
ShapeShifter: 3D Variations Using Multiscale and Sparse Point-Voxel Diffusion

Nissim Maruani
Inria, Université Côte d’Azur

nissim.maruani@inria.fr

Wang Yifan
Adobe Research

yifwang@adobe.com

Matthew Fisher
Adobe Research

matfishe@adobe.com

Pierre Alliez
Inria, Université Côte d’Azur

pierre.alliez@inria.fr

Mathieu Desbrun
Inria Saclay - Ecole Polytechnique
mathieu.desbrun@inria.fr

Abstract

This paper proposes ShapeShifter, a new 3D generative
model that learns to synthesize shape variations based on
a single reference model. While generative methods for
3D objects have recently attracted much attention, current
techniques often lack geometric details and/or require long
training times and large resources. Our approach remedies
these issues by combining sparse voxel grids and point, nor-
mal, and color sampling within a multiscale neural archi-
tecture that can be trained efficiently and in parallel. We
show that our resulting variations better capture the fine
details of their original input and can handle more general
types of surfaces than previous SDF-based methods. More-
over, we offer interactive generation of 3D shape variants,
allowing more human control in the design loop if needed.

1. Introduction

Creating 3D content through generative models is currently
attracting significant attention. Traditional 3D modeling de-
mands both time and specialized skills to create complex
shapes, whereas advancements in generative AI promise a
broader exploration of design possibilities, free from the
usual constraints of time or technical expertise. However,
current 3D generative models have numerous shortcomings
that limit their utility in applications such as movies, gam-
ing, and product design. First, state-of-the-art methods of-
ten struggle to produce the fine geometric details and sharp
features necessary for digital shapes to be practical in geo-
metric modeling. Additionally, these models require large,
high-quality 3D datasets, which are significantly more chal-
lenging to curate compared to image datasets, and involve
long training times and substantial computational resources.

In this paper, we tackle a task-specific, yet effective ap-
proach to synthesizing geometry: we propose generating
shape variations from a single high-quality example. This
lesser-explored generative method offers several benefits

Input
Geometry

Training

Multiscale Diffusion Sampling

Generated Shapes

Figure 1. We propose ShapeShifter. Given a 3D exemplar, we train
a hierarchical diffusion model to create novel variations that pre-
serve the geometric details and styles of the exemplar. By combin-
ing compact yet explicit 3D features (as colored, oriented points)
with a sparse voxel grid, we shorten training times from hours to
minutes, while yielding significantly better geometric quality than
prior work. The hierarchical point representation and fast infer-
ence times further enables intuitive interactive editing.

beyond avoiding the curation of large training datasets: it
has the potential to provide a resource-efficient way to gen-
erate shape variants for retargeting or editing, automatically
inheriting the style, symmetries, semantics, and geomet-
ric details from the exemplar. Although existing generative
methods from exemplars are able to create varied 3D assets,
they struggle to produce clean and detailed geometry due to
their reliance on occupancy fields [50, 92, 106] or signed
distance functions [107] (which smooth out geometric fea-
tures), or because they are supervised through volumetric

ar
X

iv
:2

50
2.

02
18

7v
1 

 [
cs

.C
V

] 
 4

 F
eb

 2
02

5



(a) Input Geometry (b) Ours (c) Sin3DGen (d) Sin3DM

Figure 2. Geometric details. Our generation captures significantly more geometric details present in the exemplar mesh (leftmost). Prior
work, Sin3DGen [50] and Sin3DM [107], operates with plenoxels and neural radiance fields encoded in single-resolution triplane features,
respectively, which lack the capability to sufficiently represent and supervise high-resolution geometric details. In contrast, our method
employs a colored and oriented point set, providing precise geometric information .

rendering [50, 92] (which often leads to large geometric ar-
tifacts) — and without a clean geometric output model, the
use of 2D textures to further enhance visual complexity is
severely hindered. Consequently, existing exemplar-based
methods are relative slow in generating variations of the in-
put as they must rely on volumetric sampling within the sur-
face’s neighborhood [92, 106, 107].

We propose a novel approach, which we call
ShapeShifter, to synthesize high-quality shape variations of
an input 3D model, with training and inference times well
suited for practical real-world applications. We use points
(with their normals and optionally colors for additional se-
mantic information) as our lightweight and efficient base
geometric representation [77], which we pair with a mul-
tiscale 3D diffusion network. While these explicit surface
features already streamline the generative process and help
preserve geometric details, we propose to significantly re-
duce training times and achieve interactive inference rates
by adopting sparse convolutions based on fVDB [105], a
recent spatial learning framework based on sparse voxel
grids. Mixing point sampling and sparse convolution, a
novel combination in generative modeling, results in a mul-
tiscale generative approach capable of producing 3D vari-
ants of shapes of different styles and topologies. Further-
more its fast inference allows for interactive editing con-
trol.
Contributions. This paper proposes a neural network ap-
proach to generating high-quality shapes from a single 3D
reference example. Compared to previous exemplar-based

generative methods, we demonstrate significantly improved
geometric quality of our outputs, as shown in Fig. 2. More-
over, the simplicity of our geometric representation (using
point sampling in a sparse voxel grid) and its hierarchical
refinement (learned per level in parallel) to control and gen-
erate variations of an arbitrary closed or open input shape
results in significantly reduced training times (minutes in-
stead of hours) and interactive inference. While our results
can be easily converted into textured meshes, direct visual-
ization of our point-based representation in realtime enables
iterative co-creation guided by an artist. Finally, our high-
quality output geometric models can be assigned a fine tex-
ture if needed, using off-the-shelf image super-resolution or
more advanced texturing synthesis methods such as [84].

2. Related Work
3D Generation. The field of 3D generation has seen
rapid development in recent years. Advances in genera-
tive models and large-scale 3D datasets have underpinned
this progress. Generative adversarial networks (GANs) [23]
have been widely used in works like [2, 10, 22], while
normalizing flows [83] were utilized in [111]. Other ap-
proaches include variational autoencoders (VAEs) [45] and
autoregressive (AR) models [6, 25, 97], as shown in [14,
70, 74, 90, 114, 116]. The recent introduction of diffusion
models [33, 91] has enabled training on larger datasets such
as Objaverse [18]. A survey by Po et al. [3] provides a com-
prehensive taxonomy of 3D diffusion approaches. A pri-
mary line of work builds on 2D diffusion models, generat-



noise

prune

denoise

denoise

denoise

upsample

Figure 3. Multiscale diffusion on sparse voxel grid. We start from
noise ϵ∼C (0, I) at the coarsest level l=1, and obtain the 3D fea-
ture grid Gl through reverse diffusion. Each subsequent level uses
the output of the previous level. Inactive voxels are first pruned,
then upsampled with a level-specific upsampler U l. The upsam-
pled grid G̃l is subsequently noised and passed through the diffu-
sion model to obtain a clean version of the sparse feature grid Gl.
All levels are independent and can thus be trained in parallel.

ing multiview-consistent images through Score Distillation
Sampling (SDS) [76, 98]. However, SDS faces practical
challenges such as high optimization times [52, 67], color
artifacts [12, 51, 61, 102], and 3D inconsistencies [57, 101].
Fine-tuning diffusion models on 3D assets for direct mul-
tiview output [53, 55, 59, 79, 88] can address these is-
sues, with further speedups through reconstructor networks
for radiance fields [11, 49, 54, 100, 103] or Gaussian
splats [109, 118, 123]. However, photometric losses of-
ten lead to geometric artifacts. A separate direction directly
trains 3D diffusion models on 3D data [62, 71] or encodes
3D data through autoencoders [17, 27, 39, 81, 82, 96, 117,
119, 120]. These methods demand extensive, high-quality
data and substantial computational resources, and the gen-
erated geometry, while improved, still lacks the geometric
details required in real-world 3D applications. We adopt an
alternative approach, generating 3D assets with high-quality
geometry from a single exemplar, trainable on a single GPU
in minutes, while enabling user control over output shapes.
Generation from a single instance. Despite advance-
ments in large-scale 3D generation, high-quality 3D data
remains scarce, and computational costs for training and in-
ference are significant. Generating 3D content from a single
high-quality example offers an appealing alternative, giv-
ing users control through concrete exemplar inputs. Non-
learning, patch-based methods such as PatchMatch [5, 29]
and more recent works [20, 24] produce variations by find-
ing and blending similar patches within the exemplar. In

contrast, SinGAN [87] and its successors [32, 89] have
shown that generative models can be trained on a single
example. More recently, SinFusion [46, 72] demonstrated
that diffusion models, known for their stability, can also
be adapted to this approach. Applications of these single-
instance models include texture synthesis [69, 73, 85, 122],
video synthesis [28], and more.

In 3D generation, similar approaches have emerged.
Herz et al. [31] applied SinGAN with mesh convolu-
tions [30] to enhance surface details without altering struc-
ture, while works like Son et al. [92] and Karnewar et
al. [41] generated radiance fields from a single instance.
Wu et al. [106] used 3D convolutions to generate signifi-
cant variations, later extending their work to include texture
synthesis [107], though details are often degraded due to 3D
convolution bottlenecks. These methods, however, are typi-
cally slow, with training times ranging from 2 to 4 hours.
To bypass training, Li et al. [50] adopted a PatchMatch-
based method for 3D scenes represented by plenoxels [21].
Although this removes the training step, it still requires
approximately 10 minutes per variation and struggles to
maintain geometric quality due to challenges in convert-
ing the plenoxels’ occupancy fields to signed distance func-
tions. By combining the strengths of a recent framework
for learning sparse spatial information [105] with compact,
geometry-centric features, our method achieves higher geo-
metric fidelity while requiring less than 12 minutes for the
entire generation process (including training and inference).

3D Representation. Earlier 3D representations focused
solely on geometry, using formats like voxels [108], 3D
points [78], meshes [30, 64, 65], SDFs [74], and occu-
pancy fields [15, 66]. Differentiable rendering later en-
abled joint modeling of geometry and appearance, spanning
from neural mesh rasterization [42, 56] and splatting meth-
ods [44, 104, 113] to neural radiance fields [58, 68]. This
integration allowed the use of 2D assets [10, 86] and facili-
tated large-scale generation and reconstruction [34, 94, 103,
109, 110], enhancing semantic context for geometry gener-
ation. However, appearance signals often exhibit higher fre-
quencies than geometry, leading existing methods to sepa-
rate texture and geometry branches [68]. Tying texture gen-
eration to geometry imposes unnecessarily high resolution
requirement on geometry, slowing single-exemplar gener-
ation [107]. Other works generate geometry first, before
refining the appearance in 2D texture space at higher reso-
lutions [36, 112, 115]. Recently, Clay [119] fully separates
geometry and appearance aspects, achieving state-of-the-art
quality in both. Following this idea, we focus on high-
fidelity geometry generation, which is the weakest aspect
of current 3D generation approaches. Unlike Clay’s strict
separation, however, we use RGB features to add contex-
tual information-—crucial for single-exemplar generation
where data priors are weaker.



Our results show that this approach produces superior
geometry which, when combined with state-of-the-art im-
age super-resolution [40, 48] and texture synthesis [8, 84],
allows for highly detailed shapes with sharp geometry and
HD textures. We argue that this design, for a fixed compu-
tational budget, optimally balances quality and efficiency.

3. Method
Our goal is to train a generative model from a single 3D
input mesh to generate new variations efficiently. We use
a multiscale diffusion model with limited receptive fields
to learn the internal structures of the given shape, adapt-
ing an approach that has been used for training a generative
model on a single image [46]. We use compact, explicit 3D
features directly extracted from the exemplar shape for dif-
fusion. These features are encoded in a sparse voxel grid,
and processed efficiently using a specialized 3D convolu-
tion framework (fVDB [105]) to capture fine-scale geomet-
ric details without incurring high memory cost. We intro-
duce our 3D features in Sec. 3.1, the hierarchical diffusion
model in Sec. 3.2, and the final meshing process of a gener-
ated output in Sec. 3.3.

3.1. 3D Representation
Explicit Multiscale 3D Features. Our method employs
explicit 3D information to encode the geometry of the input
exemplar mesh at multiple scales. They are composed of
merely 10 values per voxel of a sparse voxel grid,

f = (px,py,pz,nx,ny,nz, cr, cg, cb,m), (1)

where (px,py,pz)∈ [−0.5, 0.5]3 represents a point sample
encoded as an offset from the voxel center, (nx,ny,nz)∈
[−1, 1]3 represents the local normal of the underlying
geometry associated to the point sample, (cr, cg, cb) ∈
[−2, 2]3 represents the color scaled up to the [−2, 2] range,
and m ∈ [−1, 1] is a scalar indicating if the voxel contains
the mesh surface which we will use as a mask to prune vox-
els after refinement (see Sec. 3.2). The value ranges of the
feature components were empirically chosen since feature
scale can be important in diffusion models [13].

These features are extracted from the different scales of
the input mesh. Specifically, starting from the finest scale L,
for each voxel that intersects the surface, we find the nearest
surface point to the voxel center, whose position, normal,
and color are used to form the feature. The mask is set to 1
for all selected voxels as they contain the surface. At each
subsequent scale l < L, we obtain coarser points, normals,
and colors features through a 23 average pooling, and the
mask value through max pooling. To better preserve sharp
features, we average the point positions in the Quadric Error
Metric sense [65] (see supplemental material for details).

This 3D representation yields three advantages:

Algorithm 1: Training at level l

Input: Extracted sparse features {G1, · · · ,GL}
// Upsampler Training for Levels 2 to L
repeat

Update model U l with the loss Eq. (4)
until convergence;
// Diffusion Model Training
repeat

t ∼ Uniform(0, T )
ϵ ∼ N (0, I)
if l = 1 then

Gl,mix = G1

else
G̃

l
= U l

(
Gl−1

)
Gl,mix = γ(t)Gl + (1− γ(t))G̃

l

Gl
t =

√
ᾱ(t)Gl,mix +

√
1− ᾱ(t)ϵ

Update model with ∥Ml(Gl
t|t)−Gl∥2.

until convergence;

• it captures surface details in a compact form and carries
contextual information from the texture;

• it encodes the 3D shape explicitly at each level, which
enables a generated shape to be easily visualized or even
edited at every level in a coarse-to-fine fashion;

• it is extracted from an input exemplar efficiently and de-
terministically, and will allow us to train each level of our
model in parallel.

Sparse Voxel Grid. The inductive biases of convolutional
neural networks exploit the shared information across inter-
nal crops within the input data, which is essential to learning
from a single example and prevents overfitting [46, 72, 87].
However, 3D convolutional operations are notoriously ex-
pensive computationally and memory intensive. To address
this issue, we leverage fVDB [105], a recently proposed
framework that supports efficient operations on sparse vox-
els. As a result, only active features are stored and pro-
cessed, which significantly reduces the memory footprint
and computational complexity. We denote the sparse fea-
ture grid storing active 3D features at level l as Gl =

{
f l
}

.

3.2. Multiscale Diffusion
Our multiscale diffusion pipeline generalizes SinDDM [46]
to 3D and adapts it to properly work with sparse voxel grid.
As shown in Fig. 3, the pipeline consists of multiple diffu-
sion models {Ml}1≤l≤L. During training, these diffusion
models can be trained in parallel; at inference time, new
variations are generated by sequentially running the reverse
diffusion in a coarse-to-fine manner. Below, we explain the
hierarchical multi-scale diffusion and highlight our design



differences compared to SinDDM.

Algorithm 2: Sampling
Input: Choice of sampler S ∈ {DDPM,DDIM}
Output: Generated sparse grid GL

// Upsampler training for levels 2 to L

G1
T ∼ N (0, I)

for l← 1 to L do
if l > 1 then

ϵ ∼ N (0, I)

G̃
l
= U l(Gl−1)

Gl
T [l] =

√
ᾱ(T [l])G̃

l
+
√
1− ᾱ(T [l]) ϵ

for t← T [l] to 1 do
ϵ ∼ N (0, I)

Gl
t−1 = S(Ml,Gl

t, ᾱ, ϵ, t)

Gl = Prune(Gl
0)

Forward Multiscale Diffusion. Except at its coarsest
level M1, our diffusion model Ml>1 generates the signal
of the current level based on the output of the previous (l−1)
level. This initial guess is obtained by upsampling the out-
put from the previous level G̃l = U

(
Gl−1), which can be

seen as a “blurred” version of Gl. This means that, for l>1,
the diffusion model not only needs to denoise but also “de-
blur” during sampling. As a result, SinDDM modifies the
forward diffusion process to be

Gl
t =

√
ᾱ(t)

(
γ(t)Gl+(1−γ(t))G̃

l
)
+
√
1−ᾱ(t) ϵ, (2)

where ϵ ∼ N (0, I), while ᾱ (t) and γ (t) are monotocally
decreasing functions from 1 to 0 as t grows from 0 to T . The
model learns to denoise the corrupted feature f l

t at time step
t by minimizing the reconstruction loss

∥Ml(Gl
t|t)−Gl∥2. (3)

Contrasting with SinDDM which employs a bilinear up-
sampler as U , we use a level-specific upsampler U l moti-
vated by the fact our spatial features (points and normals)
are extracted by projecting the voxel centers onto the mesh
surface — thus potentially exhibiting abrupt local changes.
This results in improved preservation of sharp geometric
features as we show in Sec. 5. The upsampler U l is trained
to minimize the L2-loss between upsampled and ground-
truth features, i.e.,

∥U l(Gl−1)−Gl∥2. (4)

Crucially, the training of different levels can be paral-
lelized. For each level l > 1, we first train the upsampler
and the diffusion model as summarized in Algorithm 1.
Unlike SinDDM, training needs to accommodate our use
of sparse grids. When comparing the denoised sparse fea-
ture grid and the ground-truth sparse feature grid (Eq. (3)),

the denoised grid can contain more active voxels (see dark
voxels in Fig. 3, even though their mask could be -1 — yet
fVDB operations on two sparse feature grids assume that
they have the same active voxels. To solve this problem, we
flood those inactive voxels in the ground-truth Gl with fea-
ture values of the nearby active cells using a blurring kernel.
All features except the mask value are flooded in this way,
whereas the mask value is set to -1. Empirically, we ob-
serve that soft blending the feature values this way (instead
of hard setting the values to an arbitrary number or applying
an additional mask for loss) achieves the best result.

Reverse Multiscale Diffusion. Once trained, we can ap-
ply standard DDPM [33] or DDIM [93] sampling sequen-
tially from levels 1 to L. As outlined in Algorithm 2, we
start from a noise ϵ ∼ N (0, I) and run the reverse sam-
pling to obtain an initial prediction at the coarsest level.
Then, for each level, we first prune the predicted inactive
voxels from the previous level by removing any feature en-
tries with mask value m < 0. The resulting feature grid is
then upsampled with U l, and subsequently corrupted with
noise, before being given to the diffusion model for reverse
sampling. Similar to SinDDM, we only add noise up to
timestep T [l]<T to prevent destroying the prediction from
the previous level. A schematic overview of the sampling
process is illustrated in Fig. 3.

3.3. Meshing
Once a new geometric variant has been created, we can di-
rectly visualize the generated shape using the points (one
per finest voxel in the fVDB data structure) along with their
associated normal and color. We can also trivially generate
a mesh of the geometry through Poisson reconstruction [43]
(or APSS [26] if we are dealing with open surfaces). One
can assign colors to the mesh nodes based on the output col-
ors, bake texture maps (as used sporadically in figures), or
further refine and stylize the texture with off-the-shelf im-
age enhancement models (see Sec. 5.5).

4. Implementation Details
Implementation Details. We implemented our method in
Python with PyTorch [75], libigl [38], and Open3D [121],
and our code will be made public upon acceptance. All re-
ported timings were obtained on a desktop with an NVIDIA
GeForce RTX 3080 GPU (10 GB) to underscore the effi-
ciency of our approach even on consumer-grade hardware.

Model Parameters. By default we use 5 levels, the low-
est and highest grid resolutions being 16 and 256 respec-
tively. The upsamplers U consist of 4 layers of 64 channels,
containing ~55k parameters that are trained for 10k itera-
tions with a learning rate of 5·10−4 and a 5% dropout rate.



Metric Method acropolis canyon fighting-pillar house ruined-tower small-town stone-cliff wood average

G-Qual. ↓
Sin3DGen 4.83 6.16 8.45 17.95 6.98 4.02 13.02 10.32 8.97
Sin3DM 0.92 2.23 0.26 2.01 0.49 0.84 0.02 0.09 0.86

ShapeShifter 0.01 0.21 0.26 0.01 0.11 1.00 0.10 0.02 0.21

G-Div. ↑
Sin3DGen 0.25 0.50 0.59 0.41 0.86 0.70 0.65 0.44 0.55
Sin3DM 0.12 0.17 0.15 0.01 0.21 0.60 0.32 0.10 0.21

ShapeShifter 0.04 0.19 0.24 0.01 0.32 0.60 0.23 0.08 0.21

Table 1. Evaluating geometric quality and diversity using SSFID and pairwise IoU scores. Our model shows clear advantage in quality,
and performs similar to Sin3DM in diversity. As we discussed in Sec. 5.1, both metrics have their blindspots, SSFID overlooks geometric
details and pairwise IoU rewards artifacts. Finding a more holistic metric to evaluate shape variation remains an open problem.

The diffusion models have 128 feature channels and 7 lay-
ers, for a total of ~565k parameters for the coarsest model
M1 and 1.2M parameters As in prior work, the receptive
fields of each modelM1 are kept small to prevent overfit-
ting to the fixed global structure: M1 thus uses a receptive
field of 53, while the rest use 93. We train our diffusion
models with T =1000 diffusion steps. For sampling, we set
T [1] = 1000 and T [l > 1] = 300. M1 is trained for 20,000
iterations, and the rest for 40,000 iterations. All levels are
trained with random crops of the same resolution to help
ensure that each scale is trained in roughly the same time,
and we use a learning rate of 10−4 with a 1% dropout rate.

Feature Extraction. In terms of shape processing, we
normalize each mesh to fit within [−1, 1]3. 3D features
are sampled at a resolution of 10243 and downsampled to
a corasest resolution of 163 voxels, as described in Sec. 3.1.

5. Experiments
Data. We demonstrate our approach on 3D textured exem-
plars provided by Sin3DM (from [1, 4, 9, 19, 37, 47, 95]),
and also used an open surface example that we created.
Note that ShapeShifter can operate as-is on untextured in-
puts; but colors can help distinguish geometrically similar,
yet semantically different parts of the geometry.

5.1. Comparison.
Baselines. We compare with two state-of-the-art papers
on 3D generation from single examples: Sin3DM [107] and
Sin3DGen [50]. Sin3DM uses a single-scale triplane dif-
fusion model with a small receptive field to learn internal
feature distribution within the exemplar shape. Features
are learned in a separate autoencoder that parameterizes
the input shape as an implicit neural surface [99]. We use
their publicly available generated results for comparison.
Sin3DGen operates instead on radiance field represented by
plenoxels: it learns a hierarchical deformation field to trans-
form the input plenoxels based on patch similarity. Follow-
ing their data preparation guideline, we first rendered 200
images with Blender [7], then trained a 5123 plenoxel to
obtain the input exemplar which we provide to Sin3DGen
to generate results to which we compare ourselves.

Quantitative Evaluations. Following prior work, we use
Single Shape Fréchet Inception Distance (SSFID [106]) to
evaluate the output quality, and pairwise (1−IoU)-distances
among 10 generated variations to evaluate the output diver-
sity. SSFID is extended from Single-Image Fréchet Incep-
tion Distance (SIFID) [87], which compares the statistics
of the input and the generation feature extracted at different
levels of a pretrained multiscale 3D encoder [16] trained
on voxelized shapes from ShapeNet; thus we voxelized in-
put and generations at a 2563 resolution for evaluation pur-
poses. We show in Tab. 1 that ShapeShifter outperforms
competing methods in SSFID. (Note that our SSFID scores
for Sin3DM differ from their reported scores as they used
post-processed smoothed shapes as reference; please re-
fer to the supplementary material for details.) While SS-
FIDs usually match the perceptual quality of the results,
we note that the voxelization step used for scoring removes
sharp features and high-frequency details, which our pa-
per captures particularly well. The qualitative examples
shown in Fig. 2 and in our supplementary material better
demonstrate our strengths. Overall, the underlying geome-
try from Sin3DGen results is heavily distorted as it relies on
plenoxel matching and blending, and while the SDF super-
vision from Sin3DM makes for better outputs, it does not
capture sharp features well and the features extracted from
their single-resolution triplane representation struggle to en-
code high-frequency details. Finally, the diversity scores
based on IoU must be handled with care as it rewards arti-
facts. Our results show low diversity scores for very struc-
tured exemplars like the acropolis or the house, but good
scores for more organic or varied shapes like the canyon or
the small town, which is in line with our goal of generating
variants of the input shapes.

Training and inference speed. We show timing com-
parisons in Tab. 2, where we also included GAN-based
SSG [106] as its architecture is faster than its successor at
inference time, albeit with lower quality and diversity [107].
Despite its impressive inference time, the training time of
SSG is the longest. Sin3DGen does not require training as
it is based on patch-matching; but each variation genera-
tion takes around 2 minutes, limiting interactive use cases.



Method encoding and training inference

SSG 4 hours 0.1 sec
Sin3DM 2.5 hrs 15.8 sec
Sin3DGen∗ 15 min 139 sec
ShapeShifter 12 min 10.7 sec

Table 2. Timings. Sin3DGen [50] was tested on a more performant
GPU (Nvidia A100 40GB), as it could not fit in our regular GPUs
(Nvidia 3080 10GB).

Sin3DM takes in total of 2.5 hours to train, of which ~30
minutes are used to learn triplane features. Our method
takes merely 6 seconds to encode the shape, trains the 5-
level hierarchy of diffusion models in 12 minutes, signifi-
cantly outperforming all other trained models. The infer-
ence time takes from 0.15 seconds (at level 2) to 7.5 seconds
(at level 5) totaling 10.7 seconds. It is worth mentioning
that since our method outputs colored oriented pointset at
every level, requiring no additional conversion e.g. march-
ing cubes in other methods, we can flexibly choose the
working level depending on the application. For example,
in editing, we can operate on level 3, which takes only 1 s.
per generation, thus enabling interactive modeling as shown
next. More details are provided in the supplementary mate-
rial.

5.2. Control and editing.
Our multiscale explicit representation makes it easy to con-
trol and edit the output. We demonstrate two examples: the
user can trivially change the span of the model by resiz-
ing the initial grid G0

T anisotropically, see Fig. 4; moreover,
Fig. 5 demonstrates that a generated output can be further
edit by copy-and-pasting parts of the output within one of
the levels of the multiscale description of the shape, here
to remove windows or adding a bay window. While exist-
ing works can offer similar capabilities, their use of triplane
features or deformation fields to drive the generation ren-
ders editing less intuitive. For example, a patch from the
input shape can be duplicated in Sin3DM to appear in the
generated variations; however, the duplication must be done
on three interdependent triplanes features, which do not di-
rectly correspond to a feature in 3D space.

5.3. Open Surfaces
Our use of points and normals to represent the geometry
makes the treatment of open surfaces not only possible but
just as simple as the case of closed surfaces: only the surface
extraction method needs to be altered, i.e. with APSS [26]
instead of [43]. An example is shown in Fig. 6.

5.4. Ablation studies
Learned Upsampler. We demonstrate the benefit of our
learned upsampler. Replacing our upsampler (both in train-
ing and inference) by a trilinear interpolation as used in

Figure 4. Controlled generation. The span of the output can be
trivially controlled by resizing the initial grid anisotropically.

Figure 5. Editing. Using sparse voxel grid allows users to intu-
itively apply more precise edits. Here, a user can copy and paste
a selected part of a generated variation at an intermediate level to
manually alter the variation.

Figure 6. Open surfaces. Our oriented points representation also
handles open surfaces by simply using APSS [26] to mesh the gen-
erated point set, while it is challenging for existing methods.

SinDDM produces visible artifacts (Fig. 7): our point
features off-centered from the cell centers get entangled
through trilinear upsampling.



3D Features. We also replace our geometric features with
an SDF. For fairness of comparison, we use two layers of ac-
tive cells (instead of one) close to the surface to compensate
for the reduced feature dimensionality. For the same input
resolution, our features have more details (Fig. 8).

(a) Trilinear Interpolation (b) Learned Upsampler

Figure 7. Ablation test of upsampling. Comparing trilinear in-
terpolation (left) with learned upsampler (right), the interpolation
causes artifacts (see circled areas), whereas the learned upsampler
provides a more detailed and structurally coherent output.

(a) SDF + Marching Cube [60] (b) Ours + Poisson [43]

Figure 8. Ablation test of features. Comparing SDF (left) with our
proposed point and normal features (right) at the same resolution
(1283) demonstrates that our proposed features produce richer ge-
ometric details. The mesh color encodes the normal direction to
reflect the difference in geometry details.

5.5. Texture Augmentation
Finally, we show that one can texture our generated mod-
els by applying contemporary image super-resolution on the
baked texture maps in Fig. 9: using Magnific AI [63] for ex-
ample can efficiently generate a fine texture improving the
visual impact of our results. While this is only a proof-of-
concept example, exploring the texturing of our geometric
models is an exciting, albeit orthogonal, research direction.

Figure 9. Texturing. As explained Sec. 3.3, ultra-high resolu-
tion texture can be obtained by applying state-of-the-art AI image-
enhancing tools on the texture maps created by our method from
the colored point set outputs.

6. Limitations and Future Work

Just like previous exemplar-based generative methods,
ShapeShifter is limited in the shape variations it can gener-
ate: while our approach is not strictly patch-based, it is simi-
larly restricted in its ability to consider widely different vari-
ants. Extending its range of alterations through data aug-
mentation or more involved (equivariant) features remains
an intriguing possibility that would broaden the applicabil-
ity of our method. Moreover, we focused our approach
on generating high-quality, detailed geometry and did not
consider fine texture generation. While existing exemplar-
based methods have proposed approaches to generate tex-
tures for meshes that we could apply as-is, we believe there
may be other exciting possibilities to explore, such as fitting
2D Gaussian splats [35] within our finest voxels to enrich
our geometry with radiance field reconstruction.

Now that we have proven the efficacy of explicit geome-
try encoding through colored points and normals for creat-
ing shapes in our exemplar context, it would be interesting
to study its adequacy in the more general case of generative
modeling from large datasets: its lightweight, surface-based
nature may circumvent a number of issues plaguing current
state-of-the-art approaches.

7. Conclusion

We proposed a novel generative approach for generating
high-quality and detailed 3D models from a single exem-
plar. Our approach stands out as the first 3D generative
method based on an explicit encoding of geometry through
points, normals, and optionally colors. Combined with
sparse voxel grid, we demonstrated that both training and
inference times are (at times drastically) reduced compared
to previous methods, despite a significantly improved qual-
ity of our geometric outputs and an ability to deal seam-
lessly with closed or open surfaces alike. We thus believe



that ShapeShifter sets a new standard for the quality of ge-
ometric outputs in generative modeling.

References
[1] All about Blender-3D. Photo-realistic floating wood.

https : / / www . cgtrader . com / free - 3d -
models / plant / other / photo - realistic -
floating-wood, 2020. License: Royalty Free. 6

[2] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and
Leonidas Guibas. Learning representations and generative
models for 3d point clouds. In International conference on
machine learning, pages 40–49. PMLR, 2018. 2

[3] and others. State of the art on diffusion models for visual
computing. In Computer Graphics Forum, page e15063.
Wiley Online Library, 2024. 2

[4] Pedram Ashoori. Small town. https://www.
cgtrader.com/free-3d-models/exterior/
cityscape / small - town - 87b127c8 - c991 -
4063-aa69-e58800686299, 2020. License: Royalty
Free. 6

[5] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and
Dan B Goldman. Patchmatch: A randomized correspon-
dence algorithm for structural image editing. ACM Trans.
Graph., 28(3):24, 2009. 3

[6] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learn-
ing long-term dependencies with gradient descent is diffi-
cult. IEEE transactions on neural networks, 5(2):157–166,
1994. 2

[7] Blender Online Community.
Blender - a 3D modelling and rendering package. Blender
Foundation, Stichting Blender Foundation, Amsterdam,
2018. 6

[8] Tianshi Cao, Karsten Kreis, Sanja Fidler, Nicholas Sharp,
and Kangxue Yin. Texfusion: Synthesizing 3d textures with
text-guided image diffusion models. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 4169–4181, 2023. 4

[9] Lukas Carnota. Industrial building. https://www.
cgtrader.com/free-3d-models/exterior/
office/indusrtial-building, 2015. License:
Royalty Free. 6

[10] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki
Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,
Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis,
et al. Efficient geometry-aware 3d generative adversarial
networks. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 16123–
16133, 2022. 2, 3

[11] Hansheng Chen, Jiatao Gu, Anpei Chen, Wei Tian,
Zhuowen Tu, Lingjie Liu, and Hao Su. Single-stage dif-
fusion nerf: A unified approach to 3d generation and recon-
struction. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 2416–2425, 2023. 3

[12] Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fan-
tasia3d: Disentangling geometry and appearance for high-
quality text-to-3d content creation. In Proceedings of the

IEEE/CVF international conference on computer vision,
pages 22246–22256, 2023. 3

[13] Ting Chen. On the Importance of Noise Scheduling for
Diffusion Models, 2023. arXiv:2301.10972. 4

[14] Yiwen Chen, Tong He, Di Huang, Weicai Ye, Sijin Chen,
Jiaxiang Tang, Xin Chen, Zhongang Cai, Lei Yang, Gang
Yu, et al. Meshanything: Artist-created mesh gener-
ation with autoregressive transformers. arXiv preprint
arXiv:2406.10163, 2024. 2

[15] Zhiqin Chen and Hao Zhang. Learning implicit fields
for generative shape modeling. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 3

[16] Zhiqin Chen, Vladimir G Kim, Matthew Fisher, Noam
Aigerman, Hao Zhang, and Siddhartha Chaudhuri. Decor-
gan: 3d shape detailization by conditional refinement. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 15740–15749, 2021.
6

[17] Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, Alexan-
der G Schwing, and Liang-Yan Gui. Sdfusion: Multimodal
3d shape completion, reconstruction, and generation. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4456–4465, 2023.
3

[18] Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong
Ngo, Oscar Michel, Aditya Kusupati, Alan Fan, Chris-
tian Laforte, Vikram Voleti, Samir Yitzhak Gadre, et al.
Objaverse-xl: A universe of 10m+ 3d objects. Advances
in Neural Information Processing Systems, 36, 2024. 2

[19] DJMaesen. Cliff. https : / /
sketchfab . com / 3d - models / cliff -
082da1166a814c6e9c9e6c1b38159e4e, 2021.
License: CC Attribution. 6

[20] Ariel Elnekave and Yair Weiss. Generating natural im-
ages with direct patch distributions matching. In European
Conference on Computer Vision, pages 544–560. Springer,
2022. 3

[21] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 5501–5510, 2022. 3

[22] Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen,
Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic, and Sanja
Fidler. Get3d: A generative model of high quality 3d tex-
tured shapes learned from images. Advances In Neural
Information Processing Systems, 35:31841–31854, 2022.
2

[23] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial networks.
Communications of the ACM, 63(11):139–144, 2020. 2

[24] Niv Granot, Ben Feinstein, Assaf Shocher, Shai Bagon,
and Michal Irani. Drop the gan: In defense of patches
nearest neighbors as single image generative models. In
Proceedings of the IEEE/CVF conference on computer

https://www.cgtrader.com/free-3d-models/plant/other/photo-realistic-floating-wood
https://www.cgtrader.com/free-3d-models/plant/other/photo-realistic-floating-wood
https://www.cgtrader.com/free-3d-models/plant/other/photo-realistic-floating-wood
https://www.cgtrader.com/free-3d-models/exterior/cityscape/small-town-87b127c8-c991-4063-aa69-e58800686299
https://www.cgtrader.com/free-3d-models/exterior/cityscape/small-town-87b127c8-c991-4063-aa69-e58800686299
https://www.cgtrader.com/free-3d-models/exterior/cityscape/small-town-87b127c8-c991-4063-aa69-e58800686299
https://www.cgtrader.com/free-3d-models/exterior/cityscape/small-town-87b127c8-c991-4063-aa69-e58800686299
https://www.cgtrader.com/free-3d-models/exterior/office/indusrtial-building
https://www.cgtrader.com/free-3d-models/exterior/office/indusrtial-building
https://www.cgtrader.com/free-3d-models/exterior/office/indusrtial-building
https://sketchfab.com/3d-models/cliff-082da1166a814c6e9c9e6c1b38159e4e
https://sketchfab.com/3d-models/cliff-082da1166a814c6e9c9e6c1b38159e4e
https://sketchfab.com/3d-models/cliff-082da1166a814c6e9c9e6c1b38159e4e


vision and pattern recognition, pages 13460–13469, 2022.
3

[25] Alex Graves. Generating sequences with recurrent neural
networks. arXiv preprint arXiv:1308.0850, 2013. 2

[26] Gaël Guennebaud and Markus Gross. Algebraic point set
surfaces. In ACM SIGGRAPH 2007 papers, page 23, San
Diego California, 2007. ACM. 5, 7

[27] Anchit Gupta, Wenhan Xiong, Yixin Nie, Ian Jones, and
Barlas Oğuz. 3dgen: Triplane latent diffusion for textured
mesh generation. arXiv preprint arXiv:2303.05371, 2023.
3

[28] Niv Haim, Ben Feinstein, Niv Granot, Assaf Shocher, Shai
Bagon, Tali Dekel, and Michal Irani. Diverse generation
from a single video made possible. In European Conference
on Computer Vision, pages 491–509. Springer, 2022. 3

[29] Charles Han, Eric Risser, Ravi Ramamoorthi, and Ei-
tan Grinspun. Multiscale texture synthesis. In ACM
SIGGRAPH 2008 papers, pages 1–8. 2008. 3

[30] Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar
Fleishman, and Daniel Cohen-Or. Meshcnn: a network with
an edge. ACM Transactions on Graphics (ToG), 38(4):1–
12, 2019. 3

[31] Amir Hertz, Rana Hanocka, Raja Giryes, and Daniel
Cohen-Or. Deep geometric texture synthesis. ACM Trans.
Graph., 39(4), 2020. 3

[32] Tobias Hinz, Matthew Fisher, Oliver Wang, and Stefan
Wermter. Improved techniques for training single-image
gans. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 1300–1309,
2021. 3

[33] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denois-
ing diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020. 2,
5

[34] Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou,
Difan Liu, Feng Liu, Kalyan Sunkavalli, Trung Bui, and
Hao Tan. LRM: Large reconstruction model for single
image to 3d. In The Twelfth International Conference on
Learning Representations, 2024. 3

[35] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger,
and Shenghua Gao. 2d gaussian splatting for geometri-
cally accurate radiance fields. In ACM SIGGRAPH 2024
Conference Papers, 2024. 8

[36] Dong Huo, Zixin Guo, Xinxin Zuo, Zhihao Shi, Juwei Lu,
Peng Dai, Songcen Xu, Li Cheng, and Yee-Hong Yang.
Texgen: Text-guided 3d texture generation with multi-view
sampling and resampling. In European Conference on
Computer Vision, pages 352–368. Springer, 2025. 3

[37] ImpJive. Fighting pillar. https://sketchfab.
com / 3d - models / fighting - pillar -
14e73d2d9e8a4981b49d0e6c56d30af5, 2021.
License: CC Attribution-ShareAlike. 6

[38] Alec Jacobson and Daniele Panozzo. libigl, 2023. 5
[39] Heewoo Jun and Alex Nichol. Shap-e: Generat-

ing conditional 3d implicit functions. arXiv preprint
arXiv:2305.02463, 2023. 3

[40] Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park,
Eli Shechtman, Sylvain Paris, and Taesung Park. Scal-
ing up gans for text-to-image synthesis. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10124–10134, 2023. 4

[41] Animesh Karnewar, Oliver Wang, Tobias Ritschel, and
Niloy J Mitra. 3ingan: Learning a 3d generative model
from images of a self-similar scene. In 2022 International
Conference on 3D Vision (3DV), pages 342–352. IEEE,
2022. 3

[42] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada.
Neural 3d mesh renderer. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 3907–3916, 2018. 3

[43] Michael Kazhdan and Hugues Hoppe. Screened poisson
surface reconstruction. ACM Transactions on Graphics, 32
(3):1–13, 2013. 5, 7, 8

[44] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Trans. Graph., 42(4):139–1,
2023. 3

[45] Diederik P Kingma, Max Welling, et al. An introduction
to variational autoencoders. Foundations and Trends® in
Machine Learning, 12(4):307–392, 2019. 2

[46] Vladimir Kulikov, Shahar Yadin, Matan Kleiner, and Tomer
Michaeli. Sinddm: A single image denoising diffusion
model. In International conference on machine learning,
pages 17920–17930. PMLR, 2023. 3, 4

[47] Choly Kurd. Akropolis. https : / / www .
turbosquid . com / 3d - models / acropolis -
3ds-free/610885, 2021. License: Educational Uses.
6

[48] Haoying Li, Yifan Yang, Meng Chang, Shiqi Chen, Huajun
Feng, Zhihai Xu, Qi Li, and Yueting Chen. Srdiff: Single
image super-resolution with diffusion probabilistic models.
Neurocomputing, 479:47–59, 2022. 4

[49] Jiahao Li, Hao Tan, Kai Zhang, Zexiang Xu, Fujun
Luan, Yinghao Xu, Yicong Hong, Kalyan Sunkavalli,
Greg Shakhnarovich, and Sai Bi. Instant3d: Fast text-
to-3d with sparse-view generation and large reconstruc-
tion model. In The Twelfth International Conference on
Learning Representations, 2024. 3

[50] Weiyu Li, Xuelin Chen, Jue Wang, and Baoquan Chen.
Patch-based 3d natural scene generation from a single ex-
ample. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 16762–
16772, 2023. 1, 2, 3, 6, 7

[51] Weiyu Li, Rui Chen, Xuelin Chen, and Ping Tan. Sweet-
dreamer: Aligning geometric priors in 2d diffusion for con-
sistent text-to-3d. In The Twelfth International Conference
on Learning Representations, 2024. 3

[52] Yixun Liang, Xin Yang, Jiantao Lin, Haodong Li, Xiaogang
Xu, and Yingcong Chen. Luciddreamer: Towards high-
fidelity text-to-3d generation via interval score matching.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6517–6526, 2024. 3

[53] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki
Takikawa, Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja

https://sketchfab.com/3d-models/fighting-pillar-14e73d2d9e8a4981b49d0e6c56d30af5
https://sketchfab.com/3d-models/fighting-pillar-14e73d2d9e8a4981b49d0e6c56d30af5
https://sketchfab.com/3d-models/fighting-pillar-14e73d2d9e8a4981b49d0e6c56d30af5
https://www.turbosquid.com/3d-models/acropolis-3ds-free/610885
https://www.turbosquid.com/3d-models/acropolis-3ds-free/610885
https://www.turbosquid.com/3d-models/acropolis-3ds-free/610885


Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-
resolution text-to-3d content creation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 300–309, 2023. 3

[54] Minghua Liu, Chao Xu, Haian Jin, Linghao Chen, Mukund
Varma T, Zexiang Xu, and Hao Su. One-2-3-45: Any
single image to 3d mesh in 45 seconds without per-shape
optimization. Advances in Neural Information Processing
Systems, 36, 2024. 3

[55] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tok-
makov, Sergey Zakharov, and Carl Vondrick. Zero-1-to-3:
Zero-shot one image to 3d object. In Proceedings of the
IEEE/CVF international conference on computer vision,
pages 9298–9309, 2023. 3

[56] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft
rasterizer: A differentiable renderer for image-based 3d
reasoning. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 7708–7717, 2019. 3

[57] Yuan Liu, Cheng Lin, Zijiao Zeng, Xiaoxiao Long, Lingjie
Liu, Taku Komura, and Wenping Wang. Syncdreamer:
Generating multiview-consistent images from a single-
view image. In The Twelfth International Conference on
Learning Representations, 2024. 3

[58] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural
volumes: learning dynamic renderable volumes from im-
ages. ACM Transactions on Graphics (TOG), 38(4):1–14,
2019. 3

[59] Xiaoxiao Long, Yuan-Chen Guo, Cheng Lin, Yuan Liu,
Zhiyang Dou, Lingjie Liu, Yuexin Ma, Song-Hai Zhang,
Marc Habermann, Christian Theobalt, et al. Wonder3d:
Single image to 3d using cross-domain diffusion. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9970–9980, 2024.
3

[60] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. In
Seminal graphics: pioneering efforts that shaped the field,
pages 347–353. 1998. 8

[61] Artem Lukoianov, Haitz Sáez de Ocáriz Borde, Kristjan
Greenewald, Vitor Campagnolo Guizilini, Timur Bagaut-
dinov, Vincent Sitzmann, and Justin Solomon. Score
distillation via reparametrized ddim. arXiv preprint
arXiv:2405.15891, 2024. 3

[62] Shitong Luo and Wei Hu. Diffusion probabilistic mod-
els for 3d point cloud generation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 2837–2845, 2021. 3

[63] Magnific AI. Magnific ai: Accelerating scientific research.
https://magnific.ai/. Accessed: 2024-11-13. 8

[64] Nissim Maruani, Roman Klokov, Maks Ovsjanikov, Pierre
Alliez, and Mathieu Desbrun. VoroMesh: Learning Wa-
tertight Surface Meshes with Voronoi Diagrams. In 2023
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 14519–14528, Paris, France, 2023. IEEE. 3

[65] Nissim Maruani, Maks Ovsjanikov, Pierre Alliez, and
Mathieu Desbrun. PoNQ: A Neural QEM-Based Mesh

Representation. In 2024 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
3647–3657, Seattle, WA, USA, 2024. IEEE. 3, 4, 2

[66] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy net-
works: Learning 3d reconstruction in function space. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 4460–4470, 2019. 3

[67] Gal Metzer, Elad Richardson, Or Patashnik, Raja Giryes,
and Daniel Cohen-Or. Latent-nerf for shape-guided gen-
eration of 3d shapes and textures. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12663–12673, 2023. 3

[68] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021.
3

[69] Thomas W. Mitchel, Carlos Esteves, and Ameesh Makadia.
Single mesh diffusion models with field latents for texture
generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
7953–7963, 2024. 3

[70] Charlie Nash, Yaroslav Ganin, SM Ali Eslami, and Peter
Battaglia. Polygen: An autoregressive generative model
of 3d meshes. In International conference on machine
learning, pages 7220–7229. PMLR, 2020. 2

[71] Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela
Mishkin, and Mark Chen. Point-e: A system for generat-
ing 3d point clouds from complex prompts. arXiv preprint
arXiv:2212.08751, 2022. 3

[72] Yaniv Nikankin, Niv Haim, and Michal Irani. Sinfu-
sion: training diffusion models on a single image or video.
In Proceedings of the 40th International Conference on
Machine Learning, pages 26199–26214, 2023. 3, 4

[73] Eyvind Niklasson, Alexander Mordvintsev, Ettore Ran-
dazzo, and Michael Levin. Self-organising textures. Distill,
6(2):e00027–003, 2021. 3

[74] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning
continuous signed distance functions for shape represen-
tation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 165–174,
2019. 2, 3

[75] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Im-
perative Style, High-Performance Deep Learning Library,
2019. arXiv:1912.01703 [cs, stat]. 5

[76] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben
Mildenhall. Dreamfusion: Text-to-3d using 2d diffu-
sion. In The Eleventh International Conference on Learning
Representations, 2023. 3

[77] Sergey Prokudin, Qianli Ma, Maxime Raafat, Julien
Valentin, and Siyu Tang. Dynamic Point Fields. In 2023

https://magnific.ai/


IEEE/CVF International Conference on Computer Vision
(ICCV), pages 7964–7976, 2023. 2

[78] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017. 3

[79] Lingteng Qiu, Guanying Chen, Xiaodong Gu, Qi Zuo,
Mutian Xu, Yushuang Wu, Weihao Yuan, Zilong Dong,
Liefeng Bo, and Xiaoguang Han. Richdreamer: A gen-
eralizable normal-depth diffusion model for detail richness
in text-to-3d. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9914–
9925, 2024. 3

[80] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3d deep learning with pytorch3d.
arXiv:2007.08501, 2020. 2

[81] Xuanchi Ren, Jiahui Huang, Xiaohui Zeng, Ken Museth,
Sanja Fidler, and Francis Williams. Xcube: Large-scale
3d generative modeling using sparse voxel hierarchies. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4209–4219, 2024.
3

[82] Xuanchi Ren, Yifan Lu, Hanxue Liang, Jay Zhangjie
Wu, Huan Ling, Mike Chen, Francis Fidler, Sanja
annd Williams, and Jiahui Huang. Scube: Instant
large-scale scene reconstruction using voxsplats. In The
Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. 3

[83] Danilo Rezende and Shakir Mohamed. Variational infer-
ence with normalizing flows. In International conference
on machine learning, pages 1530–1538. PMLR, 2015. 2

[84] Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes,
and Daniel Cohen-Or. Texture: Text-guided texturing
of 3d shapes. In ACM SIGGRAPH 2023 conference
proceedings, pages 1–11, 2023. 2, 4

[85] Carlos Rodriguez-Pardo and Elena Garces. Seamlessgan:
Self-supervised synthesis of tileable texture maps. IEEE
Transactions on Visualization and Computer Graphics, 29
(6):2914–2925, 2022. 3

[86] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. Graf: Generative radiance fields for 3d-aware im-
age synthesis. Advances in Neural Information Processing
Systems, 33:20154–20166, 2020. 3

[87] Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Sin-
gan: Learning a generative model from a single natu-
ral image. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 4570–4580, 2019. 3,
4, 6, 1

[88] Yichun Shi, Peng Wang, Jianglong Ye, Long Mai, Kejie
Li, and Xiao Yang. MVDream: Multi-view diffusion for
3d generation. In The Twelfth International Conference on
Learning Representations, 2024. 3

[89] Assaf Shocher, Shai Bagon, Phillip Isola, and Michal Irani.
Ingan: Capturing and retargeting the” dna” of a natural
image. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 4492–4501, 2019. 3

[90] Yawar Siddiqui, Antonio Alliegro, Alexey Artemov, Ta-
tiana Tommasi, Daniele Sirigatti, Vladislav Rosov, Angela
Dai, and Matthias Nießner. Meshgpt: Generating triangle
meshes with decoder-only transformers. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19615–19625, 2024. 2

[91] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning us-
ing nonequilibrium thermodynamics. In International
conference on machine learning, pages 2256–2265. PMLR,
2015. 2

[92] Minjung Son, Jeong Joon Park, Leonidas Guibas, and Gor-
don Wetzstein. Singraf: Learning a 3d generative radiance
field for a single scene. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 8507–8517, 2023. 1, 2, 3

[93] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In International Conference
on Learning Representations, 2021. 5

[94] Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei
Wang, Gang Zeng, and Ziwei Liu. Lgm: Large multi-
view gaussian model for high-resolution 3d content cre-
ation. In European Conference on Computer Vision, pages
1–18. Springer, 2025. 3

[95] Simon Ustal. Canyon landscape.
https : / / sketchfab . com / 3d -
models / canyon - landscape -
c395e9eb54ba4f40820ccfb98d3c2832, 2020.
License: CC Attribution. 6

[96] Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany,
Sanja Fidler, Karsten Kreis, et al. Lion: Latent point diffu-
sion models for 3d shape generation. Advances in Neural
Information Processing Systems, 35:10021–10039, 2022. 3

[97] Aäron Van Den Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu. Pixel recurrent neural networks. In
International conference on machine learning, pages 1747–
1756. PMLR, 2016. 2

[98] Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A Yeh,
and Greg Shakhnarovich. Score jacobian chaining: Lift-
ing pretrained 2d diffusion models for 3d generation. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12619–12629, 2023.
3

[99] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt,
Taku Komura, and Wenping Wang. Neus: Learning neural
implicit surfaces by volume rendering for multi-view recon-
struction. arXiv preprint arXiv:2106.10689, 2021. 6

[100] Peng Wang, Hao Tan, Sai Bi, Yinghao Xu, Fujun Luan,
Kalyan Sunkavalli, Wenping Wang, Zexiang Xu, and Kai
Zhang. PF-LRM: Pose-free large reconstruction model
for joint pose and shape prediction. In The Twelfth
International Conference on Learning Representations,
2024. 3

[101] Peihao Wang, Dejia Xu, Zhiwen Fan, Dilin Wang, Sreyas
Mohan, Forrest Iandola, Rakesh Ranjan, Yilei Li, Qiang
Liu, Zhangyang Wang, et al. Taming mode collapse in score
distillation for text-to-3d generation. In Proceedings of

https://sketchfab.com/3d-models/canyon-landscape-c395e9eb54ba4f40820ccfb98d3c2832
https://sketchfab.com/3d-models/canyon-landscape-c395e9eb54ba4f40820ccfb98d3c2832
https://sketchfab.com/3d-models/canyon-landscape-c395e9eb54ba4f40820ccfb98d3c2832


the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9037–9047, 2024. 3

[102] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongx-
uan Li, Hang Su, and Jun Zhu. Prolificdreamer: High-
fidelity and diverse text-to-3d generation with varia-
tional score distillation. Advances in Neural Information
Processing Systems, 36, 2024. 3

[103] Xinyue Wei, Kai Zhang, Sai Bi, Hao Tan, Fujun Luan,
Valentin Deschaintre, Kalyan Sunkavalli, Hao Su, and Zex-
iang Xu. Meshlrm: Large reconstruction model for high-
quality mesh. arXiv preprint arXiv:2404.12385, 2024. 3

[104] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and
Justin Johnson. Synsin: End-to-end view synthesis from a
single image. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 7467–
7477, 2020. 3

[105] Francis Williams, Jiahui Huang, Jonathan Swartz, Gergely
Klar, Vijay Thakkar, Matthew Cong, Xuanchi Ren, Ruilong
Li, Clement Fuji-Tsang, Sanja Fidler, et al. fvdb: A deep-
learning framework for sparse, large scale, and high perfor-
mance spatial intelligence. ACM Transactions on Graphics
(TOG), 43(4):1–15, 2024. 2, 3, 4

[106] Rundi Wu and Changxi Zheng. Learning to generate 3d
shapes from a single example. ACM Transactions on
Graphics (TOG), 41(6):1–19, 2022. 1, 2, 3, 6

[107] Rundi Wu, Ruoshi Liu, Carl Vondrick, and Changxi Zheng.
Sin3DM: Learning a diffusion model from a single 3d tex-
tured shape. In The Twelfth International Conference on
Learning Representations, 2024. 1, 2, 3, 6

[108] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu,
Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1912–1920, 2015. 3

[109] Yinghao Xu, Zifan Shi, Wang Yifan, Sida Peng, Ceyuan
Yang, Yujun Shen, and Wetzstein Gordon. Grm: Large
gaussian reconstruction model for efficient 3d reconstruc-
tion and generation. arxiv: 2403.14621, 2024. 3

[110] Yinghao Xu, Hao Tan, Fujun Luan, Sai Bi, Peng Wang,
Jiahao Li, Zifan Shi, Kalyan Sunkavalli, Gordon Wet-
zstein, Zexiang Xu, and Kai Zhang. DMV3d: De-
noising multi-view diffusion using 3d large reconstruc-
tion model. In The Twelfth International Conference on
Learning Representations, 2024. 3

[111] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu,
Serge Belongie, and Bharath Hariharan. Pointflow: 3d
point cloud generation with continuous normalizing flows.
In Proceedings of the IEEE/CVF international conference
on computer vision, pages 4541–4550, 2019. 2

[112] Haibo Yang, Yang Chen, Yingwei Pan, Ting Yao, Zhi-
neng Chen, Zuxuan Wu, Yu-Gang Jiang, and Tao Mei.
Dreammesh: Jointly manipulating and texturing trian-
gle meshes for text-to-3d generation. arXiv preprint
arXiv:2409.07454, 2024. 3

[113] Wang Yifan, Felice Serena, Shihao Wu, Cengiz Öztireli,
and Olga Sorkine-Hornung. Differentiable surface splatting
for point-based geometry processing. ACM Transactions
on Graphics (TOG), 38(6):1–14, 2019. 3

[114] Fukun Yin, Xin Chen, Chi Zhang, Biao Jiang, Zibo Zhao,
Jiayuan Fan, Gang Yu, Taihao Li, and Tao Chen. Shapegpt:
3d shape generation with a unified multi-modal language
model. arXiv preprint arXiv:2311.17618, 2023. 2

[115] Xianfang Zeng, Xin Chen, Zhongqi Qi, Wen Liu, Zibo
Zhao, Zhibin Wang, Bin Fu, Yong Liu, and Gang Yu.
Paint3d: Paint anything 3d with lighting-less texture diffu-
sion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4252–
4262, 2024. 3

[116] Biao Zhang, Matthias Nießner, and Peter Wonka. 3dilg: Ir-
regular latent grids for 3d generative modeling. Advances in
Neural Information Processing Systems, 35:21871–21885,
2022. 2

[117] Biao Zhang, Jiapeng Tang, Matthias Niessner, and Pe-
ter Wonka. 3dshape2vecset: A 3d shape representation
for neural fields and generative diffusion models. ACM
Transactions on Graphics (TOG), 42(4):1–16, 2023. 3

[118] Kai Zhang, Sai Bi, Hao Tan, Yuanbo Xiangli, Nanxuan
Zhao, Kalyan Sunkavalli, and Zexiang Xu. Gs-lrm: Large
reconstruction model for 3d gaussian splatting. In European
Conference on Computer Vision, pages 1–19. Springer,
2025. 3

[119] Longwen Zhang, Ziyu Wang, Qixuan Zhang, Qiwei Qiu,
Anqi Pang, Haoran Jiang, Wei Yang, Lan Xu, and Jingyi
Yu. Clay: A controllable large-scale generative model
for creating high-quality 3d assets. ACM Transactions on
Graphics (TOG), 43(4):1–20, 2024. 3, 1

[120] Zibo Zhao, Wen Liu, Xin Chen, Xianfang Zeng, Rui Wang,
Pei Cheng, Bin Fu, Tao Chen, Gang Yu, and Shenghua Gao.
Michelangelo: Conditional 3d shape generation based on
shape-image-text aligned latent representation. Advances
in Neural Information Processing Systems, 36, 2024. 3

[121] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3d:
A modern library for 3d data processing. arXiv preprint
arXiv:1801.09847, 2018. 5

[122] Yang Zhou, Zhen Zhu, Xiang Bai, Dani Lischinski, Daniel
Cohen-Or, and Hui Huang. Non-stationary texture syn-
thesis by adversarial expansion. ACM Transactions on
Graphics (TOG), 37(4):1–13, 2018. 3

[123] Zi-Xin Zou, Zhipeng Yu, Yuan-Chen Guo, Yangguang Li,
Ding Liang, Yan-Pei Cao, and Song-Hai Zhang. Triplane
meets gaussian splatting: Fast and generalizable single-
view 3d reconstruction with transformers. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10324–10335, 2024. 3



ShapeShifter: 3D Variations Using Multiscale and Sparse Point-Voxel Diffusion

Supplementary Material

This supplementary material provides complement de-
tails, results, and comparisons.

(a) Input Geometry (b) Ours (c) Rodin

Figure 10. ShapeShifter. Given a 3D exemplar (left), we train
a hierarchical diffusion model to create novel variations that pre-
serve the geometric details and styles of the exemplar (center),
whereas a large generative model such as Rodin [119] tends to
lose the geometric details present in the input (right).

8. Additional results and renderings

We provide more results in Fig. 10, 13, and 14 to better
illustrate the outputs of ShapeShifter on a variety of refer-
ence models (including new ones compared to the submis-
sion). Note that we also show that ShapeShifter can gener-
ate purely geometric variants from untextured meshes (see
last result in Fig. 14).

8.1. Comparison to SSG

We provide additional comparison with SSG [106], which
is a 3D generalization of SinGAN [87] trained on multi-
scale triplane occupancy fields. Tab. 3 shows the quantita-
tive evaluation on the models for which SSG provides pub-
licly available outputs, demonstrating the higher quality of
ShapeShifter. Furthermore, we demonstrate in Fig. 11 that
the typical results of this GAN-based method exhibit the
exaggerated smoothness like in all existing techniques, and
often suffer from voxelized artifacts as well.

Metric Method acropolis house small-town wood

G-Qual. ↓ SSG 2.81 0.91 1.71 0.07
ShapeShifter 0.01 0.01 1.00 0.02

G-Div. ↑ SSG 0.081 0.01 0.19 0.11
ShapeShifter 0.04 0.01 0.60 0.08

Table 3. Evaluating geometric quality and diversity using SS-
FID and pairwise IoU scores. As we discussed in our submission
and in Sec. 9, both metrics have their blindspots: SSFID tends to
overlook geometric details while pairwise IoU systematically re-
wards artifacts.

(a) Input Geometry (b) ShapeShifter (c) SSG

Figure 11. Visual inspection of SSG [106] results. While SSG
can generate 3D outputs with very fast inference time, results are
typically blobby or overly smooth, with spurious artifacts often
visible due to its voxel-based generation process. In contrast, our
method generates better sharp edges and subtle details.

8.2. Data-intensive vs. exemplar-based 3D genera-
tion

In this section, we discuss the value of exemplar-based 3D
generations in light of the recent advancements in 3D gen-
eration models trained on millions of examples. The lat-
ter can be used to create highly diverse 3D assets and pro-
vide intuitive user controls through simple text and images.
However, such models require immense computational re-
sources for training and inference. Yet, as shown in Fig. 10,
the state-of-the-art generator Rodin [119] (1.5B parameters)
fails to create convincing geometric details comparable to
those generated by our model.

Furthermore, the control provided by such models is lim-
ited, as the generation can only adhere to extremely coarse
guidance. For example, in Fig. 10, we use the exemplar
mesh as part of the inputs to Rodin for a conditioned gen-
eration. However, the output (right) completely loses the
styles and details present in the exemplar mesh.



9. Additional comments on metrics

While we use the two commonly-used metrics (geomet-
ric quality and diversity through SSFID and pairwise IoU
scores) to evaluate our results and compare them to prior
art, a few comments are in order.

First, the validity of these two scores is debatable. While
geometric quality is arguably fair but cannot really gauge
the diversity of the results, the measure of diversity itself
is quite delicate to analyze. In a sense, the diversity score
rewards noise, not just real diversity. For instance, ten grids
of random binary values would get a diversity of 0.66, while
ten grids of axis-aligned planes that are not overlapping
would have a score of 1.0 — so a diversity score mixes
different properties. This partial inadequacy of the score
is the reason why we state in the submission that geomet-
ric quality and geometric diversity should really be consid-
ered together to infer the success of an approach. More-
over, we also point out that the diversity scores should be
clearly smaller for very structured models (like the acropo-
lis model) than for free-form or organic shapes; our results
have scores in line with this expected behavior, which seems
more meaningful than systematic high scores which would
point to noise artifacts instead of good results.

Second, we wish to point out that our scores of
Sin3DM [107] are different from the ones they publish. The
reason is that Sin3DM applies a pre-processing step to make
the input meshes watertight. This initial step systematically
inflates small details and thin surfaces such as the roof of
the house or the entablature of the acropolis, which negates
many of the advantages of one-shot generative modeling: it
degrades (at times severely) the input, losing the very reason
why creating variants of a carefully-designed input model
is highly sought after, i.e., the high-quality geometry of the
exemplar. So we compared their results to the unprocessed
input models, and did not re-train their neural network be-
cause we assumed that they made their best efforts to fit
ground-truth shapes. So one should be aware that the low
geometric quality scores we provide reflect both the degra-
dations of the pre-processing step and of their SDF-based
generative approach — again, to account for the real use of
these generative approaches.

10. Inference timings

In the main paper, the inference time for ShapeShifter and
Sin3DM is reported for generating 10 variants. Here, we
provide the inference timing for generating a single variant
(using a batch size of 1 instead of 10), as shown in Tab. 4.

Our method generates a single variant in less than 2 sec-
onds: approximately 0.5 seconds for the coarsest level, fol-
lowed by less than 1.5 seconds in total for the four finer
levels. In comparison, Sin3DM requires around 5 seconds,
while Sin3DGen takes over 3 minutes, excluding the time

Method Level 0 Level 1 Level 2 Level 3 Level 4

ShapeShifter 0.49 0.17 0.18 0.26 0.78
Sin3DM - 5.18 - - -

Table 4. Inference timing for generating a single variation. We
report the inference time at each level for generating a single vari-
ation and compare it with Sin3DM, which has a grid resolution
equivalent as our second level (level 1), where as in the main paper
we reported the inference time for 10 variations. DDIM sampling
is used for both methods.

needed for optimizing the input plenoxels and converting
them to a mesh. Notably, our method produces the coarsest
level in under half a second, which can be directly splatted
using [80] (see the video for live demonstrations). In con-
trast, Sin3DM[107] takes 5.18 seconds to process an equiv-
alent grid size (323).

(a) QEM averaging (b) standard averaging

Figure 12. QEM-averaging ablation. While QEM-averaging
(proposed in [65]) keeps sharp features (like corners or spikes) in
place which helps our generative approach to maintain these local
details, a usual averaging would move the “corner” points inwards,
increasing the risk of smoothing features out in generated variants.

11. QEM averaging
Finally, we demonstrate why our use of QEM averag-
ing during our fine-to-coarse analysis of the input mod-
els helps preserve sharp features of the ground truth. As
Fig.12 demonstrates, standard scale-by-scale averaging of
the points and normals from the finest sparse voxel grid all
the way to the coarsest grid leads to drifts of the salient fea-
tures: for instance, the bottom left corner of the house has
migrated inwards, which may create rounding of the corner.
Instead, applying the QEM averaging defined in the PoNQ
method [65] allows for the placement of the coarsest point
to stay on the corner, and of the intermediate points to re-
main right there as well — resulting in outputs which will
better preserve this geometric feature.



(a) Input Shape (b) Generated Shape (ours) (c) Generated Shape (ours)

Figure 13. Samples of our results I. This figure shows a variety of input models and some of the generated variants (both shown without
and with texture to facilitate visual inspection) ShapeShifter outputs.



(a) Input Shape (b) Generated Shape (ours) (c) Generated Shape (ours)

Figure 14. Samples of our results II. This figure shows input models that were not used in our submission, and some of the generated
variants (both shown without and with texture to facilitate visual inspection) ShapeShifter outputs. Note that the last two examples (vase
and pig) are an ablation test where we do not use colors among the per-voxel features in our approach.


	Introduction
	Related Work
	Method
	3D Representation
	Multiscale Diffusion
	Meshing

	Implementation Details
	Experiments
	Comparison.
	Control and editing.
	Open Surfaces
	Ablation studies
	Texture Augmentation

	Limitations and Future Work
	Conclusion
	Additional results and renderings
	Comparison to SSG
	Data-intensive vs. exemplar-based 3D generation

	Additional comments on metrics
	Inference timings
	QEM averaging

