the three
possible decoders, forcing any decoder to reconstruct the
shape even if it was encoded from a different representation.
These two losses ensure that our principles are satisfied, and
that the code is as-informative-as-possible for reconstruc-
tion. We train a single network for all shape categories, and
thus to favor their separability in the code space, we also
build a small layer that maps codes to classes and add a
classification loss.

We test our approach with three commonly-used in-
put shape representations: voxel binary-occupancy grids,
point clouds, and multi-view images from four views (their
branches are colored red, green, and blue, respectively in
Figure 1). We represent a voxel grid as 323 occupancy val-
ues, a point cloud as 1024 XYZ points sampled from the
object surface, and use four grayscale 128x128 images for
our multi-view representation.

In the remainder of this section we provide details for our
encoders and decoders (Sec. 3.1), loss functions (Sec. 3.2),
and training procedure (Sec. 3.3).

3.1. Unicode Architecture

Our design for individual encoders and decoders is moti-
vated by the variational auto-encoder (VAE) approach [16].
That is, for each representation, the respective encoder pre-
dicts the mean and standard deviation of a Gaussian distri-
bution describing a small neighborhood of codes that map to
the input shape. We use the re-parameterization trick [16] to
sample a 1024-dimensional code vector from the Gaussian,
and the decoder has to reconstruct the same target from the
sample. This approach forces the decoder to be more robust
to small code perturbations, and usually converges and gen-
eralizes better. Note, however, that we do not impose the
overall distributional constraint of VAEs, since we found it
over-constrained our optimization and led to cluster overlap
(and hence poorer class discrimination) in the embedding
space.

At training time we translate between all pairs of in-
put/output representations. Each code derived from each
representation is fed into each decoder providing nine
encoder-decoder pairs (a cross product of three encoders
and three decoders). Each code is expected to both recon-
struct the shape in its source representation and to translate
to an instance of the shape in each output representation,
encouraging the code to capture information across all rep-
resentations.

See the supplementary materials for a detailed descrip-
tion of the architecture of the encoder and decoder networks
for each of the representations.

3.2. Unicode Loss Functions

Here we detail the training losses we use to guide our
joint Unicode network. Let R denote the set of possible

representations: R = {Voxel,PointCloud,MultiView}.

Reconstruction Loss The reconstruction loss encourages
each decoder output to match the input for each representa-
tion:

Lreconstruct =
∑
x∈R

∑
y∈R

wx→yDisty(Dy(Ex(Sx)), Sy), (1)

where for each pair of input (x) and target (y) representa-
tions, the shape S is encoded from its input representation
Ex(Sx) and then decoded into target representation via Dy .
We then compare the decoded shape to the ground truth
shape Sy in the target representation. The distance func-
tions Disty are used to compare reconstructed and true tar-
get shape, and thus have to be defined differently for each
representation. We use per-voxel cross-entropy for voxels,
Chamfer distance for point clouds [5], and mean squared
difference for multi-view images. The terms where x 6= y
are also referred to as translation losses.

Embedding Loss The embedding loss encourages the
embeddings generated by each encoder to be similar. The
output of each encoder Ex is a mean and standard deviation,
which we constrain via L1 loss:

Lembedding =
∑
x∈R

∑
y∈(R\x)

| Ex − Ey |1 (2)

Classification Loss To further aid discriminative tasks
with the learned code, we encourage the embedding space
to be structured such that different classes of shapes map to
different, well-separated clusters. This is accomplished by
adding a shared single fully connected layer that uses the
code derived from any of the representations as input. Note
that we use only a single set of weights for this layer, which
is shared across all representations. Lclassification is the re-
sulting cross-entropy classification loss summed across the
output of each encoder.

Total Loss For a single input shape, the total loss is sim-
ply a weighted sum of the above losses:

Ltotal = Lreconstruct + Lembedding + Lclassification (3)

This loss is then averaged over the mini-batch of shapes.

3.3. Unicode Training
Adaptive Loss Weighting For each pair of representa-
tions used to compute Lreconstruction, we prescribe a weight
parameter wx→y to scale the loss term. This is done be-
cause different representation losses (chamfer distance, bi-
nary cross-entropy, and MSE) produce values that are a few
orders of magnitude apart. At the start of each epoch (i.e.,
a complete run over the whole dataset) we compute these

Multi-view Point Cloud Voxel Grid

Joint

Solo

Figure 2: Top: t-SNE plots of each input representation’s
projection to the Shape Unicode space (for consistency, we
ran t-SNE on the union of embeddings, and visualized each
embedding using the same axes). Our joint code space,
driven by pairwise code differences, maps inputs from mul-
tiple representations to similar points. Points from the same
class have the same color. Bottom: Codes trained with three
independent autoencoders lack similar consistency.

weights and keep them fixed for the epoch. Specifically, we
pick a random mini-batch and compute weights wx→y s.t.
wx→y × Lx→y = Lmax, where Lmax is the maximum loss
value among those 9 terms for that mini-batch. The cho-
sen mini-batch for adaptive weighting is selected at random
before training begins, and is unchanged thereafter.

Training Parameters Our joint code space is 1024-
dimensional. We feed all 3 representations for each shape in
a batch. We use a mini-batch of 16 shapes, with Adam opti-
mizer [15] and a learning rate of 0.001 during both our joint
training and subsequent task-level training , with the excep-
tion of the dense correspondence task which uses a learning
rate of 0.0001. More architecture and training details are
illustrated in the supplementary material.

4. Results
In this section, we present different evaluations of our

unified encoding of shape representations. First, we de-
scribe the training datasets used for all our experiments.
Then, we qualitatively study the embeddings produced by
the three representation encoders, and show that a single
code is successfully invertible to any of the source rep-
resentations. We also show that the codes form a rea-
sonably compact space that allows interpolation between
shapes, with synthesis of plausible, novel intermediates,
regardless of input representation. Finally, we present
quantitative comparisons against several ablations of our
method, using classification accuracy as the evaluation met-

ric. We also compare against alternative architectures that
use multi-representation ensembles [10] and code concate-
nation. In the next section, we present further evaluations
of our method in the context of applications to standard
shape analysis tasks (segmentation, correspondences, and
retrieval), and show that the jointly trained encoding leads
to measurable improvements in all these tasks.

Datasets. We use the ShapeNet dataset [3], using 35763
shapes for training, 5133 for validation, and 10265 for test-
ing, following the split used in prior work [34]. The shapes
are categorized into 55 classes that we use in our classi-
fication loss (the code is not category-specific). Original
models are stored as polygon meshes, and we use standard
tools to derive all three representations – voxel grids, point
clouds, and multi-view images – from each mesh.

Embedding similarity. Having a joint code space where
multiple representations map to the same code allows us
to have a unified training pipeline for all applications that
the code may be used for. Given a common output repre-
sentation, our application-specific models trained over this
code space are thus shared across representations. In addi-
tion, any test-time representation can now account for the
missing representations by hallucinating their code. This
eliminates the need to spend time searching for a perfect
representation for a task. It also makes it possible to train
when ground truth comes in a mix of representations (e.g.,
if training data is compiled from multiple sources), or if rep-
resentation at test time differs from training data.

Figure 2 shows a t-SNE plot of the embedding space as
computed on the ShapeNet Test dataset of 10265 shapes,
for each of the three input representations. Each 2D point
in the plot is colored according to one of 55 class indicators.
We observe that the class-level clusters are well-formed and
separated from other classes, while the embeddings remain
similar for all three representations (top row, joint). In
contrast, codes trained individually per input representation
(i.e. training each encoder/decoder pair individually) do not
have this consistency (bottom row, solo).

Translation and Reconstruction. By training our model
in a reconstruction/translation setting, we ensure that each
representation’s code preserves geometric cues from all rep-
resentations. In addition to making the code space rich
in information, our trained model can be directly used
for inter-representation translations. While some transla-
tions are simple, such as 3D to 2D representations or fine
to coarse representations, our model also provides non-
trivial Voxel→Point Cloud, Multi-View→Point Cloud and
Multi-View→Voxel translations. Figure 3 shows some sam-
ple reconstruction and translation results (see supplemen-
tary materials for additional examples). One trend we ob-
served is that translations to voxels are of a marginally lower

Source Target

MV

VOX

PC

MV VOX PC

Figure 3: Shape reconstruction and translations between all
three representations, for three test shapes.

MV

VOX

PC

Figure 4: Shape Generation: We linearly interpolate be-
tween a source shape’s code (Leftmost) and a target shape’s
code (Rightmost), and decode the intermediate novel codes
to chosen representations. Decodings to the other two rep-
resentations are shown in supplementary material.

quality than translations to other representations; a precur-
sor to the fact that voxels benefit most from joint training,
as shown in later discussions.

Interpolation and Generation. Even though our model
is only halfway to a variational auto-encoder – it does not
impose a global distribution constraint – the various losses
induce it to learn a fairly compact distribution, yet with
well-separated classes. As a result, we can attempt some
shape interpolation tasks in this space, by linearly interpo-
lating between the codes of source and target shapes, and
decoding the intermediate codes to any desired representa-
tion. This is quite successful: we show three examples in
Figure 4, for three different representations. In the supple-
mentary material, we show that each intermediate code in
the figure can also successfully generate the two remain-
ing representations. We observe that these novel codes
smoothly effect both geometric and topological changes
such as generating chair arms.

Ablations. We show that different ablations of our joint
training model result in reduced performance. As a canon-
ical task for these ablations, we choose classification of the
10265 test shapes into the 55 ShapeNet classes. After train-
ing the encoders/decoders, we freeze them and train a sim-
ple classifier on top of them (3 fully-connected layers of size
512, 256 and 55, + softmax). The classifier shares weights
across all input representations since it operates on a unified
code space, except for the first two ablations below, where
the codes are not expected to be similar across representa-
tions and sharing weights would be an unfair disadvantage.
The ablations we perform are:
Solo Training∗: The encoder/decoder pair for each input

representation is trained independently, without any
cross-representational losses.

Without Embedding Loss∗: Joint training without the L1

loss forcing codes generated by different encoders for
the same shape to be identical.

Without Translation Loss: Joint training without transla-
tion losses (reconstruction losses when encoder and
decoder are for different representations).

Without Classification Loss: Joint training without the
classification loss.

(* 3 independent classifiers)
The results are in Table 1, for each input representation

(multi-view, point cloud, or voxel grid) of ShapeNet test
shapes. It can be observed that joint training with all the
losses produces the most informative code under this met-
ric, outperforming independently trained autoencoders even
when the latter have dedicated classifiers. A key takeaway
from this table is that Shape Unicode disproportionately
improves classification of shapes input as voxel grids, by
1.72%. The performance for multi-view and point cloud in-
put, which were already quite high with solo training, does
not change much. However, the underperforming represen-
tation gets a free boost by being forced to mimic codes from
the high-performing representations. It is important to note,
that only one representation is given to the network at test
time, so a better code is derived from a weak representation
with our method. We will see this pattern recur in our shape
retrieval experiments.

Code Fusion Alternatives. We further test existing
strategies for using ensembles of multiple representations.
These techniques assume all of the latter are available at test
time, while our method needs only one representation for
testing. Weighted fusion [10] combines predictions based
on several representations by taking a weighted average of
the classification probabilities, with learned weights. Code
concatenation [21, 38, 29] concatenates the codes output
by each representation’s model and layers a predictor on

Multi-View Point Cloud Voxels
Shape Unicode 83.38 84.23 82.48
Solo Training∗ 83.53 84.07 80.76

W/o Embedding∗ 81.61 81.77 81.11
W/o Translation 81.72 82.36 79.01

W/o Classification 81.91 82.28 81.67

Table 1: ShapeNet classification accuracy, for our method
vs ablations with different loss terms turned off. Solo train-
ing means all joint, cross-representational losses are turned
off and the individual autoencoders are trained indepen-
dently. The simple classifier, trained after freezing the
codes, shares weights across all three input representations
except in the first two ablations (marked with ∗), where we
train three independent classifiers so as not to unfairly dis-
advantage them.

Multi- Point Voxels
View Cloud

Shape Unicode 83.38 84.23 82.48
Weighted Fusion 81.54

Code Concatenation 81.53

Table 2: Comparison with code fusion alternatives, on
ShapeNet classification. Since fusion combines all 3 rep-
resentations into a single prediction, only one value is com-
puted for these rows.

top of the combined code. We re-used our encoder/decoder
architectures in the above ensemble strategies, so that base
architectural differences were not a factor. The ShapeNet
classification results are shown in Table 2. Our model out-
performs both code fusion strategies by a significant mar-
gin, while still employing a single shared classification net-
work and without needing all representations during pre-
diction. We found that adaptive loss weighting plays an im-
portant role when combining multiple representations, since
the losses are highly asymmetric in magnitude.

5. Applications

In this section, we present unified pipelines built on
top of Shape Unicode for three fundamental shape analysis
tasks: segmentation and labeling, dense correspondences,
and retrieval. For each task, we build a framework to ingest
codes generated from any representation, and process them
identically. Note that the encoders producing the code are
frozen for these tasks and not further tuned: the pipelines
operate on a single, standard code. Our goal is to show that:

1. Even with relatively simple encoder/decoder architec-
tures and coarse input representations (just 323 vox-
els, 1024 points, 4 views), our pipelines compare

Unicode

1st segment 2nd segment Lth segment3rd segment

Figure 5: Shape segmentation architecture. Representation-
agnostic, per-label decoders map an input unicode to point
clouds for shape parts.

quite well with the state of the art and are entirely
representation-agnostic.

2. The jointly trained code is enriched by multiple
representations during training, enabling the unified
pipelines to outperform comparable architectures sep-
arately developed for each individual representation.

3. The use of our common code equalizes performance
across input representations for all tasks.

5.1. Shape Segmentation

We perform shape segmentation on ShapeNet, and com-
pare our accuracy to state-of-the-art methods. The ground
truth is labeled point clouds. Prior methods have found
ways to compare voxel, mesh or multi-view solutions to
these points (e.g. through surface projections). However,
with Shape Unicode we can directly map any unsegmented
input representation to a segmented point cloud, using a sin-
gle segmenting decoder that ingests the common code.

Since our shape code describes the entire shape, we
need to derive per-point labels from it. We pass the pre-
trained shape code (regardless of which encoder produced
it) through L part decoders with identical architecture,
where L is the number of ground truth part labels in the
shape class (Figure 5). Each part decoder is a series of fully
connected layers mapping the code to 3025 points describ-
ing the part. We train the decoders with a Chamfer distance
loss [5] w.r.t. the ground truth segments. Since these have
varying cardinalities, we map the outputs to the query points
with nearest neighbor lookup. As in prior methods, we train
independently for each shape category in this experiment.

Average Segmentation Accuracy
WUNet [22] 90.24

ShapePFCN [12] 89.00
Joint 86.73 87.26 86.79
Solo 85.73 85.05 –
Input→ Point Cloud Voxels Multi-View

Table 3: Overall ShapeNet segmentation accuracy.

Unicode Query {x,y,z} × 341

Q descriptor P descriptor N descriptor

Triplet loss

Unicode Unicode+ve {x,y,z} × 341 -ve {x,y,z} × 341

Descriptor
Network

Descriptor
Network

Descriptor
Network

Shared weights Shared weights

Figure 6: Shape correspondence training setup. Two cor-
responding points and one mismatched point, whose coor-
dinates are concatanated with the unicodes of their parent
shapes, are independently mapped to descriptors by a net-
work, followed by a triplet loss.

We report segmentation accuracy in Table 3. Our re-
sults (“Joint” row) compare quite well with the state of
the art, and are consistent enough to be completely in-
put representation-agnostic. While we undoubtedly exploit
consistent alignment of shapes, we did not spend much
time optimizing the decoders or using specialized layers
like CRF. As an ablation, we show results generated from
“solo” codes trained on individual representations. For
point clouds, we use the same setup. For voxel grids, we do
not assume we can freely translate it to a different represen-
tation. Instead, we use part decoders that each output a 323

voxel grid for the part. The labeled voxel centroids are com-
pared to the GT point cloud. For multi-view, we cannot triv-
ially compute per-point accuracy since the 2D→3D projec-
tion is hard: hence we omit it. Our unicode approach makes
it possible to accommodate input representations like multi-
view in a single, consistent, training and testing framework.
The jointly trained codes yield a 1-2% improvement over
solo codes in case where both exist. Per-class accuracies
are provided in supplementary material.

5.2. Dense Shape Correspondence

In this experiment, we use the shape code for estimat-
ing dense point correspondences. Again, since our code
does not provide precise per-point information, we need a
new network for correspondence evaluation. This network
ingests the x, y, z coordinates of a point on the shape (re-
peated several times to fix dimensional imbalance), along
with the unicode, and outputs a 16-D point descriptor (Fig-
ure 6). This point descriptor can later be used to compare
points across shapes and form correspondences between
them. We learn the point descriptors using triplets of two
corresponding and one non-corresponding points [28], se-
lected using Semi-Hard Negative Mining. We do this for
voxels and point clouds inputs, since the ground truth is in
the form of point sets. For point cloud inputs, the x, y, z
are simply point coordinates, while for voxels they are the
indices of the grid cell that contains the point. We train this
model using approximate correspondences obtained with
non-rigid alignment on ShapeNet [11].

V
o
x
e
ls

P
o
in

t
C

lo
u
d
s

Bike Chair Helicopter Airplane

Joint Shape Unicode Solo representation code LMVCNN

Figure 7: Dense correspondence: Euclidean distance from
ground-truth point (x-axis) vs Accuracy (y-axis) with Shape
Unicode, solo code and LMVCNN on the BHCP dataset
[14]. Note that LMVCNN is rotation-invariant, and does
not leverage the fact that the dataset is aligned. It is thus
provided only as a reference.

We test on the BHCP benchmark [14], which contains
100 shapes each of Airplanes, Bikes, Chairs and Helicopters
with manually annotated keypoints. We train the network to
extract point descriptors independently for each category.
Note that our training data excludes helicopters, hence we
use the model trained on airplanes in this case [11]. Since
our unicode model was trained on the aligned+normalized
ShapeNet dataset and isn’t rotation-invariant, we align and
normalize the BHCP shapes similarly to ShapeNet shapes.

To evaluate our results, we use standard criteria, report-
ing the fraction of points falling within the ground truth cor-
respondence at each distance threshold (Figure 7). Note that
our method performs consistently well with either represen-
tation as input, when the code is trained jointly (red), while
results degrade for codes trained on only one representation
(green). The comparable method of LMVCNN [11] per-
forms even worse, but this is an unfair comparison, provided
only for reference, since LMVCNN is rotation-invariant
while Shape Unicode is not. Also note that our model, like
MVCNN, generalizes to the unseen helicopter class.

5.3. Shape Retrieval

We perform shape retrieval using our joint code and eval-
uate it against methods presented as part of the SHREC’17
retrieval challenge [27]. We use our 3-layer classification
network described in Section 4. Retrieval is then performed
for a query shape by selecting other shapes of the same pre-
dicted class as the query shape. This selection is then sorted
by confidence of class prediction indicated by the output
class score. We evaluate using F1-score as implemented in
benchmark software [27] and present the results in Table
4. We compute both micro and macro averaged versions
of this metric, with the former accounting for class popula-
tion sizes and the latter without any weighting. The results

Micro F1 Macro F1
RotationNet 0.80 0.59

GIFT 0.77 0.58
ReVGG 0.77 0.52
MVCNN 0.76 0.58
PC Joint 0.73 0.50
PC Solo 0.73 0.49

MV Joint 0.72 0.48
MV Solo 0.72 0.48
DLAN 0.71 0.51

Vox Joint 0.71 0.48
MV FusionNet 0.69 0.48

Vox Solo 0.68 0.46
CMCNN 0.48 0.17

ZFDR 0.28 0.20
VoxelNet 0.25 0.26

Table 4: Shape retrieval comparison against methods in
SHREC’17 [27]

in Table 4 are sorted by Micro F1, with ties resolved by
Macro F1. Our approach (Joint) achieves comparable re-
sults to other methods, with any input representation. As
in other cases, training each representation independently
(Solo) noticeably damages performance on voxel grids.

6. Conclusion

We have presented a framework for generating a joint
latent space for 3D shapes that can be encoded from any
input representation, and either decoded to another repre-
sentation or used directly for tasks such as shape classifica-
tion, retrieval, correspondence estimation, or segmentation.
We demonstrate that a code derived from multiple represen-
tations is more informative and leads to better quantitative
results even if only one representation is available at test
time. Future techniques can build on our framework to cre-
ate representation-invariant methods. This would reduce the
time spend searching for a perfect representation for a task,
would facilitate training when ground truth comes in a mix
of representations (which often happens when it’s borrowed
from multiple sources), and also help when the representa-
tion at test time is different from the training data.

Although we have only explored voxel, point cloud, and
multi-view renderings in this work, it is natural to use ad-
ditional representations such as atlases [8], patch-based oc-
trees [36], or surfaces [17] to further increase the represen-
tative power and generalizability of the latent code. Our
core architecture is also developed for encoding the entire
shape. While we provide a way to decode this into more
detailed per-point signals, it would be interesting to create
tools for deriving a universal code for on-surface features
that could better capture fine-scale geometric detail.

References
[1] M. Atzmon, H. Maron, and Y. Lipman. Point convolutional

neural networks by extension operators. ACM Trans. Graph.,
37(4):71:1–71:12, 2018.

[2] D. Boscaini, J. Masci, E. Rodoià, and M. Bronstein. Learn-
ing shape correspondence with anisotropic convolutional
neural networks. In NIPS, 2016.

[3] A. X. Chang, T. A. Funkhouser, L. J. Guibas, P. Hanrahan,
Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,
J. Xiao, L. Yi, and F. Yu. ShapeNet: An information-rich 3D
model repository. CoRR, abs/1512.03012, 2015.

[4] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser,
and M. Nießner. ScanNet: Richly-annotated 3D reconstruc-
tions of indoor scenes. In CVPR, 2017.

[5] H. Fan, H. Su, and L. J. Guibas. A point set generation net-
work for 3D object reconstruction from a single image. In
CVPR, 2017.

[6] M. Fey, J. E. Lenssen, F. Weichert, and H. Müller.
SplineCNN: Fast geometric deep learning with continuous
B-spline kernels. In CVPR, 2018.

[7] R. Girdhar, D. F. Fouhey, M. Rodriguez, and A. Gupta.
Learning a predictable and generative vector representation
for objects. In ECCV, 2016.

[8] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and
M. Aubry. Atlasnet: A papier-mâché approach to learning
3d surface generation. CVPR, 2018.

[9] H. B. Hamu, H. Maron, I. Kezurer, G. Avineri, and Y. Lip-
man. Multi-chart generative surface modeling. In SIG-
GRAPH Asia, 2018.

[10] V. Hegde and R. B. Zadeh. FusionNet: 3D object
classification using multiple data representations. CoRR,
abs/1607.05695, 2016.

[11] H. Huang, E. Kalogerakis, S. Chaudhuri, D. Ceylan, V. G.
Kim, and E. Yumer. Learning local shape descriptors
from part correspondences with multiview convolutional net-
works. ACM Trans. Graph., 37(1), 2018.

[12] E. Kalogerakis, M. Averkiou, S. Maji, and S. Chaudhuri. 3D
shape segmentation with projective convolutional networks.
In CVPR, 2017.

[13] A. Kanezaki. RotationNet: Learning object classification us-
ing unsupervised viewpoint estimation. In CVPR, 2018.

[14] V. G. Kim, W. Li, N. J. Mitra, S. Chaudhuri, S. DiVerdi,
and T. Funkhouser. Learning part-based templates from large
collections of 3D shapes. In SIGGRAPH, 2013.

[15] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. In ICLR, 2015.

[16] D. P. Kingma and M. Welling. Auto-encoding variational
Bayes. In ICLR, 2014.

[17] I. Kostrikov, Z. Jiang, D. Panozzo, D. Zorin, and J. Bruna.
Surface networks. In CVPR, 2018.

[18] J. Li, B. M. Chen, and G. Hee Lee. SO-Net: Self-organizing
network for point cloud analysis. In CVPR, 2018.

[19] H. Maron, M. Galun, N. Aigerman, M. Trope, N. Dym,
E. Yumer, V. G. Kim, and Y. Lipman. Convolutional neu-
ral networks on surfaces via seamless toric covers. In SIG-
GRAPH, 2017.

[20] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst.
Geodesic convolutional neural networks on Riemannian
manifolds. In ICCV Workshops, 2015.

[21] D. Maturana and S. Scherer. VoxNet: A 3D convolutional
neural network for real-time object recognition. In IROS,
2015.

[22] S. Muralikrishnan, V. G. Kim, and S. Chaudhuri. Tags2Parts:
Discovering semantic regions from shape tags. In CVPR,
2018.

[23] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. PointNet: Deep
learning on point sets for 3D classification and segmentation.
In CVPR, 2017.

[24] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. Guibas.
Volumetric and multi-view CNNs for object classification on
3D data. In CVPR, 2016.

[25] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. PointNet++: Deep
hierarchical feature learning on point sets in a metric space.
In NIPS, 2017.

[26] G. Riegler, A. O. Ulusoy, and A. Geiger. OctNet: Learning
deep 3D representations at high resolutions. In CVPR, 2017.

[27] M. Savva, F. Yu, H. Su, A. Kanezaki, T. Furuya, R. Ohbuchi,
Z. Zhou, R. Yu, S. Bai, X. Bai, M. Aono, A. Tatsuma,
S. Thermos, A. Axenopoulos, G. T. Papadopoulos, P. Daras,
X. Deng, Z. Lian, B. Li, H. Johan, Y. Lu, and S. Mk. Large-
scale 3D shape retrieval from ShapeNet Core55. In Euro-
graphics Workshop on 3D Object Retrieval, 2017.

[28] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-
fied embedding for face recognition and clustering. CoRR,
2015.

[29] D. Shin, C. C. Fowlkes, and D. Hoiem. Pixels, voxels, and
views: A study of shape representations for single view 3D
object shape prediction. In CVPR, 2018.

[30] A. Sinha, J. Bai, and K. Ramani. Deep learning 3d shape
surfaces using geometry images. In CVPR, 2016.

[31] A. Sinha, A. Unmesh, Q. Huang, and K. Ramani. SurfNet:
Generating 3D shape surfaces using deep residual networks.
In CVPR, 2017.

[32] H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis, M.-H.
Yang, and J. Kautz. SPLATNet: Sparse lattice networks for
point cloud processing. In CVPR, 2018.

[33] H. Su, Y. Li, C. Qi, N. Fish, D. Cohen-Or, and L. Guibas.
Joint embeddings of shapes and images via CNN image pu-
rification. In SIGGRAPH Asia, 2015.

[34] H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller.
Multi-view convolutional neural networks for 3D shape
recognition. In ICCV, 2015.

[35] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong. O-
CNN: Octree-based convolutional neural networks for 3D
shape analysis. In SIGGRAPH, 2017.

[36] P.-S. Wang, C.-Y. Sun, Y. Liu, and X. Tong. Adaptive O-
CNN: A patch-based deep representation of 3D shapes. In
SIGGRAPH Asia, 2018.

[37] J. Wu, C. Zhang, T. Xue, W. T. Freeman, and J. B. Tenen-
baum. Learning a probabilistic latent space of object shapes
via 3D generative-adversarial modeling. In NIPS, 2016.

[38] Z. Wu, S. Song, A. Khosla, L. Zhang, X. Tang, and J. Xiao.
3D ShapeNets: A deep representation for volumetric shapes.
In CVPR, 2015.

[39] D. Xu, D. Anguelov, and A. Jain. PointFusion: Deep sensor
fusion for 3D bounding box estimation. In CVPR, 2018.

[40] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and
T. Funkhouser. 3DMatch: Learning local geometric descrip-
tors from RGB-D reconstructions. In CVPR, 2017.

[41] Z. Zhu, X. Wang, S. Bai, C. Yao, and X. Bai. Deep learn-
ing representation using autoencoder for 3D shape retrieval.
Neurocomputing, 204:41–50, 2016.

Shape Unicode: A Unified Shape Representation

Supplementary Material

Sanjeev Muralikrishnan1∗ Vladimir G. Kim1 Matthew Fisher1 Siddhartha Chaudhuri1,2
1 Adobe Research 2 IIT Bombay

This PDF presents:

1. Per-class statistics for the segmentation application described in the main paper.

2. Full architectural details of each encoder and decoder in our framework.

3. A pointer to visualizations of translations, segmentation, correspondences and interpolation.

1. Per-Class Segmentation Accuracy.

Segmentation and labeling accuracy of each input representation’s Unicode vs its corresponding Solo codes vs
ShapePFCN [2] and WU-Net [3], for 16 shape classes in ShapeNetCore [1].

Category #train/ #labels Shape- WU-Net Point Cloud Point Cloud Voxels Voxels Multi-view
#test PFCN (Joint) (Solo) (Joint) (Solo) (Joint)

Airplane 250/250 4 88.4 90.13 85.87 86.28 87.38 86.85 86.51

Bag 38/38 2 95.5 96.02 91.48 91.41 94.52 94.43 91.95

Bike 101/101 6 87.5 96.61 73.30 58.38 82.59 82.94 74.73

Cap 27/28 2 92 84.77 83.37 87.58 86.48 85.27 83.99

Car 250/250 4 86.6 89.92 82.84 82.40 87.03 87.03 81.55

Chair 250/250 4 83.7 89.44 89.42 89.30 87.96 86.32 89.26

Earphone 34/35 3 82.9 91.82 73.28 69.40 71.22 67.32 71.31

Guitar 250/250 3 89.7 78.53 94.66 94.57 95.65 95.59 94.58

Knife 196/196 2 87.1 95.98 89.43 87.70 90.85 89.74 88.90

Lamp 250/250 4 78.3 90.96 84.25 82.09 78.97 63.61 84.56

Laptop 222/222 2 95.2 77.37 97.43 97.05 97.10 97.45 97.45

Mug 92/92 3 98.1 99.05 98.28 98.45 98.39 98.49 98.28

Pistol 137/138 3 92.2 95.75 95.07 95.17 95.85 96.06 95.35

Rocket 33/33 3 81.5 79.94 69.12 65.28 77.51 78.37 72.27

Skateboard 76/76 3 92.5 94.66 89.10 85.37 91.34 90.19 88.20

Table 250/250 3 92.5 92.91 90.83 91.21 88.74 87.45 89.83

Category average 89.00 90.24 86.73 85.73 88.22 86.69 86.79

Table 1: Dataset statistics and strongly-supervised segmentation and labeling accuracy per category for test shapes
in ShapeNetCore, versus ShapePFCN [2] and WU-Net [3], using the splits from [2].

∗Corresponding author: samk@adobe.com

1

2. Network Architectures

We now describe the encoder/decoder architectures for each representation, as used to learn Shape Unicode.

2 × 43

1 1 1 1 2
2 × 323 2 × 323 4 × 323 6 × 323

8 × 163 2 × 163 2 × 163 4 × 163 6 × 163
8 × 83 2 × 83 2 × 83 4 × 83 6 × 83 2 × 83

Mean

Std

1024

1024

Leaky Relu, α = 0.2 Tanh Sigmoid
2 × 43

Convolution
1024
Fully Connected

Output
Concatenation

1 1 1 1 2
1 1 1 1 1

EV

323

Figure 1: The voxel encoder takes a 323 voxel grid as input and processes it through a series of 43 convolutional
layers that each output 2 channels. Each layer’s output is concatenated with that of the previous layer, until the
next lowres jump. The number inside each block at the bottom is the stride length used at that layer (same for
each dimension); Low-res jump is done by using a stride length of 2. The figures at the bottom between layers are
the output sizes of the layers. This network outputs a Mean and Standard Deviation using which we subsequently
sample the joint code (Unicode).

2 1 1 1 1
2 × 163 4 × 163 6 × 163 8 × 163

10 × 163 10 × 323 12 × 323 14 × 323 16 × 323 18 × 323

Relu Sigmoid
2 × 43

Convolution
Output
Concatenation

2 1 1 1 1

DV

Unicode, 1024

2 × 83

1

1 × 43

Convolution

43

Transposed
Convolution

Reshape

323

Figure 2: The sampled 1024-dimensional code is rearranged into an 83 grid with 2 channels. This is then processed
through a series of transposed and regular convolutional layers. Each layer’s output is concatenated with that of
the previous layer, until the next high-res jump. Stride lengths are shown as in Figure 1, and stride 2 transposed
convolutions are used for the high-res jump. This network outputs the reconstructed 323 voxel grid.

1 1
64

Convolution

EPC
1 × 3 1 × 1

64 64

1 × 1

111

1 × 1

128

1 × 1

1024

Mean

Std

1024

1024

1024 × 1024 1024
Max

1024
Fully Connected

Tanh SigmoidLeaky Relu, α = 0.2

1024 × 3

Figure 3: The point cloud encoder takes a 1024 × 3 point cloud (1024 points with 3 coordinates each) as input,
which is processed through a series of convolutional layers. The hyper-parameters of each layer are shown above:
the number above each layer is the filter size, the number at the bottom inside each layer is the stride length, and
the one outside is the number of output channels. This network outputs a 1024-D feature for each point, after
which a global max-pooling is performed to obtain a 1024-D intermediate shape code. Then, via fully connected
layers, this network outputs a Mean and Standard Deviation using which the joint code can be sampled.

3 1
512

DPC
2 × 2 3 × 3

256 256

4 × 4

211

5 × 5

128

1 × 1

3 1024 × 3

Relu

Unicode, 1024

1 × 1 × 1024

Transposed
Convolution

Reshape

Figure 4: The sampled 1024-dimensional code is sent through a series of transposed convolutions with hyper-
parameters indicated above, as in Figure 3. This decoder outputs the 1024 × 3 reconstructed point cloud.

2 1
4

Convolution

EMV
4 × 4 4 × 4

4 8

4 × 4

124

4 × 4

8

3 × 3

16

Mean

Std

1024

1024

1024 1024

1024
Fully Connected

Tanh SigmoidLeaky Relu, α = 0.2

1

3 × 3

16
1

3 × 3

1632 × 32 16 × 16 16 × 16 8 × 8 8 × 8 8 × 8 8 × 8

× Num Views
Max(1,Num Views)

View Pooling

Num Views =4

4 × 128 × 128

Figure 5: The multi-view encoder processes 4 input view images, with each processed through a different view
encoder. Each view encoder has the same architecture and hyperparameters, as illustrated above, without any
weights-sharing. The hyperparameters of each layer are shown above: the size on top of each layer is the filter
size, the number at the bottom inside is the stride length and the one outside is the number of output channels.
The size between layers is the image size after the previous layer is applied. Each such view network outputs a
1024-D code, after which we apply max view pooling to obtain a single 1024-D intermediate code. Then, via fully
connected layers, we output a Mean and Standard Deviation using which the joint code can be sampled.

2
16 × 16

ReluConvolution

DMV

Unicode, 1024

Transposed
Convolution

Reshape

1024
×

Num Views
82 × 16

8 × 8

16
1

3 × 3

16
1

3 × 3

16
1

3 × 3

8
16 × 16 16 × 16 16 × 16 2

16 × 16

32 × 32 1

4 × 4

4
32 × 32

2

32 × 32

4 64 × 64
3
1

4 × 4

2

64 × 64

3
128 × 12864 × 64

8

× Num Views

Fully Connected

Num Views =4

4 × 128 × 128

Figure 6: The sampled joint code is first sent through a fully connected layer that outputs 4 1024-D codes, one
for each view. Each view code is then sent through its own view decoder, with each decoder having the same
architecture and hyper-parameters, but without any weight-sharing. Each view decoder takes in the 1024-D code
of the corresponding view and rearranges it into an 82 image with 2 channels. This is then processed through a
series of transposed and regular convolutions. The hyperparameters of each layer are illustrated in Figure 5. Each
such view decoder outputs a 128 × 128 reconstructed view image.

3. Supplementary Visualizations

We provide visualizations of shape translations, segmentations, correspondences and interpolated generations
in additional supplementary material on the project website for this paper (space constraints prevent us uploading
the full directory of images to the CVPR repository).

References

[1] A. X. Chang, T. A. Funkhouser, L. J. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,
J. Xiao, L. Yi, and F. Yu. ShapeNet: An information-rich 3D model repository. CoRR, abs/1512.03012, 2015. 1

[2] E. Kalogerakis, M. Averkiou, S. Maji, and S. Chaudhuri. 3D shape segmentation with projective convolutional networks.
In CVPR, 2017. 1

[3] S. Muralikrishnan, V. G. Kim, and S. Chaudhuri. Tags2Parts: Discovering semantic regions from shape tags. In CVPR,
2018. 1

