
Opt: A Domain Specific Language for Non-linear Least
Squares Optimization in Graphics and Imaging
ZACHARY DEVITO and MICHAEL MARA
Stanford University
MICHAEL ZOLLHÖFER
Max-Planck-Institute for Informatics
GILBERT BERNSTEIN and JONATHAN RAGAN-KELLEY
Stanford University
CHRISTIAN THEOBALT
Max-Planck-Institute for Informatics
PAT HANRAHAN and MATTHEW FISHER
Stanford University
and
MATTHIAS NIESSNER
Stanford University

Many graphics and vision problems are naturally expressed as optimizations
with either linear or non-linear least squares objective functions over visual
data, such as images and meshes. The mathematical descriptions of these
functions are extremely concise, but their implementation in real code is
tedious, especially when optimized for real-time performance in interactive
applications.

We propose a new language, Opt1, in which a user simply writes energy
functions over image- or graph-structured unknowns, and a compiler au-
tomatically generates state-of-the-art GPU optimization kernels. The end
result is a system in which real-world energy functions in graphics and
vision applications are expressible in tens of lines of code. They compile
directly into highly-optimized GPU solver implementations with perfor-
mance competitive with the best published hand-tuned, application-specific
GPU solvers, and 1–2 orders of magnitude beyond a general-purpose auto-
generated solver.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Pic-
ture/Image Generation—Digitizing and Scanning

Additional Key Words and Phrases: Non-linear least squares, Domain-
specific Languages, Levenberg-Marquardt, Gauss-Newton

1. INTRODUCTION

Many problems in graphics and vision can be concisely for-
mulated as least squares optimizations on an image, mesh, or
graph-structured domains. For example, Poisson image editing,
shape-from-shading, and as-rigid-as-possible warping have all been
phrased as least squares optimizations, allowing them to be de-
scribed tersely as energy functions over pixels or meshes [Pérez
et al. 2003; Wu et al. 2014; Sorkine and Alexa 2007]. In many of
these applications, high performance is critical for interactive feed-
back, requiring efficient parallel or GPU-based solvers. However,
making efficient parallel solvers in general is an open problem. Solv-
ing the optimization using primitives from a generic linear algebra

1Opt is publicly available under http://optlang.org.

framework is inefficient because the explicitly-represented sparse
matrices in these libraries are often several times larger than the
problem data needed to construct them.

Recent work has achieved real-time performance for non-linear
least squares graphics problems by working directly on the problem
data using a variant of Gauss-Newton optimization with a precon-
ditioned conjugate gradient inner loop run on the GPU [Wu et al.
2014; Zollhöfer et al. 2014]. A similar approach also supports the
Levenberg-Marquardt algorithm. Key to the performance of these
methods are two ideas: operating in-place on problem data to avoid
ever forming the full matrices needed by the solve, and implic-
itly representing the connectivity of the sparse matrices using the
structure of the problem domain to increase locality. However, this
comes at enormous implementation cost: the terse and simple en-
ergy function must be manually transformed into a complex product
of partial derivatives and preconditioner terms (JTF and JTJp at
each point in the image or graph). The in-place formulation tightly
intertwines this application-specific logic derived from the energy
with the complex details of the solver. This approach delivers ex-
cellent performance, but requires hundreds of lines of highly-tuned
CUDA code that no longer resembles the energy function. The result
is error-prone and difficult to change, since the derived forms of
the energy terms are complex and subtle. It often requires months
of engineering effort, with simultaneous expertise in the applica-
tion domain, optimization methods, and high-performance GPU
programming.

We want to make this type of high performance optimization
accessible to a much wider community of graphics and vision pro-
grammers. We have created a new language, Opt, which lets a
programmer easily write sum-of-squares energy functions over pix-
els or graphs, such as the one show in Fig. 1 for as-rigid-as-possible
image warping. A compiler takes these energies and automatically
generates highly optimized in-place solvers using the parallel Gauss-
Newton or Levenberg-Marquardt method with a preconditioned
conjugate gradient inner loop.

Our system is able to do this due to four key ideas. First, we
provide a generalization of the parallel Gauss-Newton method pop-

ar
X

iv
:1

60
4.

06
52

5v
1

 [
cs

.G
R

]
 2

2
A

pr
 2

01
6

2 • DeVito et al.

Fast GPU Solver

!""#$%&'()*+$','-+./$01&2&34&'-+./$01&3&34
"56'.&7'.)'-%$)/.+'8'89&2:&'8;9&2:&'82&9:&'82&;9:':'<5
''''6','0!""#$%02&24';'!""#$%0.&744';'
'''''''''=5%>%$0()*+$024&'!6.*?5#02&24';'!6.*?5#0.&744
''''@>+.<','()<0A)B5C)<#0.&74&D>#E02&24&D>#E0.&744'''''
''''F)$6*G0-$+$/%0@>+.<&HI6J6&244
$)<
/','HI"J0!""#$%#02&24';'K5)#%6>.)%#02&244
F)$6*G0-$+$/%0L>+.<0K5)#%6>.)%#02&244&/&244

Optical FlowOpt Compiler

Mesh Deformation

Image Warping
Energy in Opt

Shape From Shading

Poisson Image Editing

Fig. 1. From a high-level description of an energy, Opt produces high-performance optimizers for many graphics problems.

ular in recent work, abstracted to work with arbitrary least squares
energies over images and graphs, and extend it to the more general
Levenberg-Marquardt method. Second, our language provides key
abstractions for representing energies at a high-level. Unknowns and
other data are arranged on 2-dimensional pixel grids, meshes, or
general graphs. Energies are defined over these domains and access
data through stencil patterns (fixed-size and shift-invariant local
windows). Third, our compiler exploits the regularity of stencils and
graphs to automatically generate efficient in-place solver routines.
Derivative terms required by these routines are created using hybrid
symbolic-automatic differentiation based on a simplified version
of the D� algorithm [Guenter 2007]. Finally, we use a specialized
code generator to emit efficient GPU code for the derivative terms
and use metaprogramming to combine the skeleton of our solver
methods with the generated terms without incurring any runtime
overhead.

Our method provides both far better performance and simpler
problem specification than traditional general-purpose solver li-
braries: performance is better than state-of-the-art, application-
specific, in-place GPU solvers, and it requires the programmer to
provide only the energy to be minimized, not the fully-formed deriva-
tive matrices of the system to be solved. In particular, we present
the following contributions:

—We propose a high-level programming model for defining energies
over image and graph domains.

—We introduce a generic framework for solving non-linear least
square problems on GPUs based on the efficient in-place methods
used in state-of-the-art application-specific solvers.

—We provide algorithms based on symbolic differentiation that
exploit the regularity of energies defined on images and graphs
to produce efficient in-place solver routines for our framework.
Our optimizations produce code competitive with hand-written
routines.

—We implement a variety of graphics problems, including mesh/im-
age deformations, smoothing, and shape-from-shading refine-
ment using Opt. Our implementations outperform state-of-the-art
application-specific solvers and are up to two orders of magnitude
faster than the CPU-based Ceres solver [Agarwal et al. 2010].

2. BACKGROUND

Non-linear Least Squares Optimization. A variety of opti-
mization methods are used in the graphics community to solve a
wide range of problems. Our approach focuses specifically on un-
constrained non-linear least squares optimizations, where a solver

minimizes an energy function that is expressed as a sum of squared
residual terms: E(x) =

∑R
r=1

[
fr(x)

]2 . The residuals fr(x) are
generic functions, making the problems potentially non-linear and
non-convex [Boyd and Vandenberghe 2004].

As a backend for optimization, we use the Gauss-Newton (GN)
and Levenberg-Marquardt (LM) methods. GN and LM are specifi-
cally tailored towards these kind of problems. Their second-order
optimization approach has been shown well-suited for the solution
of a large variety of problems, and has also been successfully applied
in the context of real-time optimization [Zollhöfer et al. 2014; Wu
et al. 2014]. If the non-linear energy is convex, then Gauss-Newton
will converge to the global minimum; otherwise it will converge
to some local minimum (the same applies to LM). Furthermore,
GN and LM internally solve a linear system. While these systems
can generally be solved with direct methods, our solvers need to
scale to large sizes and run on massively parallel GPUs; hence,
we implement GN/LM with a preconditioned conjugate gradient
(PCG) [Nocedal and Wright 2006] in the inner loop.

In the current implementation, we focus on GN and LM rather
than other variants such as L-BFGS [Nocedal and Wright 2006],
since they reflect the approaches used in state-of-the-art hand-written
GPU implementations, allowing us to compare our performance to
existing solvers directly. However, we believe our programming
model and program transformations can also be extended to various
other solver backends.

Application-specific GPU Solvers. Application-specific
Gauss-Newton solvers written for GPUs have been frequently used
in the last two years. Wu et al. [2014] use a blocked version of
GN to refine depth from RGB-D data using shape-from-shading.
Zollhoefer et al. [2014] minimize an as-rigid-as-possible en-
ergy [Sorkine and Alexa 2007] on a mesh as part of a framework
for real-time non-rigid reconstruction. Zollhöfer et al. [2015] use
a similar solver to enforce shading constraints on a volumetric
signed-distance field in order to refine over-smoothed geometry with
RGB data. Thies et al. [2015; 2016] transfer local facial expressions
between people in a video by optimizing photo-consistency
between the video and synthesized output. Dai et al. [2016] solve a
global bundling adjustment problem to achieve real-time rates for
globally-consistent 3D reconstruction.

These solvers achieve high-performance by working in-place
on the problem domain. That is, during the PCG step, they never
form the entire Jacobian J of the energy. Instead, they compute it
on demand, for instance by reading neighboring pixels to compute
the derivative of a regularization energy. Performance improves in

Opt: A Domain Specific Language for Non-linear Least Squares Optimization • 3

two ways: first, they do not explicitly store and load sparse matrix
connectivity; rather, this is implied by pixel relationships or meshes.
Second, reconstructing terms is often faster than storing them, since
the size of the problem data is smaller than the full matrix implied
by the energy.

However, these application-specific solvers are tedious to write
because they mix code that calculates complicated matrix products
with partial derivatives based on the energy.

High-level Solvers. Higher-level solvers such as CVX [Grant
and Boyd 2014; 2008], Ceres [Agarwal et al. 2010], and
OpenOF [Wefelscheid and Hellwich 2013] work directly from an
energy specified in a domain-specific language. CVX uses disci-
plined programming to ensure that modeled energy functions are
convex, then constructs a specialized solver for the given type of
convex problem. Ceres uses template meta-programming and oper-
ator overloading to solve non-linear least squares problems on the
CPU using backwards auto-differentiation. Unlike Opt, these two
solvers do not generate efficient GPU implementations and often
explicitly form sparse matrices. OpenOF does run on GPUs but it
also explicitly forms sparse matrices [Wefelscheid and Hellwich
2013]. In contrast, Opt’s approach of working in-place can be signif-
icantly faster than explicit matrices (Sec. 7.2). CPU libraries such as
Alglib [Bochkanov 1999] and g2o [Kummerle et al. 2011] abstract
the solver, requiring users to provide numeric routines for energy
evaluation and, optionally, gradient calculation. While they can in
principle work in-place, they cannot optimize the compilation of
energy terms and solver code, unlike application-specific solvers,
and require hand-written gradients to run fast. Similar to high-level
solvers, Opt only requires a description of the energy, but it uses
code transformations to generate an application-specific in-place
GPU solver automatically.

Differentiation Methods. In-place solvers need to efficiently
compute derivatives of the energy, since they are required in each
iteration of the solver loop. Numeric differentiation, which uses
finite differences to estimate derivatives, is numerically unreliable
and inefficient [Guenter 2007]. Instead, packages like Mathemat-
ica [Wolfram Research 2000] allow users to compute symbolic
derivatives using rewrite rules. Because they frequently represent
math as trees, they do not handle common sub-expressions well,
making them impractical for large expressions [Guenter 2007].
Automatic-differentiation is transformation on programs rather than
symbols [Griewank and Walther 2008; Grund 1982]. They replace
numbers in a program with “dual”-numbers that track a specific par-
tial derivative using the chain rule. However, because the transform
does not work on symbols, simplifications that result from the chain
rule are not always applied. We use a hybrid symbolic-automatic ap-
proach similar to D?, which represents math symbolically but stores
it as a directed acyclic graph (DAG) of operators to ensure that it can
scale to large problems [Guenter 2007]. A symbolic representation
of derivatives is important for Opt since solver routines use many
derivative terms which share common expressions that would not
be addressed by auto-differentiation methods.

3. PROGRAMMING MODEL

An overview of Opt’s architecture is given in Fig. 2. In this section,
we describe our programming model to construct expressions for the
energy of problems. Sec. 4 describes our generic solver architecture
on GPUs, which contains the building blocks for Gauss-Newton
and Levenberg-Marquardt. To work in-place, it requires application-
specific solver routines (evalF(),evalJTF(), applyJTJ()). Sec. 5 de-
scribes how we generate these routines from the energy.

§5

§6

§3 Opt
FrontendCost Expression

JTJ Gen JTF GenGeneric Solver
Framework

§4

JTJ IR JTF IR

evalF()

evalJTF()

applyJTJ()

Math IR
Optimizer &
Scheduler

Energy IR

Fig. 2. An overview of the architecture of Opt, labeled with the sections
where each part is described.

W,H = Dim("W",0), Dim("H",1)
X = Array2D("X",float,W,H,0)
A = Array2D("A",float,W,H,1)

w_fit,w_reg = .1,.9
Energy(w_fit*(X(0,0) - A(0,0)), --fitting

w_reg*(X(0,0) - X(1,0)), --regularization
w_reg*(X(0,0) - X(0,1)))

Fig. 3. The Laplacian smoothing energy in Opt.

We introduce our programming model using the example of Lapla-
cian smoothing of an image. A fitting term encourages a pixel X to
be close to its original value A:

Efit(i, j) = [X(i, j)−A(i, j)]2

A regularization term encourages neighboring pixels to be similar:

Ereg(i, j) =
∑

(l,m)∈N (i,j)

[X(i, j)−X(l,m)]2

where N (i, j) = {(i+ 1, j), (i, j + 1)}
The energy is a weighted sum of both terms:

E∆ =
∑

(i,j)∈I
wfitEfit(i, j) + wregEreg(i, j)

While this example is linear, Opt supports arbitrary non-linear en-
ergy expressions.

Language. Similar to shading languages such as OpenGL, Opt
programs are composed of a “shader” file that describes the energy,
and a set of C APIs for running the problem. Fig. 3 expresses the
Laplacian energy in Opt. Opt is embedded in the Lua programming
language and operator overloading is used to create a symbolic
representation of the energy. The first line specifies problem di-
mensions. Lines 2–3 use the function Array2D to declare two pixel
arrays that represent the unknown X and the starting image A. By
convention X is always the array of unknown variables being op-
timized. Array2D’s last argument is an index that binds the array to
data provided by the API.

Energy adds residual expressions to the problem’s energy. A key
part of Opt’s abstraction is that residuals are described at elements
of images or graphs and implicitly mapped over the entire domain.
The term w_fig*(X(0,0) - A(0,0)) defines an energy at each pixel
that is the difference between the images. We support arrays and

4 • DeVito et al.

void SolveLaplacian(int width, int height,
float * unknown, float * target) {

OptState * state = Opt_NewState();
// load the Opt DSL file containing the cost description
OptProblem * problem = Opt_ProblemDefine(m_optimizerState,

"laplacian.opt");
// describe the dimensions of the instance of the problem
uint32_t dims[] = { width, height };
uint32_t strides[] = { width * sizeof(float),

width * sizeof(float) };
uint32_t elemsizes[] = { sizeof(float), sizeof(float) };
OptPlan * m_plan = Opt_ProblemPlan(state, problem, dims,

elemsizes, strides);
// run the solver
void * array_data[] = { unknown_pixel_data, target_pixel_data };
Opt_ProblemSolve(state, plan, array_data,

NULL, NULL, NULL, NULL, NULL, NULL);
}

Fig. 4. Opt API calls that use the Laplacian smoothing program.

N = Dim("N",0)
X = Array1D("X", opt.float3,N,0)
A = Array1D("A", opt.float3,N,1)
G = Graph("Edges", 0,

"vertex0", N, 0,
"vertex1", N, 1)

w_fit,w_reg = .1,.9
Energy(w_fit*(X(0,0) - A(0,0)),

w_reg*(X(G.vertex0) - X(G.vertex1)))

Fig. 5. The Laplacian cost defined on the edges of a mesh instead of an
image.

energies that include both vector and scalar terms. The Energy func-
tion implicitly squares the terms and sums them over the domain
to enforce the linear least-squares model. Terms can also include a
statically-defined stencil of neighboring pixels. The regularization
term w_reg*(X(0,0) - X(1,0)) defines an energy that is the differ-
ence between a pixel and the pixel to its right. Our solver framework
exploits this regularity to produce efficient code.

API. Applications interact with Opt programs using a C API.
Fig. 4 shows an example using this API. To amortize the cost of
preparing a problem used multiple times, we separate the compila-
tion, memory allocation, and execution of a problem into different
API calls.

Mesh-based problems. Opt also includes primitives for defin-
ing energies on graphs to support meshes or other irregular structures.
Fig. 5 shows an example that smooths a mesh rather than an image.
The Graph function defines a set of hyper-edges that connect entries
in the unknown together. In this example, each edge connects two
entries vertex0 and vertex1, but in general our edges allow an arbi-
trary number of entries to represent elements like triangles. Energies
can be defined on these elements, as seen in the regularization term
(line 10), which defines an energy on the edge between two vertices.

Boundaries. Defining energies on arrays of pixels requires han-
dling boundaries. By default out-of-bounds values are clamped to
zero, but we also provide the ability to query whether a pixel is valid
(InBounds) and select a different expression if it is not (Select):

term = w_reg*(X(0,0) - X(1,0))
Energy(Select(InBounds(1,0),term,0))

Boundary expressions are optimized later in the compilation process
to ensure they do not cause excessive overhead.

Pre-computing shared expressions. Energy functions for
neighboring pixels can share expensive-to-compute expressions.
For instance, our shape-from-shading example (Sec. 7) uses an ex-
pensive lighting calculation that is shared by neighboring pixels.
We allow the user to turn these calculations into computed arrays,
which behave like arrays when used in energy functions, but are
defined as an expression of other arrays:

computed_lighting = ComputedArray(W,H,lighting_calculation(0,0))

Computed arrays can include computations using the unknown X ,
and are recalculated as necessary during the optimization. Similar
to scheduling annotations in Halide [Ragan-Kelley et al. 2012], they
allow the user to balance recompute with locality at a high-level.

4. NON-LINEAR LEAST SQUARES OPTIMIZATION
FRAMEWORK

Our optimization framework is a generalization of the design of
application-specific GPU solvers [Zollhöfer et al. 2014; Wu et al.
2014; Zollhöfer et al. 2015; Thies et al. 2015; Thies et al. 2016;
Innmann et al. 2016]. While our solver API is general and abstracts
away a specific optimization algorithm, our framework currently pro-
vides implementations for Gauss-Newton and Levenberg-Marquardt.
In the context of non-linear least square problems, we consider the
optimization objective E : RN → R, which is a sum of squares in
the following canonical form:

E(x) =

R∑

r=1

[
fr(x)

]2

The R scalar residuals fr can be general linear or non-linear func-
tions of the N unknowns x. The objective takes the traditional form
used in the Gauss-Newton method:

E(x) =
∣∣∣∣F(x)

∣∣∣∣2
2
, F(x) = [f1(x), . . . , fR(x)]

T

The R-dimensional vector field F : RN → RR stacks all scalar
residuals fr . The minimizer x∗ of E is given as the solution of the
following optimization problem:

x∗ = argmin
x

E(x) = argmin
x

∥∥F(x)
∥∥2

2

It is solved based on a fixed-point iteration that incrementally com-
putes a sequence of better solutions {xk}Kk=1 given an initial es-
timate x0. Here, K is the number of iterations; i.e., x∗ ≈ xK . In
every iteration step, a linear least squares problem is solved to find
the best linear parameter update. The vector field F is first linearized
using a first-order Taylor expansion around the last solution xk:

F(xk + δk) ≈ F(xk) + J(xk)δk

Here, J is the Jacobian matrix and contains the first-order partial
derivatives of F. By applying this approximation, the original non-
linear least squares problem is reduced to a quadratic problem:

δ∗k = argmin
δk

∣∣∣∣F(xk) + J(xk)δk
∣∣∣∣2

2

After the optimal update δ∗k has been computed, a new solution
xk+1 = xk+δk can be easily obtained. Since this problem is highly
over-constrained and quadratic, the least squares minimizer is the
solution of a linear system of equations. This system is obtained
by setting the partial derivatives to zero, which results in the well
known normal equations:

2 · J(xk)TJ(xk)δ∗k = −2 · J(xk)TF(xk)

Opt: A Domain Specific Language for Non-linear Least Squares Optimization • 5

This process is iterated for K steps to obtain an approximation to
the optimal solution x∗ ≈ xK .

The GN approach can be interpreted as a variant of Newton’s
method that only requires first-order derivatives and is computation-
ally less heavy. To this end, it uses a first-order Taylor approximation
2(JTJ) instead of the real second-order Hessian H.

LM additionally introduces a steering parameter λ to switch
between LM and Steepest Descent (SD). To this end, the normal
equations are augmented with an additional diagonal term. This is
similar to Tikhonov regularization and leads to:

2(J(xk)
TJ(xk)+λdiag (J(xk)

TJ(xk)))δ
∗
k = −2J(xk)TF(xk)

4.1 Parallelizing the Optimization with PCG

The core of the GN/LM methods is the iterative solution of linear
least squares problems for the computation of the optimal linear
updates δ∗k. This boils down to the solution of a system of linear
equations in each step, i.e., the normal equations. While it is possible
to use direct solution strategies for linear systems, they are inherently
sequential, while our goal is a fast parallel solution on a many-core
GPU architecture with conceptually several thousand independent
threads of execution. Consequently, we use a parallel preconditioned
conjugate gradient (PCG) solver [Weber et al. 2013; Zollhöfer et al.
2014], which is fully parallelizable on modern graphics cards.

The PCG algorithm and our strategy to distribute the computa-
tions across GPU kernels is visualized in Fig. 6. We run a PCGInit
kernel (one time initialization) and three PCGStep kernels (inner
PCG loop). Before the PCG solve commences, we initialize the
unknowns δ0 to zero. For preconditioning, we employ the Jacobi
preconditioner, which scales the residuals with the inverse diag-
onal of JTJ. Jacobi preconditioning is especially efficient if the
system matrix is diagonally dominant, which is true for many prob-
lems. When the matrix is not diagonally dominant, we fall back to a
standard conjugate gradient descent. We also use single-precision
floating point numbers throughout, which matches the approach of
the recent application-specific solvers. We believe this strategy is a
good compromise between computational effort and efficiency.

Stencil-based Array Access. Our techniques for parallelizing
work are different for array and graph residuals. For arrays, we
group the computation required for each element in the unknown
domain onto one GPU thread. For a matrix product such as−2JTF,
each row of the output is generated by the thread associated with the
unknown. If the unknown is a vector (e.g., RGB pixel), all channels
are handled by one thread since these values will frequently share
sub-expressions.

The computations in a GPU thread work in-place. For instance, if
they conceptually require a particular partial derivative from matrix
J, they will compute it from the original problem state which in-
cludes the unknowns and any supplementary arrays. Matrices such
as J, which are conceptually larger than the problem state, are never
written to memory, which minimizes memory accesses. Section 5
describes how we automatically generate these computations from
our stencil- and graph-based energy specification.

Graph-based Array Access. For graph-based domains, such
as 3D meshes, the connectivity is explicitly encoded in a user-
provided data structure. Users specify the mapping from graph
edges to vertices. Residuals are defined on graph (hyper-) edges and
access unknowns on vertices. To make it easy for the user to change
the graph over time, we do not require a reverse mapping from
unknowns to residuals for graphs. Kernels that use the residuals
(PCGInit and PCGStep1) assign one edge in the graph to one GPU

PCGInit Kernel

PCGStep3 Kernel

PCGStep1 Kernel

PCGStep2 Kernel
↵k = ↵nk

/↵dk

�k+1 = �k + ↵kpk

rk+1 = rk � ↵k(gk)

zk+1 = M�1rk+1

�nk
= reduce(zT

k+1rk+1)

�k = �nk
/↵nk

pk+1 = zk+1 + �kpk

↵nk+1
= �k

for	i	=	0	to	num_linear_iterations:
			

evalJTF()r0 = �2JT F

M�1 = 1/Diag(2JT J)

p0 = M�1r0

↵n0
= reduce(rT

0 p0)

�0 = 0

applyJTJ()gk = 2JT Jpk

↵dk
= reduce(pT

k (gk))

F Vector of original energy terms

J Jacobian matrix of F

rk Residual in the k-th iteration

M Pre-conditioner (remains constant)

pk Decent step in the k-the iteration

↵k = ↵nk
/↵dk

Step size in k-th iteration

�k Vector of PCG unknowns in iteration k

Application-specific
solver routines

Fig. 6. Generic GPU architecture for Gauss-Newton and Levenberg-
Marquardt solvers whose linearized iteration steps are solved in parallel
using the preconditioned conjugate gradient (PCG) method.

thread. Since the output vectors have the same dimension as the
unknowns, we have to scatter the terms in the residual evaluations
into these values. All threads involving partial sums for a given
variable then scatter into the corresponding parts of variables using
a floating-point atomic addition.

4.2 Modularizing the Solver

A key contribution of our approach is the modularization of
the application-specific components of GPU Gauss-Newton or
Levenberg-Marquardt solvers into compartmentalized solver rou-
tines. The first routine, evalF(), simply generates the application
specific energy for each residual. It only runs outside of the main
loop to report progress.

evalJTF. The second routine appears in the PCGInit kernel and
is shown in red in Fig. 6. Here, the initial descent direction p0 is
computed using the application-specific evalJTF() routine, which
is generated by our compiler. It computes an in-place version of
−2JTF. evalJTF() is also responsible for computing the precondi-
tioner M, which is simply the dot product of a row of JT with itself.
For arrays, a thread computes the rows of an output associated with
one element of the unknown. For graphs, each thread only computes
the parts of the dot product between JT and F which belong to the
handled residual.

applyJTJ. The third routine, applyJTJ(), is part of the inner
PCG iteration. It computes the multiplication of 2JTJ with the
current descent direction pk, and incorporates the steering factor
λ when using Levenberg-Marquardt. Handling arrays and graphs
is similar to evalJTF(). It tends to use more values since it needs
to compute entries from both J and JT . For many problems this
routine is the most expensive step, so it has to be optimized well.

5. GENERATING SOLVER ROUTINES

A key idea of Opt is that we can exploit the regularity of stencil- and
graph-based energies to automatically generate application-specific
solver routines. We represent the mathematical form of the energy
as a DAG of operators, or our intermediate representation (IR). We

6 • DeVito et al.

Load(X,0,0) Load(X,1,0) Load(X,0,1)

Apply(-) Apply(-)w_fit w_reg

Apply(*) Apply(*)

residuals	=	{	fit	,	h_reg	,	v_reg	}	

Apply(*)

Load(A,0,0)

Apply(-)

Fig. 7. The Laplacian example represented in our IR.

-- generates the derivative of expression with respect to variable
function derivative(expression, variable)

if a cached version of this partial derivative exists then
return the cached version

elseif expression == variable then
return 1

end
result = 0
for i = 0, the number of arguments used by expression do
result += derivative(argument[i],variable)*partial[i]

end
cache and return result

end

Fig. 8. Pseudocode of the OnePass algorithm for generating derivatives.
partial[i] is the partial derivative of the particular operator (e.g., *) with
respect to the argument i, which is defined for each operator.

transform the IR to create new IR expressions needed for evalJTF()
and applyJTJ(). This process requires partial derivatives of energy.
We then optimize this IR and generate code that calculates it.

5.1 Intermediate Representation

Since the Opt language is embedded in Lua, we generate the IR
by running the Lua program which uses overloaded operators to
build the graph. Fig. 7 shows the IR that results from the Laplacian
example. Roots of the IR are residuals that we want to compute.
Leaves are constants (e.g., w_fit), input data (e.g the known image
A(0,0)), and the the unknown image (e.g., X(0,0)). We de-duplicate
the graph as it is built, ensuring common-subexpressions are elimi-
nated. We scalarize vectors from our frontend in the IR to improve
the simplification of expressions that become zeros during differen-
tiation.

5.2 Differentiating IR

Since we do not store the Jacobian J matrix in memory, we need
to generate residuals on the fly. The approach we use for differen-
tiation is similar to Guenter’s D? [Guenter 2007]. It symbolically
generates new IR that represents a partial derivative of an existing
IR node. Unlike traditional symbolic differentiation (e.g., Mathe-
matica), differentiation is done on a graph where terms can share
common sub-expressions. In our implementation we use OnePass,
a simplification of D? that can achieve good results by doing the
symbolic equivalent of forward auto-differentiation [Guenter et al.
2011]. Pseudocode for the algorithm is given in Fig. 8. It works
by memoizing a result for each partial derivative and generates a
new derivative of an expression by propagating derivatives from its
arguments via the chain rule.

5.3 Generating IR for Matrix Products

The IR for evalF() is simply the input energy IR. We generate
IR for evalJTF() and applyJTJ() as transformations of this input
IR. These terms are conceptually derived from matrix-matrix or

function create_jtj(residual_templates,X,P)
P_hat = 0
residuals = residuals_including_x00(residual_templates)
foreach residual do
dr_dx00 = differentiate(residual,X(0,0))
foreach unknown u used by residual do
dr_du = differentiate(residual,u)
P_hat += dr_dx00*dr_dx*P(u.offset_i,u.offset_j)

end
end
return 2*P_hat

end
function residuals_including_x00(residual_templates)
residuals = {}
foreach residual_template do
foreach unknown x appearing in residual_template do
-- shift the template such that x is centered (i.e. it is x00)
R = shift_exp(residual_template,-x.offset_i,-x.offset_j)
table.insert(residuals,R)

end
end
return residuals

end
function shift_exp(exp, shift_i, shift_j)

replace each access of any image at (x,y) in exp
with an access at (x + shift_i,j + shift_j)

end

Fig. 10. Pseudocode that generates JTJ from residual templates.

matrix-vector multiplications of the Jacobian. Since we compute
these values in-place, we must generate the IR that will calculate
the output given our specific problem. Each term has two versions:
one for handling stencil-based and one for graph-based residuals.
Here, we describe the approach for the Gauss-Newton solver. LM
is a straightforward extension that incorporates the λ parameter for
terms on the diagonal in applyJTJ().

5.3.1 Stencil Residuals. Our solver calls applyJTJ() to calcu-
late a single entry of g, where g = 2JTJp per thread. We need
to determine which values from J are required and create IR that
calculates them. The non-zero entries in J are determined by the
stencil of a particular problem. Fig. 9 illustrates the process of dis-
covering the non-zeros. In the Laplacian case, the partials used in
these expressions are actually constants because it is a linear sys-
tem. However, Opt supports the generic non-linear case, where the
partials will be functions of the unknown.

The pseudocode to generate JTJ for stencils is shown in Fig. 10.
It first finds the residuals that use unknown x0,0 because they cor-
respond to the non-zeros of JT . Some of these residuals are not
actually defined at pixel (0, 0), but use x0,0 from neighboring pixels.
To find them, we exploit the fact that stencils are invertible. For each
residual template in the energy, we examine each place it uses an un-
known xi,j . We then shift that residual on the pixel grid, taking each
place it loads a stencil value and changing its offset by (−i,−j),
which generates a residual in the grid that uses x0,0. We find all
the residuals using x0,0 by repeating the process for each use of
an unknown in the template. While we only allow constant stencil
offsets, in principle this approach will work for any neighborhood
function which is invertible.

For each discovered residual, we need other unknowns it uses
which are found by examining the IR symbolically. We then gener-
ate the expressions for the part of the matrix-vector products that
calculate g0,0. In this code, we symbolically compute the partial
derivatives that are the entries of J.

Another routine create_jtf() is used to generate the expression
r = −2JTF for the evalJTF() routine. Each row of JT can be
obtained using the same approach previously described. The partials

Opt: A Domain Specific Language for Non-linear Least Squares Optimization • 7

(a) Example residual terms (b) Actual residuals mapped over
the entire image.

(d) Representation of non-zero entries in the expression that are required to calculate g = 2JTJp g0,0

(c) Residuals using a specific unknown x0,0

fit:	w_fit*(X(0,0)	-	A(0,0))	
h_reg:	w_reg*(X(0,0)	-	X(1,0))	
	v_reg:	w_reg*(X(0,0)	-	X(0,1))	

Residual template

x0,1

x1,0

x0,-1

x-1,0
h reg-1,0 h reg0,0

v reg0,-1

v reg0,0

fit0,0

relative index
to center pixel

h reg0,0

v reg0,0

fit0,0

g JT J p

dh reg-1,0

dx0,0

=

un
kn

ow
ns

 →

un
kn

ow
ns

 →

unknowns →

un
kn

ow
ns

 →

residuals →

re
sid

ua
ls
→

dh reg0,0

dx0,0

dv reg0,0

dx0,0

dv reg0,-1

dx0,0

dfit0,0

dx0,0

dh reg-1,0

dx0,0

dh reg0,0

dx0,0

dv reg0,0

dx0,0

dv reg0,-1

dx0,0

dfit0,0

dx0,0

dh reg0,0

dx1,0

dh reg-1,0

dx-1,0

dv reg0,0

dx0,1

dv reg0,-1

dx0,-1

←required row→

x0,0

x0,0

x1,0

x-1,0

x0,1

x0,0 x1,0 x-1,0 x0,1h reg-1,0h reg0,0 v reg0,-1v reg0,0fit0,0

g0,0

Row corresponding to has non-zeros
for each residual containing

g0,0
x0,0

Rows are required for each
non-zero column required in

h reg-1,0

h reg0,0

v reg0,-1

v reg0,0

fit0,0

JT

JT

non-zero columns where each
individual residual has support

(e) Matrix free expression for g0,0

p0,0

p1,0

p-1,0

p0,1

p0,-1 x0,-1

x0,-1

g0,0 = 2
dfit0,0

dx0,0

dfit0,0

dx0,0
p0,0 + 2

dh reg0,0

dx0,0
(
dh reg0,0

dx0,0
p0,0 +

dh reg0,0

dx1,0
p1,0) + ...

Jfrom from

= 2w fit2p0,0 + 2w reg(w regp0,0 + �w regp1,0) + ...

2

Fig. 9. Generating an expression for applyJTJ() at a high-level. (a) The input to this analysis is a list of individual residuals defined in the IR (fit, h_reg,
v_reg) that form a template. (b) The residual template is repeated over the image to generate the actual energy function. (c) We look at a specific unknown x0,0

and show the residuals that refer to it. Unknowns and residuals are named relative to this pixel (e.g., h_reg-1,0 is the horizontal residual from the pixel to the
left). (d) A visualization of g = 2JTJp, showing the components needed to generate g0,0. The row of JT corresponding to unknown x0,0 is needed. It has
one non-zero for each residual in (c). This row will be multiplied against Jp. The only rows of Jp needed correspond to the residuals appearing in JT since
other rows will be multiplied by 0. A row of Jp is calculated by multiplying non-zero entries in a row of J, which occur each time a residual uses an unknown,
against the corresponding row of p. (e) Finally, Opt forms a matrix-free in-place version of the expression for g0,0 implied by the matrix multiplications,
calculating each partial using one-pass differentiation.

in this row are then multiplied directly with their corresponding
residual term in F.

5.3.2 Graph Residuals. For graphs, residuals are defined on
hyper-edges rather than on the domain of the unknown and our
solver routines are mapped over residuals directly so we do not
need an inverse mapping from unknown to residual. Instead one
thread computes the part of an output that relates to the residual.
Pseudocode to generate applyJTJ() for graphs is given in Fig. 11.
At each residual, it generates one row of Jp, and then performs the
part of the multiplication for the rows of g that include partials for
that residual. The output of this routine is a list of IR nodes that are
atomically added into entries of g.

6. OPTIMIZING GENERATED SOLVER ROUTINES

We need to translate IR for evalF(), evalJTF(), and applyJTJ()
into efficient GPU functions. We simplify IR based on polynomial

function create_jtj_graph(graph_residuals)
foreach graph_residual do

Jp = 0
-- handle Jp multiply against this residual
foreach unknown u appearing in graph_residual do
dr_du = differentiate(graph_residual,u)
Jp += dr_du*P(u.index)

end
-- handle partial sums for Jt*Jp
foreach unknown u appearing in graph_residual do
dr_du = differentiate(graph_residual,u)
insert atomic scatter:

P_hat(u.index) += 2*dr_du*Jp
end

end
return set of atomic scatters

end

Fig. 11. Pseudocode for generating JTJ for graph residual terms.

8 • DeVito et al.

simplification rules, optimize the handling of boundary condition
statements, and schedule the IR which generates GPU code.

Polynomial Simplification. Taking the derivative of IR tends
to introduce more complicated IR. In particular, the application of
the multi-variable chain rules introduces statements of the form
d1 ∗ p1 + d2 ∗ p2 + ... for each argument of an operator. Often some
partials are zero, and terms in the sum can be grouped together. We
take the approach of other libraries like SymPy [SymPy Development
Team 2014] and represent primitive math operations as polynomials.
In particular, additions and multiplications are represented as n-arity
operators rather than binary, and we include a pow operator that
raises an expression to a constant ac. Where possible, primitives
are represented in terms of these operators. For instance a/b is
represented as ab−1 and a− b as a+−1 ∗ b.

Polynomial representation makes it easier to find opportunities
for optimization such as constant propagation when the optimization
first requires re-associating, commuting, or factoring expressions.
For instance, when we add polynomials together, we factor out
common terms when we can fold their constants together (e.g., the
addition (2 ∗ a+ 4 ∗ b) + 3 ∗ a simplifies to 5 ∗ a+ 4 ∗ b).

Importantly, the polynomial representation also gives our sched-
uler freedom to reorder long sums and products to achieve other
goals, such as grouping terms with the same boundary statement
into a single if-statement or minimizing register pressure.

During construction we optimize non-polynomial terms using
constant propagation and applying algebraic identities. Before low-
ering into code, we also apply a factoring pass that applies a greedy
multi-variate version of Horner’s scheme [Ceberio and Kreinovich
2004] to pull common factors out of large sums.

Bounds Optimization. Boundary conditions introduce another
source of inefficiency. Opt uses InBounds and Select to create bound-
ary conditions and masks. Translating these expressions to code
can introduce inefficiency in two ways. First, it is possible for the
same bound to be checked multiple times. This frequently occurs
in applyJTJ() when two partials are multiplied together since both
partials often contain the same bound. Redundant checks also occur
when reading from arrays since Opt must always check array bounds
to avoid crashes. This check is often redundant with a Select already
in the energy. Secondly, without optimization, Select statements
need to execute both the true and false expressions. For many cases,
this means that large parts of the IR, including expensive reads
from global memory, do not actually need to be calculated but are
performed anyway.

The common approach of generating two versions of code, one
for the boundary region and a bounds-free one for the interior, is
less effective on GPUs because they group threads into wide vector
lines of 32 elements, which increases the size of the boundary by
the vector width. For smaller sized problems, large portions of the
image fall in the boundary region.

Instead, we address these two sources of inefficiency directly. We
address the redundant bounds checks by augmenting our polyno-
mial simplification routines to handle bounds as well. We repre-
sent bounds internally as polynomials containing boolean values
b that are either 0 or 1. A Select(b,e_0,e_1) is then represented
as b*e_0 + ˜b*e_1. We simplify booleans raised to a power be to b.
This representation allows polynomial simplification rules to remove
redundant bounds through factoring. We favor booleans over other
values during factoring to ensure this simplification occurs.

We address excessive computation and memory use due to bounds
by determining when values in the IR need to be calculated. We
associate a boolean condition with each IR node that conservatively

bounds when it is used. These conditions are generated at Select
statements and propagated to their arguments. To improve the ef-
fectiveness of this approach, we split large sums into individual
reductions that update a summation variable. Each reduction can
then be assigned a different condition. When we actually schedule
code, we will only execute the code if its condition is true.

Scheduling and Code Generation. We translate optimized IR
into actual GPU code by scheduling the order in which the code
executes the IR. Our scheduler uses a greedy approach that is aware
of our boundary optimizations. It starts with the instructions that
generate the output values and schedules backwards, maintaining
a list of nodes that are ready to be scheduled according to their
dependencies. It iteratively chooses an instruction from the ready
list that has the lowest cost, schedules it, and updates the list. Our
cost function first prioritizes scheduling an instruction with the same
condition as the previous instruction, grouping expressions that
have the same bounds together into a single if-statement. It then
prioritizes choices that greedily minimize the set of live variables at
that point in the program, which can provide a small benefit for large
expressions. We also prioritize the instruction that has been ready
the longest, which also helps reduce the required registers [Tiemann
1989].

We translate the scheduled instructions into GPU code using
Terra [DeVito et al. 2013]. Terra is a multi-stage programming lan-
guage with meta-programming features that allow it to generate
high-performance code dynamically. We use its GPU backend to
produce CUDA code for the solver routines. To improve the perfor-
mance, we automatically generate code to bind and load input data
from GPU textures. In addition to having better caching behavior,
textures also can perform the bounds check for loads automatically.
Finally, the solver routines are inlined into the generic solver frame-
work presented earlier. Because this code is compiled together, there
is no overhead when invoking solver routines.

7. EVALUATION

To evaluate Opt, we implemented several optimization problems
from the graphics literature in the language which are summarized
in Figure 12. We evaluate overall performance by comparing Opt to
four state-of-the-art application-specific in-place solvers optimized
for GPUs and to the high-level Ceres solver [Agarwal et al. 2010].
We evaluate the effectiveness of our in-place solver framework by
comparing to the performance achievable by general libraries such
as cuSPARSE [NVIDIA 2012]. We also show the efficiency of our
automatically generated solver routines by comparing them to hand-
optimized equivalents. Finally, we implement three other problems
which demonstrate the generality and expressiveness of Opt. The
Opt code used for the energies of each example is provided as
supplementary material.

7.1 Comparison to Existing Approaches

We compare Opt to four application-specific GPU solvers written
and hand-optimized in CUDA: As-rigid-as possible (ARAP) Im-
age Warping, ARAP Mesh Deformation, Shape from Shading, and
Poisson Image Editing. We chose these applications, since they
are commonly used in graphics research and optimized GPU code
previously existed or could be easily adapted for the problem. We
compare their performance to the performance of our automatically
generated solver. In these comparisons, we select the Gauss-Newton
backend of Opt to match the algorithmic design in the hand-written
reference implementations.

Opt: A Domain Specific Language for Non-linear Least Squares Optimization • 9

Shape From Shading 192k unknowns, 1 per pixel, 9-point stencil
1.84 MP/s, 1.4x faster than CUDA, 442x Ceres

Poisson Image Editing 1.3M unknowns, 4 unknowns per pixel, 5-point stencil
22.4 MP/s 1.2x faster than CUDA, 40.3x Eigen

ARAP Image Warping 539k unknowns, 3 unknowns per pixel, 5-point stencil
0.928 MP/s, 1.1x faster than CUDA, 101x Ceres ARAP Mesh Deformation 120k unknowns, 6 per vertex,vertex and edge energies

18.3 kverts/s, 1.5x faster than CUDA, 20.0x Ceres

Embedded Deformation 154k unknowns, 12 per vertex, vertex and edge energies
147kverts/sCotangent Mesh Smoothing 132k unknowns, 3 per vertex,

triangle and vertex energies, 236 kverts/s

Optical Flow 614k unknowns, 2 per pixel, 5-point stencil
4.70 MP/s

Fig. 12. Example problems implemented in Opt.

Using the same examples, we also compare against Ceres, a popu-
lar state-of-the-art CPU optimizer for non-linear least squares [Agar-
wal et al. 2010], because it has a similar programming model and
solver approach. However, they are not entirely identical: Ceres uses
double-precision and only supports Levenberg-Marquardt. We con-
figured Opt and Ceres so that they finish with results of comparable
image quality and made a best-faith effort to tweak the parameters
of Ceres so it runs as fast as possible with acceptable results. To get
the fastest results for the internal linear system, we configure Ceres
to use its parallel PCG solver for Image Warping and Shape From
Shading, and Cholesky factorization for Mesh Deformation.

Fig. 13 summarizes our performance. Opt performs better than
the CUDA code in all cases, and 1–2 orders of magnitude faster than
the Ceres code. Results are reported as throughput of an entire solve

step using a GeForce TITAN Black GPU and, for CPU results, an
Intel i7-4820K, a CPU released within the same year.

7.1.1 ARAP Image Warping. As-rigid-as-possible image warp-
ing is used to interactively edit 2D shapes in a way that minimizes a
warping energy. It penalizes deviations from a rigid rotation, while
warping to a set of user-specified constraints [Dvoroznak 2014].
It co-optimizes the new pixel coordinates along with the per-pixel
rotation.

The CUDA implementation was adapted from the hand-written
solver created by Zollhöfer et al. [2014] for real-time non-rigid
reconstruction. It requires around 480 lines of code to implement.
Of that, 200 were devoted to the Gauss-Newton solver, and 280 to
expressions for the solver routines. In this comparison, we jointly

10 • DeVito et al.

solve for rotations and translations, following the hand-written ref-
erence implementation. Note that alternating between rotation and
translation in a global-local flip-flop solve is also feasible in Opt;
however, overall convergence is typically worse than the joint solve
[Zollhöfer et al. 2014].

In comparison, the solver generated by Opt runs about 10% faster
(likely due to better bounds handling), and only requires about 20
lines of code to describe. Furthermore, the effort required to get
correct results is significantly less. Debugging the hand-written in-
place solver routine in the CUDA solver originally took weeks due
to the complicated cross terms that create dependencies between
offsets of one pixel and the angles at a neighbor.

Ceres code is more comparable in size to Opt, at around 100
lines, but it runs 100 times slower. One of the reasons is that Opt
represents the connectivity of the problem implicitly through stencils
relations, while Ceres requires the user to specify energies using a
graph formulation.

7.1.2 Mesh Deformation. As-rigid-as possible mesh deforma-
tion [Sorkine and Alexa 2007] is a variant of the previous example
that shows Opt’s ability to run on mesh-based problems using its
graph abstraction. It defines a warping energy on the edges of the
mesh rather than neighboring pixels and uses 3D coordinate frames.

The CUDA solver was also adapted from Zollhöfer et al. [2014].
It is similar in size to the previous example, with around 200 lines
devoted to expressing the energy, JTF, and JTJ.

The Opt solver is expressed in only around 25 lines, but runs 40%
faster due to our reduction-based approach for calculating residuals.
In the original solver, the authors only tried the simpler approach of
using one pass to compute t = (Jp) and a second for JT t. Opt’s
high-level model allowed us to experiment with different approaches
more easily during development.

Finally, Opt performs around 20 times faster than a Ceres ex-
ample implemented in around 100 lines of code. The performance
difference is less dramatic because in this case Opt needs to load the
connectivity of the problem from the graph data structure.

7.1.3 Shape From Shading. In Shape From Shading we use an
optimizer to refine depth data captured by RGB-D scanners [Wu
et al. 2014]. It uses a high-resolution color image and an estimate
of the lighting based on spherical harmonics to refine the lower
resolution depth information.

Shape from Shading is our most complex problem. It is adapted
from Wu et al.’s work [2014]. The original implementation was a
patch solver variation of a Gauss Newton solver that used shared
memory at the expense of per-iteration convergence. For a more di-
rect comparison, we ported the original code into a non-patch solver,
which actually improved the convergence time. The CUDA code
includes 445 lines to express the energy, JTJ, and JTF calculations.
It took several months for a group of researchers to implement and
optimize.

In comparison, the Opt solver code is around 100 lines and runs
50% faster. Some of this improvement is due to using texture objects
to represent the images, which is an optimization that the original
authors did not have time to do.

Shape from Shading also benefits from using pre-computed arrays.
We instruct Opt to pre-compute a lighting term and a boundary
term that are expensive to calculate and used by the energy of
multiple pixels. Without this annotation, Opt runs nearly 10 times
slower. We expect that other complicated problems will have similar
behavior and pre-computed arrays will give the user an easy way to
experiment with how the computation is scheduled.

0! 0.5! 1! 1.5! 2!

Ceres (CPU)
Hand-written

CUDA
Opt

Shape From Shading
.00418 MP/s

Throughput (mega-pixels/s)

Throughput (kilo-vertices/s)

Throughput (mega-pixels/s)
0! 0.2! 0.4! 0.6! 0.8! 1!

Throughput (kilo-vertices/s)
0! 5! 10! 15! 20!

ARAP Image Warping

ARAP Mesh Deformation

.00921MP/s

.927 KV/s

Ceres (CPU)
Hand-written

CUDA
Opt

Ceres (CPU)
Hand-written

CUDA
Opt

0! 5! 10! 15! 20! 25!

Poisson Image Editing
.555 MP/sEigen (CPU)

Hand-written
CUDA

Opt

Throughput (mega-pixels/s)

Fig. 13. The solvers generated by Opt perform better than application-
specific GPU solvers, despite requiring significantly less effort to implement.
In some cases, they perform two orders of magnitude better than Ceres
implementations which take comparable effort to implement.

Compared to Ceres (340 lines), Opt runs over 400 times faster.
Opt can take advantage of the implicit connectivity of an image-
based problem, and can pre-compute expensive lighting terms,
which Ceres does not do.

7.1.4 Poisson Image Editing. Poisson Image Editing is used
to splice a source image into a target image without introducing
seams [Pérez et al. 2003]. Its energy function preserves the gradients
of the source image while matching the boundary to gradients in
the target image. The energy in this problem is actually linear. In
addition to non-linear energies, the Gauss-Newton method handles
linear problems in a unified way that does not require algorithmic
changes. In this case, because all residuals are linear functions of
the unknowns, J is a constant matrix independent of x. All second
order derivatives are zero, which implies that the Gauss-Newton
approximation is exact and the optimum can be reached after a
single non-linear iteration.

To compare against a CUDA version, we adapted the Image
Warping CUDA example to use this Poisson Image Editing term,
which uses about 67 lines for the energy, JTF, and JTJ. Opt performs
about 20% faster and uses only about 15 lines of code. Since this
problem is linear, we also compare against Eigen [Guennebaud
et al. 2010], a high-performance linear-algebra library for CPUs
using Cholesky with pre-ordering, since it was fastest. The entire
Opt solve was over 40 times faster than Eigen’s matrix solve (not
including its matrix setup time), due to Opt’s ability to implicitly
represent the connectivity of the matrix.

7.2 Evaluation of the Solver Approach

A key insight of previous hand-written GPU methods adapted by our
framework is that it is more efficient to compute J in-place rather
than store J or JTJ as a sparse matrix. This approach can be faster

Opt: A Domain Specific Language for Non-linear Least Squares Optimization • 11

Throughput (GB/s)

0! 50! 100! 150! 200!

cuSPARSE (explicit matrix)

Opt (in-place matrix)

Fig. 14. Performance of the matrix product (JTJ)p for Image Warping.
Opt’s in-place method performs several times faster than the multiplication
of an explicit matrix used by cuSPARSE. This does not include the time
that cuSPARSE requires to compute the matrix values and store them, so
cuSPARSE will be much slower in practice.

for two reasons. First, the locations of the non-zero entries in the
matrix are implicitly represented by the problem domain (either an
image or a graph), and are not loaded explicitly. Secondly, entries
in the matrix can often be recomputed using less total memory
bandwidth than loading the full J matrix. In the extreme case, such
as Poisson Image Editing, the problem is linear and the weights can
be folded directly into the code.

We compare this architecture to the traditional library-based ap-
proach in Fig. 14 by porting the (JTJ)p multiplication of the Image
Warping example to cuSPARSE, a high-performance GPU sparse
matrix library [NVIDIA 2012]. Opt is nearly 3 times faster than
cuSPARSE. Furthermore, cuSPARSE will perform worse in practice
because this measurement does not include the actual calculation
of the matrix nor the code to store it. Opt performs these calcu-
lations implicitly inside the multiplication. Note that an alternate
cuSPARSE approach, which multiplies in two passes JT (Jp), is
slower at 29.4GB/s.

Opt is faster because it (1) represents the connectivity implicitly
and (2) calculates matrix entries in-place. We can separate these
effects by simulating implicit connectivity without in-place matrices
using Opt’s pre-computed arrays. Marking the residual values as pre-
computed arrays causes their values and derivatives (that is, J) to be
stored in memory. In this configuration for Image Warping, Opt runs
at 92GB/s (slower than regular Opt, but faster than cuSPARSE). For
Image Warping, loading the matrix from memory is slower because
JTJ has 12M non-zeros (J has 10M), while the entire problem can be
represented using 2.3M floats. We expect users to use pre-computed
arrays to experiment with the balance between re-compute and
memory usage.

7.3 Evaluation of generated solver routines

Our approach relies on the symbolic translations of energy functions
into efficient solver routines using the optimizations described in
Sec. 6. Compared to hand-written code, this code is much easier
to write and maintain, but inefficient translations could make it too
slow. To show the effectiveness of our symbolic translations and
optimization, we compare our generated solver routines to hand-
written versions that were taken from the pre-existing CUDA code
and slotted into our solver.

Fig. 15 shows the results of our optimizations compared to the
hand-written versions of JTF and JTJ ported from the CUDA exam-
ples and modified to use texture loads. We show the effect of our
optimizations by starting with a version that naively translates the
IR to code doing no simplification of the expressions (none). This
roughly simulates how an auto-differentiation approach based on
dual numbers would perform. We then turn on polynomial simplifi-
cation (poly), bounds optimization (bounds), texture loads (texture),
and register minimization (register).

The optimizations increase performance up to 8x in the case of
Shape From Shading, and are necessary for Opt to perform at or

above the speed of hand-written code. Performing polynomial sim-
plifications improves the results of all examples. The improvement
is more pronounced for the image-based examples, probably be-
cause graph-based examples are bottle-necked by fetching sparse
data from memory rather than the expressions themselves.

Our optimizations to bounds address redundant bounds checks
and unnecessary reads that can occur when translating Select ex-
pressions to code. They include representing bounds as booleans,
factoring the bounds out of polynomial terms, and scheduling expres-
sions to run conditionally. They provide a significant improvement
for both Shape From Shading and Image Warping. Mesh Deforma-
tion does not improve because it does not use Select.

Shape From Shading shows a significant benefit from texture
use, but the other example show no effect. In hand-written code
this transform is not always attempted, since it may not improve
all code and puts additional restrictions on data layout. Opt does
the transform automatically, benefiting where possible. Finally our
register minimization heuristic provides a small benefit to Shape
From Shading’s JTJ function.

8. EXPRESSIVENESS OF OPT

Our results section focuses on examples from the literature where
state-of-the-art hand-written code previously existed and can be
compared. Opt’s programming model is also able to handle a wider
variety of general non-linear least squares problems, which is at the
core of a variety of computer graphics and vision problems tasks.

8.1 Examples

We implement three new GPU solvers with Opt that highlight the
expressiveness of Opt’s programming model.

Embedded Deformation. is a popular alternative method to
as-rigid-as-possible deformation [Sumner et al. 2007]. Rather than
solving for a per-vertex rotation, it solves for a full affine transfor-
mation. Compared to writing a solver by hand, writing Embedded
Deformation in Opt was an easy process because it only required in-
creasing the number of unknowns and changing the energy terms of
our as-rigid-as-possible energy, which amounted to tens of lines of
code and under an hour of work. The solver it produces can deform
a 12k vertex mesh at an interactive rate of 12 frames per second and
only requires an energy function of around 40 lines.

Cotangent-weighted Laplacian Smoothing. is a method for
smoothing meshes that tries to preserves the area of triangles adja-
cent to each edge [Desbrun et al. 1999]. It adapts well to meshes
with non-uniform tessellations. This example highlights Opt’s abil-
ity to define residuals on larger components of a mesh by defining a
hyper-edge in our graph representation that contains all the vertices
in a wedge at each edge. We show the power of Opt by implementing
a small variant that allows the cotangent weights to be recomputed
during deformation instead of using the values from the original
mesh. This variant is normally hard to write since it introduces com-
plicated derivative terms. Opt generates them automatically, making
it easier to experiment with small variants on existing energy func-
tions. Opt generates a solver from around 45 lines of code that can
smooth a 44k vertex mesh at 5 fps.

Dense Optical Flow. computes the apparent motion of objects
between frames in a video at the pixel level. We implement a hier-
archical version of Horn and Schunck’s algorithm [1981] using an
iterative relaxation scheme. Because optical flow is searching for
correspondences in images, its unknowns are used to sample values
from the input frames. We support this pattern using a sampled

12 • DeVito et al.

Shape From Shading

sp
ee

du
p

ov
er

 n
on

e

none
+ poly
+ bounds
+ texture
+ register

JTF
JTJJTJ

0!

2!

4!

6!

8!

hand-
written

none
+ poly
+ bounds
+ texture
+ register

JTF

2

4

0!

2!

4!

6!

8!

none
+ poly
+ bounds
+ texture
+ register

Image Warping

0!

0.5!

1!

1.5!

2!

2.5!
hand-
written

JTF JTJJTF

0!

0.5!

1!

1.5!

2!

2.5!

none
+ poly
+ bounds
+ texture
+ register

none
+ poly
+ bounds
+ texture
+ register

0!

0.5!

1!

1.5!

2!

2.5!

hand-
written

0.5

1.5

2.5

0!

0.5!

1!

1.5!

2!

2.5! JTF JTJ

Mesh Deformation

none
+ poly
+ bounds
+ texture
+ register

none
+ poly
+ bounds
+ texture
+ register

Fig. 15. The effect of our optimizations on generated code for solver routines. The optimizations are necessary to match the performance of handwritten
equivalents, and in many cases the functions run faster.

image operator, which can be accessed with arbitrary (u, v) coordi-
nates. When these coordinates are dependent on the unknown image,
the user provides the directional derivatives of the sampled image as
other input images, which will be used to lookup the partials for the
operator in the symbolic differentiation. The solver Opt generates
from around 20 lines of code solves optical flow at 4.70MP/s.

8.2 Functionality

Opt’s features also allow many additional kinds of programs to be
expressed.

Domains. Opt is able to exploit the implicit structure and con-
nectivity of general n-dimensional arrays. While we have shown
several examples on images (i.e., 2D-arrays), optimizations are often
performed on volumetric (e.g., [Innmann et al. 2016]) or time-space
(e.g., [Wand et al. 2007]) domains, all of which are subsets of n-D
arrays and fall within the scope of Opt.

In addition to regular domains, Opt efficiently handles explicit
structure, provided in the form of general graphs. These domains
include manifold meshes and general non-manifolds. For instance,
non-rigid mesh deformation objects (e.g., [Sumner et al. 2007;
Sorkine and Alexa 2007]) fall into this category, as well as widely-
used global bundle adjustment methods [Triggs et al. 1999; Snavely
et al. 2006; Agarwal et al. 2009].

Opt also allows the definition of energies on mixed domains.
For example, an objective may contain dense regularization terms
affecting every pixel of an image and a sparse set of correspondences
from a fitting term. Here, the regularization energy is implicitly
encoded in a 2D image domain, and the data term may be provided
by a sparse graph structure.

On all of these domains, Opt provides automatic derivation of
objective terms, and generates GPU specifically optimized for a
given energy function at compile time.

Multi-pass Optimization. In many scenarios, solving a single
optimization is not enough, but instead requires multiple passes of
different non-linear solves. Often, hierarchal, coarse-to-fine solves
are used to achieve better convergence, or sometimes problem-
specific flip-flip iteration can be applied (e.g., ARAP flip-flop by
Sorkine and Alexa [2007]). Another common case are dynamic
changes in the structure the optimization problem. For instance,
fitting a mesh to point-cloud data in a non-rigid fashion is typi-
cally achieved by searching for correspondences between optimiza-
tion passes (e.g., non-rigid iterative closest point) [Li et al. 2009;

Zollhöfer et al. 2014]. Changes to the correspondences also change
the structure of the sparse fitting terms.

In all of these examples, custom code is required at specific
stages during optimization. To support this code in Opt, we take
an approach similar to multi-pass rendering in OpenGL. Between
iterations of the Opt solver or between entire solves, users can
perform arbitrary modifications to the underlying problem state in
C/C++. Optimization weights can be changed (e.g., for parameter
relaxation), underlying data structures may be dynamically updated
(e.g., correspondence search or feature match pruning in bundle
adjustment problems), or hierarchal and flip-flop strategies can be
applied using multiple-passes. This approach allows Opt to support
a wide range of solver approaches, while providing an efficient
optimization backend for their inner kernels.

Robustness. A common approach for non-linear least squares
optimization problems in computer vision is the use of robust ker-
nels. Here, auxiliary variables are introduced in order to determine
the relevance of a data term components as part of the optimiza-
tion formulation. For instance, this strategy is often used in bundle
adjustment or non-rigid deformation frameworks to determine the
reliability of correspondences [Triggs et al. 1999; Li et al. 2009;
Zach 2014; Zollhöfer et al. 2014]. In Opt, it is easy to add these
terms as additional values in the unknown for energy functions on
single and mixed domains.

9. FUTURE WORK AND CONCLUSION

From a high-level description of the energy based on stencils and
graphs, Opt produces customized GPU solvers for non-linear least
squares problems that are faster than state-of-the-art application-
specific hand-coded solvers and orders-of-magnitude faster than
Ceres. Our in-place solver approach is more efficient than explicit
matrix routines, and the generated solver routines out-perform hand-
written equivalents.

We believe that Opt’s approach of using in-place solvers with au-
tomatically generated application-specific routines can be extended
to work with more expressive energy functions, more platforms
beyond GPUs, and more kinds of solvers.

Currently the Opt language limits what energies can be expressed
efficiently. On images, our implementation limits energies to a
constant-sized neighboring stencil. However, we can extend Opt to
support other neighborhood functions such as affine transformations
of indices as long as the neighborhood function is invertible. We also
plan to extend our graph language to support the ability to reference

Opt: A Domain Specific Language for Non-linear Least Squares Optimization • 13

a variable number of neighbors (such as the edges around a vertex)
to make certain energies easier to express.

While some of our specific optimizations are tailored to GPUs,
the overall approach of symbolically calculating and simplifying
functions needed by the solver is applicable to other platforms such
as multi-core CPUs, or even networked clusters of machines for
large problems.

Finally, there are a lot of optimization problems in graphics that
are not suited to the Gauss-Newton or Levenberg-Marquardt ap-
proach. Many optimization problems in the graphics literature are
more efficiently solved using other techniques such as shape de-
formation with an interior-point optimizer [Levi and Zorin 2014]
or mesh parametrization using quadratic programming [Kharevych
et al. 2006]. Others require additional features beyond the specifi-
cation of an energy, such as constraints. We believe these solvers
would also benefit from the architecture proposed in Opt, where
a general in-place solver library is augmented with automatically
derived application-specific routines. Many solvers share the need
for the same routines (e.g., the gradient), so as Opt grows to support
more solvers, less effort will be needed in the compiler to generate
new routines. Eventually, we hope that computer graphics and vision
practitioners can put most energy functions from the literature into
a system like Opt and automatically get a high-performance solver.
We believe that Opt is a significant first step in this direction.

ACKNOWLEDGMENTS
This work has been supported by the DOE Office of Science ASCR
in the ExMatEx and ExaCT Exascale Co-Design Centers, program
manager Karen Pao; DARPA Contract No. HR0011-11-C-0007;
fellowships and grants from NVIDIA, Intel, and Google; the Max
Planck Center for Visual Computing and Communications, and the
ERC Starting Grant 335545 CapReal; and the Stanford Pervasive
Parallelism Lab (supported by Oracle, AMD, Intel, and NVIDIA).
We also gratefully acknowledge hardware donations from NVIDIA
Corporation.

REFERENCES

AGARWAL, S., MIERLE, K., AND OTHERS. 2010. Ceres solver. http:
//ceres-solver.org.

AGARWAL, S., SNAVELY, N., SIMON, I., SEITZ, S. M., AND SZELISKI,
R. 2009. Building rome in a day. In Computer Vision, 2009 IEEE 12th
International Conference on. IEEE, 72–79.

BOCHKANOV, S. 1999. Alglib. http://www.alglib.net.
BOYD, S. AND VANDENBERGHE, L. 2004. Convex Optimization. Cam-

bridge University Press, New York, NY, USA.
CEBERIO, M. AND KREINOVICH, V. 2004. Greedy algorithms for optimiz-

ing multivariate horner schemes. SIGSAM Bull. 38, 1 (Mar.), 8–15.
DAI, A., NIESSNER, M., ZOLLÖFER, M., IZADI, S., AND THEOBALT, C.

2016. Bundlefusion: Real-time globally consistent 3d reconstruction using
on-the-fly surface re-integration. arXiv preprint arXiv:1604.01093.

DESBRUN, M., MEYER, M., SCHRÖDER, P., AND BARR, A. H. 1999.
Implicit fairing of irregular meshes using diffusion and curvature flow.
SIGGRAPH ’99. New York.

DEVITO, Z., HEGARTY, J., AIKEN, A., HANRAHAN, P., AND VITEK, J.
2013. Terra: A multi-stage language for high-performance computing.
PLDI ’13. New York, 105–116.

DVOROZNAK, M. 2014. Interactive as-rigid-as-possible image deformation
and registration. In The 18th Central European Seminar on Computer
Graphics.

GRANT, M. AND BOYD, S. 2008. Graph implementations for nonsmooth
convex programs. In Recent Advances in Learning and Control. Lecture

Notes in Control and Information Sciences. Springer-Verlag Limited, 95–
110.

GRANT, M. AND BOYD, S. 2014. CVX: Matlab software for disciplined
convex programming, version 2.1. http://cvxr.com/cvx.

GRIEWANK, A. AND WALTHER, A. 2008. Evaluating Derivatives: Prin-
ciples and Techniques of Algorithmic Differentiation, Second ed. SIAM,
Philadelphia, PA, USA.

GRUND, F. 1982. Automatic differentiation: Techniques and applications.
Lecture notes in computer science 120. ZAMM 62, 7, 355–355.

GUENNEBAUD, G., JACOB, B., ET AL. 2010. Eigen v3.
http://eigen.tuxfamily.org.

GUENTER, B. 2007. Efficient symbolic differentiation for graphics applica-
tions. SIGGRAPH ’07.

GUENTER, B., RAPP, J., AND FINCH, M. 2011. Symbolic differentiation in
GPU shaders. Tech. Rep. MSR-TR-2011-31. March.

HORN, B. K. P. AND SCHUNCK, B. G. 1981. Determining optical flow.
ARTIFICAL INTELLIGENCE 17, 185–203.

INNMANN, M., ZOLLHÖFER, M., NIESSNER, M., THEOBALT, C., AND

STAMMINGER, M. 2016. Volumedeform: Real-time volumetric non-rigid
reconstruction. arXiv preprint arXiv:1603.08161.

KHAREVYCH, L., SPRINGBORN, B., AND SCHRÖDER, P. 2006. Discrete
conformal mappings via circle patterns. ACM Transactions on Graphics
(TOG) 25, 2, 412–438.

KUMMERLE, R., GRISETTI, G., STRASDAT, H., KONOLIGE, K., AND

BURGARD, W. 2011. g2o: A general framework for graph optimization.
In Robotics and Automation (ICRA), IEEE Int. Conf. on. IEEE, 3607–
3613.

LEVI, Z. AND ZORIN, D. 2014. Strict minimizers for geometric optimiza-
tion. ACM Transactions on Graphics (TOG) 33, 6, 185.

LI, H., ADAMS, B., GUIBAS, L. J., AND PAULY, M. 2009. Robust single-
view geometry and motion reconstruction. In ACM Transactions on
Graphics (TOG). Vol. 28. ACM, 175.

NOCEDAL, J. AND WRIGHT, S. J. 2006. Numerical Optimization, 2nd ed.
Springer, New York.

NVIDIA 2012. CUDA CUSPARSE Library. NVIDIA.
PÉREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image editing.

In ACM SIGGRAPH 2003 Papers. SIGGRAPH ’03. ACM, New York, NY,
USA, 313–318.

RAGAN-KELLEY, J., ADAMS, A., PARIS, S., LEVOY, M., AMARASINGHE,
S., AND DURAND, F. 2012. Decoupling algorithms from schedules for
easy optimization of image processing pipelines. ACM Trans. Graph. 31, 4
(July), 32:1–32:12.

SNAVELY, N., SEITZ, S. M., AND SZELISKI, R. 2006. Photo tourism:
exploring photo collections in 3D. In ACM transactions on graphics
(TOG). Vol. 25. ACM, 835–846.

SORKINE, O. AND ALEXA, M. 2007. As-rigid-as-possible surface modeling.
In Symposium on Geometry processing. Vol. 4.

SUMNER, R. W., SCHMID, J., AND PAULY, M. 2007. Embedded deforma-
tion for shape manipulation. SIGGRAPH ’07. New York.

SYMPY DEVELOPMENT TEAM. 2014. SymPy: Python library for symbolic
mathematics.

THIES, J., ZOLLHÖFER, M., NIESSNER, M., VALGAERTS, L., STAM-
MINGER, M., AND THEOBALT, C. 2015. Real-time expression transfer
for facial reenactment. ACM Transactions on Graphics (TOG) 34, 6.

THIES, J., ZOLLHÖFER, M., STAMMINGER, M., THEOBALT, C., AND

NIESSNER, M. 2016. Face2face: Real-time face capture and reenactment
of rgb videos. In Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE.

TIEMANN, M. D. 1989. The GNU instruction scheduler. Tech. rep., Cam-
bridge, MA. March.

14 • DeVito et al.

TRIGGS, B., MCLAUCHLAN, P. F., HARTLEY, R. I., AND FITZGIBBON,
A. W. 1999. Bundle adjustmenta modern synthesis. In Vision algorithms:
theory and practice. Springer, 298–372.

WAND, M., JENKE, P., HUANG, Q., BOKELOH, M., GUIBAS, L., AND

SCHILLING, A. 2007. Reconstruction of deforming geometry from time-
varying point clouds. In Symposium on Geometry processing. Citeseer,
49–58.

WEBER, D., BENDER, J., SCHNOES, M., STORK, A., AND FELLNER, D.
2013. Efficient GPU data structures and methods to solve sparse linear
systems in dynamics applications. In Computer Graphics Forum. Vol. 32.
Wiley Online Library, 16–26.

WEFELSCHEID, C. AND HELLWICH, O. 2013. OpenOF: Framework for
sparse non-linear least squares optimization on a GPU. In VISAPP.

WOLFRAM RESEARCH. 2000. Mathematica.
WU, C., ZOLLHÖFER, M., NIESSNER, M., STAMMINGER, M., IZADI,

S., AND THEOBALT, C. 2014. Real-time shading-based refinement for
consumer depth cameras. ACM Transactions on Graphics (TOG) 33, 6.

ZACH, C. 2014. Robust bundle adjustment revisited. In Computer Vision–
ECCV 2014. Springer, 772–787.

ZOLLHÖFER, M., DAI, A., INNMANN, M., WU, C., STAMMINGER, M.,
THEOBALT, C., AND NIESSNER, M. 2015. Shading-based refinement on
volumetric signed distance functions. ACM Trans. Graph. 34, 4 (July),
96:1–96:14.

ZOLLHÖFER, M., NIESSNER, M., IZADI, S., RHEMANN, C., ZACH, C.,
FISHER, M., WU, C., FITZGIBBON, A., LOOP, C., THEOBALT, C., AND

STAMMINGER, M. 2014. Real-time non-rigid reconstruction using an
RGB-D camera. ACM Transactions on Graphics (TOG) 33, 4.

