
NIVeL: Neural Implicit Vector Layers for Text-to-Vector Generation

Vikas Thamizharasan∗1,2 Difan Liu2 Matthew Fisher2

Nanxuan Zhao2 Evangelos Kalogerakis1 Michal Lukáč2
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Figure 1. We present NIVeL, a neural implicit vector layer representation for generative text-to-vector graphics. Given an input text prompt,
NIVeL outputs resolution-independent 2D shapes and colors in editable layers. Our neural representation can capture plausible shapes of
arbitrary topology and genus, which were challenges of previous text-to-vector works (VectorFusion[16]) that directly operated on classical
Bézier curves. Importantly, our results can easily be imported into traditional vector graphics software and make intuitive edits.

Abstract
The success of denoising diffusion models in representing
rich data distributions over 2D raster images has prompted
research on extending them to other data representations,
such as vector graphics. Unfortunately due to their vari-
able structure and scarcity of vector training data, directly
applying diffusion models on this domain remains a chal-
lenging problem. Using workarounds like optimization via
Score Distillation Sampling (SDS) is also fraught with dif-
ficulty, as vector representations are non-trivial to directly
optimize and tend to result in implausible geometries such
as redundant or self-intersecting shapes. NIVeL addresses
these challenges by reinterpreting the problem on an alter-
native, intermediate domain which preserves the desirable
properties of vector graphics – mainly sparsity of represen-
tation and resolution-independence. This alternative do-
main is based on neural implicit fields expressed in a set of
decomposable, editable layers. Based on our experiments,
NIVeL produces text-to-vector graphics results of signifi-
cantly better quality than the state-of-the-art.

1. Introduction

Vector Graphics is a widely used representation to ex-
press visual concepts as a compact collection of primitives,
such as Bézier curves, polygons, circles, lines and colors
in a resolution-independent manner. Synthesizing vector
graphics through generative models and high-level guid-
ance, such as text prompts, would be highly desirable for
automating modeling pipelines.

By leveraging massive scale, denoising diffusion has be-
come the gold standard in generative raster imaging. In
vector graphics however, no equivalent exists. The variable
structure of the vector representation (e.g., varying number
and types of primitives) means that we could only apply
diffusion to a fixed subset of this domain at a time (i.e. the
subdomain of vector graphics with one particular structure);
and if we did so, we would not be able to find training data
at requisite scale.

∗Work was done during an internship at Adobe Research.
Project website: https://vikastmz.github.io/NIVeL/
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As a result, to enable generative vector applications, such
as text-to-vector, one may turn to various workarounds,
such as ex post facto vectorization of raster diffusion out-
puts. This is not optimal because these generated sam-
ples are not close to vector graphics; they typically con-
tain shapes and appearance that cannot be modelled with
classical vector graphic primitives without unnecessarily in-
creasing complexity and largely degrading quality (Figure
2). Even if we accept this cost, optimal vectorization still
requires a human to exhaustively search over various set-
tings and hyper-parameters present in these systems.

Score Distillation Sampling [26] offers an alternative
procedure, where a raster diffusion model can guide the op-
timization of a vector graphics representation, as proposed
in VectorFusion [16]. But this quickly offers a different
problem; in traditional vector representations, the structure
of the representation depends on the content of the graphic.
These changes in content are discrete, even changing the
number and meaning of parameters being optimized, and
so cannot be modeled by smooth optimization like SDS.
Additionally, optimizing traditional vector representations
on the image domain is often not stable, easily leading to
degenerate geometries (Figure 1).

In this paper, we propose NIVeL, which makes use of
an intermediate, vector-like representation as the optimiza-
tion domain for Score Distillation Sampling. Derived from
neural implicit functions, this representation maintains the
resolution independence and simplicity of primitives we ex-
pect from vector graphics, while allowing for smooth ar-
bitrary changes of shape topology without discrete jumps.
Additionally, we show how to modify the SDS pipeline to
reliably produce stable vector-like results in this represen-
tation, freeing us from the difficult problem of vectorizing
arbitrary diffusion outputs.

Contributions. We introduce the following contributions:
• A new neural vector graphic representation based on a de-

composable set of implicit fields, which captures arbitrary
topology and is easier to optimize.

• A generative text-to-vector model that produces editable,
layer-decomposed shapes, without any explicit prior, or
supervision.

• Significant improvement in vector quality outputs over
the current state-of-the-art (VectorFusion [16]).

2. Related Work
For decades now, vector graphics has been synonymous in
both industrial and artistic practice with parametric primi-
tives, such as Bézier curves [4], as also codified in one of
several industrial standards (e.g. Scalable Vector Graphics
[15]). Recent addition of some more expressive fill prim-
itives [23] allow for richer appearance control where such
is called for. Crucially, with visual features represented by
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Figure 2. Sampling raster images from diffusion models, then ap-
plying vectorization leads to implausible geometries, redundant
curves, and semantically meaningless layers. Here we show the
results of sampling a text-to-image diffusion model DeepFloyd
[2], then applying LIVE [8], a vectorizer that produces layer-
decomposed SVGs. The sampled raster images often contain com-
plex signals that are difficult to vectorize and interpet.

primitives, the structure of the representation changes with
the content, which causes challenges in machine learning
scenarios [30].

Sequence-generating methods. A first family of ML ap-
proaches attempt to address these challenges by applying
sequence-generating learning techniques to the vector rep-
resentation itself, e.g. by generating drawing commands
[5, 10, 11, 18, 34–36]. Since the rendering process is non-
smooth and non-trivial, it becomes difficult to maintain vi-
sual coherence and so these approaches struggle to scale.

Differentiable rasterizers. The alternative approach is to
do the learning in the image domain by making use of a
differentiable rasterization process [17, 27] as part of the
pipeline. Such methods receive supervisory signal on the
image domain to achieve a variety of effects [9, 28]. The
difficulty here is that these methods need to fix the structure
of the graphic, since backpropagating image-space gradi-
ents only gives a gradient signal for the existing continu-
ous parameters of the graphic, but not for how the structure
of the representation should be changed. Moreover, image-
space supervision provides no accurate regularization signal
on the geometry, and these optimization approaches thus
often result in degenerate geometries that are difficult for
users to interpret or edit.

Neural implicits. We are directly inspired by methods
which address the above problem by adapting more flex-
ible, vector-like structures, such as neural implicit fields

2



y: “a horse eating 
     a hotdog”

Pretrained frozen
di�usion model

pφ(zt; y, t)

Rasterize
g(ψ,c)

Extract
SVG

c1

c2

c3

c4

cL+1

per-la
yer color

s1

s2

s3

s4

sL+1

implicit �elds

unit square

add noise

  Lsds(ψ,c)
+

  Lentr(ψ)Image zt

unit square

p=(x,y)
Frequency
encoding

MLP

{s1, s2, ... sL} = f(p;ψ)

optimized parameters:
(a) MLP parameters ψ

(b) layer colors c={c1, c2, ..., cL+1}

Figure 3. NIVeL’s architecture: given points p on a 2D unit square domain, our method incorporates a MLP-based network with parameters
ψ that predicts a set of implicit fields on this domain, each representing a geometric shape. In addition, it predicts per-shape colors c. The
representation is continuous, resolution-independent, and can easily converted to parametric curve formats (e.g, Bézier curves). To estimate
the parameters, our method uses SDS-based optimization driven by a raster diffusion model conditioned on an input text prompt.

[6, 20, 24, 25, 29] proposed in 3D shape generation. These
methods have the flexibility to make drastic changes to the
shape topology without requiring any changes to structure.
We seek to extend these to represent vector graphics and
apply them to diffusion in particular.

Diffusion models for vector graphics. In the space of
diffusion models [12], attempts to apply them to vector
graphics have included diffusion directly on vector parame-
ters [7, 31, 33]. Since using large foundational models often
yields better results in general applications, Score Distilla-
tion Sampling [26, 32] has been the key enabler allowing
the extraction of information from large-scale image-based
models and application thereof to non-raster imaging. Com-
bining this with differentiable rasterization has led to Vec-
torFusion [16], a technique which allows for creating of
vector images from text prompt as if by regular diffusion;
however, like other rasterization-based methods, this one
suffers from producing redundant and degraded geometry.
In contrast, our method leverages the idea of neural im-
plicit functions expressed in a set of decomposable layers
to create an inherently more stable and interpretable repre-
sentation, sharing some key vector properties (resolution-
independence, compactness in the representation). In addi-
tion, it is easy to reinterpret the representation as a layered
vector graphic. It also simultaneously renders in a differ-
entiable manner for image-space supervision. As discussed
in our experiments section, our method produces text-to-
vector graphics results of significantly better fidelity than
the state-of-the-art.

3. Method

Given an input text prompt, NIVeL’s goal is to synthesize
2D vector graphics representations (Figure 3). In the fol-

lowing section, we discuss our representation of geometric
shapes and layers, which is used to mediate the synthesis
of vector graphics in our approach. Then we discuss the
optimization procedure for learning the parameters of this
representation such that it synthesizes desirable vector im-
ages conditioned on text.

3.1. Representation

Shape Representation. Traditional vector graphics rep-
resent images as a set of geometric shapes defined on the
2D Cartesian plane, through parametric primitives, such as
polylines and polygons, open or closed parametric paths
(e.g., Bezier curves), and analytic primitives (e.g., arcs, cir-
cles, rectangles). These geometric shapes can be stacked
on top of each other as different layers to create a target
vector image. Inferring these geometric shapes by directly
predicting these parametric primitives from high-level input
is cumbersome due to their variable structure, as discussed
in Section 1. We instead propose to represent geometric
shapes in different layers as a 2D continuous implicit func-
tion f with learnable parameters ψ:

f(p;ψ) : R2 → [0, 1]L.

The implicit takes as input a 2D point p in the unit square
p = (x, y) ∈ [0, 1]2 and outputs a probability whether the
point is present in a shape (classification as 1) or absent
from the shape (classification as 0) in each of the layers.
The number of layers L is a hyper-parameter and represents
an upper bound to the actual number of layers used in our
representation i.e., some predicted layers can be empty (i.e.
zero output for all their points), thus are unused in the final
image. Similar to other neural implicit representations pro-
posed in vision and graphics [37], we model f with the help
of a MLP neural network (Figure 3).
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Positional encoding. The network takes as input a posi-
tional encoding γ(p) of the input (x, y) coordinates that
maps each point into a higher dimensional space. The space
is useful to capture shape variations at different frequencies,
as also used in other neural implicit representations, such as
NeRFs [21]:

γ(p) =
[
sin(Oπp) cos(Oπp)

]
where O =

[
20 21 . . . 2F−1

]⊤ (1)

with F being a hyper-parameter in the representation denot-
ing number of octaves.

Network architecture. The network processing these po-
sitional encodings is a sequence of fully connected layers
with residual connections. More details about the MLP ar-
chitecture and its hyperparameters are provided in our supp-
mentary material. The MLP outputs a set of continuous
values, or probabilities: s = {sl}Ll=1, where each value sl
is bounded in [0, 1] through the use of a per-layer sigmoid
non-linearity. In short, our network implements the follow-
ing transformation parameterized by the MLP parameters
ψ:

s = sigmoid
(
MLP

(
γ(p);ψ

))
(2)

Color Representation. Traditional vector graphics also
represent color per primitive. We represent per-
layer color as a set of L + 1 learnable parameters
c = {c1, c2, · · · , cL+1} taking RGB values: cl ∈ [0, 1]3.
The inclusion of the last color parameter cL+1 is associated
with the background color that a vector image can have,
or in other words, the color of a dummy layer representing
background.

Layer composition. The final vector image is created by
stacking the predicted layer outputs on top of each other.
The last dummy layer L+1 is placed as the last layer in the
stack, while the first layer created by the MLP outputs s1 is
the front-most one. Any shape at layer l occludes shapes at
layers [l + 1, · · · , L + 1]. The output continuous image is
created as a layer compositing function g(p;ψ, c):

g(p;ψ, c) =

L+1∑
l=1

kl · cl, (3)

where kl = sl
∏

m<l(1 − sm) is a mixing coefficient for
the layer at that point, computed from opacities of layers
on top of it. We note that the final image is a continuous
representation with “infinite” resolution, as in the case of
vector images i.e, one can zoom into a region of the unit
square without pixelization artifacts. We also note that the
sequence of layers in the stack matters – the network should

learn to distribute shapes to layers such that their composi-
tion with the above function yields a desired target image.
Fortunately, for learning purposes our compositing function
is differentiable wrt both color parameters c as well as ψ
i.e., ∂g/∂ψ =

∑
l(∂g/∂kl) · (∂kl/∂sl) · (∂sl/∂ψ) – here,

we omit input points p for clarity.

3.2. Parameter estimation

As discussed in our introduction, compared to raster im-
ages, there is a lack of datasets including SVGs and text
pairs. One possibility to circumvent this problem is to lever-
age generative models of raster images trained on massive
datasets of generic images for vector image synthesis in a
zero-shot generation setting. Most recent powerful genera-
tive models of raster images are based on diffusion models.
One problem, however, is that these models output raster
images with incompatible data types, style, and dimension-
ality compared to vector or implicit representations, such
as ours. A common strategy to deal with this incompatibil-
ity is to perform parameter estimation and sample synthe-
sis via optimization based on the score distillation approach
[16, 26].

Score distillation from image-based diffusion models.
The goal of score distillation in our setting is to estimate
parameters of our implicit representation such that it syn-
thesizes a sample output with high probability according
to a pre-trained image-based diffusion model conditioned
on text prompts related to vector styles (e.g., “minimal 2D
vector art, lineal colors, line drawing”, see also Figure 1).
The loss penalizes the KL-divergence of a unimodal Gaus-
sian distribution centered at a learned sample produced by
our model g(ψ, c) and the data distribution pϕ(z; y, t) cap-
tured by the frozen diffusion model conditioned on text em-
beddings y. The loss is averaged over several time steps t
sampled throughout the diffusion process:

Lsds(ψ, c) =

Et

[
σt

αt
w(t)KL(q(zt|g(ψ, c); y, t)∥pϕ(zt; y, t))

]
(4)

where t is a timestep, w(t) is a weighting function and
αt, σt are coefficients of the diffusion model depending on
the timestep t. The loss perturbs the image produced by
our model g(ψ, c) with a random amount of noise corre-
sponding to the timestep, and estimates an update direction
that moves it towards a higher probability density region
dictated by the diffusion model, while being constrained on
the implicit data representation imposed by our model.

In addition to the above SDS loss, we found useful
to include a regularization term penalizing uncertainty in
our model’s mixing coefficients. Since we do not model
translucent shapes, we prefer these mixing coefficients to
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be skewed towards either 0 or 1 (see also Figure 4). The
preference can be expressed through the following entropy
loss applied to the per-layer mixing coefficients kl, involv-
ing only the MLP parameters ψ:

Lentr(ψ) = −
∑
l

kl log(kl) (5)

To learn the parameters of our model, we minimize a
weighted sum of the SDS loss and the above entropy loss:

Ltotal = Lsds(ψ, c) + λLentr(ψ) (6)

where λ is a hyperparameter serving as weighting term for
the entropy loss.

Initialization. To initialize the above SDS-based opti-
mization, one possibility is to start with random values for
parameters {ψ, c}. Unfortunately, this strategy is subopti-
mal. The initial random value of parameters often corre-
spond to areas of low probability density according to the
image-based diffusion model, where the SDS-based gradi-
ents tend to be noisy, slowing convergence or even lead-
ing to undesirable local maxima causing implausible results
(see also Section 4 for an ablation wrt this strategy).

An alternative strategy for initialization is to sample a
raster image from the diffusion model, then initialize our
parameters such that the output of our model reconstructs
the sample image as closely as possible. More specifically,
given a sample RGB raster image ẑ produced by execut-
ing the reverse diffusion of an existing pretrained diffusion
model conditioned on the input text prompt, the parameters
can be pre-trained to minimize the loss:

Lrec = L2(ψ, c) + λ′Lentr(ψ) (7)

where L2 is summed over the pixel locations of the raster
image: L2(ψ, c) =

∑
p∈R∥g(p;ψ, c)− ẑ(p)∥2 (the ef-

fect of including the entropy loss is highlighted in Fig.
4). Still, this initialization strategy was also suboptimal, as
shown in our experiments. The reason is that the sample
raster images tend to incorporate a photographic style with
high-frequency texture variation, details and natural back-
ground that are not typically present in illustrations modeled
by artists in vector graphics, even with text prompts related
to vector style, as also noted in VectorFusion [16].

To overcome these challenges, we employ to an ap-
proach where the initialization of our model is not based
on fitting it to a sample raster image, but instead a low-
frequency image representation better matching the output
parameterizaton of our model. More specifically, during our
initialization phase, we train a model mapping continuous
image coordinates p = (x, y) ∈ [0, 1]2 to RGB values us-
ing the same MLP-based architecture as in Eq. 2. Its output
is a predicted per-point RGB color z(p;θ) in [0, 1]3, and

Input w/o Lentr with Lentr

Figure 4. Given an input sampled image (left), we estimate the
NIVeL’s parameters through L2 reconstruction loss without en-
tropy Lentr (middle), or with entropy (right). The entropy results
in a cleaner shape with delineated boundaries.

θ are the MLP parameters estimated via SDS optimization
guided by the same image-based diffusion model i.e., we
use Eq. 4 with the above implicit RGB image generator in-
stead. An important design choice of this generator is that
the used positional encoding γ(p) incorporates a limited set
of octaves (up to F = 6 bands in our implementation) to en-
courage low-frequency texture and background variation in
the output image.

After estimating the parameters θ of the above implicit
RGB generator, we initialize the parameters {ψ, c} of our
model using the reconstruction-based loss Lrec. Finally, we
fine-tune the parameters with our main loss L (Equation 6).
This combination of initialization and fine-tuning offered
the best results in our experiments.

3.3. Implementation details

First, we note that our implementation will become publicly
available upon acceptance. Below we discuss important
implementation details.

Image-based diffusion model. We use the open sourced
pre-trained DeepFloyd model [2] to compute our SDS gra-
dients during the initialization and fine-tuning phase. Deep-
Floyd performs denoising diffusion in pixel-space, unlike
Stable Diffusion which performs it in latent space. This
avoids the computational bottleneck of back-propagating
through the image encoder and, in practice, we observe bet-
ter results and faster convergence with DeepFloyd.

Network architecture We trained two versions of our
model for evaluation: a 12,000 (12K) parameter MLP with
64 hidden nodes and 4 layers, and a smaller 1,000 (1K) pa-
rameter MLP with 32 hidden nodes and 3 layers. We set F
(number of octaves) to 6 for the former and 2 for the latter.
Note, the frequency encoding is a fixed function without
additional learnable parameters. Both these models con-
tain LeakyReLU activations and Sigmoid at the final layer.
We set L (the number of layers) to 5 for all experiments to
have a comparable trainable parameter count to VectorFu-
sion. We discard unused layers (all zero outputs) after opti-
mization. We jitter the query points during training for addi-
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Figure 5. Text-to-Vector Graphics generation results. We compare generated SVG results for the input text prompt between NIVeL (ours)
vs VectorFusion, at two settings involving 1K or 12K number of parameters. Our vector results contain much cleaner shape geometry
across diverse topologies while VectorFusion’s SVGs contain redundant, degenerate curves, and self-intersecting shapes. Our method also
remains robust at a low capacity (1K parameters), faithfully capturing the abstraction of the concepts in the input text prompt.

tional robustness to evaluation points during inference. We
implement our model using the tiny-cuda-nn library [22].

SDS scheduler and optimization. We use the vanilla
timestep scheduler proposed in DreamFusion [26]. We note
that we explored with alternative timestep schedulers (e.g.,
Dreamtime [13]), yet it did not offer any improvements in
our setting . We perform the SDS-based optimization using
AdamW [19]. We set the loss hyperparameters λ = 10−5,
λ′ = 10−4, batch size to 3, and total optimization iterations
to 8000 for all our experiments. Our final model takes 5
minutes to converge on a single NVIDIA A100 gpu. We
provide a model card in table 2.

Converting implicit layers to Bézier curves. We extract
iso-curves from our layered implicit shapes through march-
ing squares at any prescribed resolution. We query fψ at
N ×N grid points p to produce L raster shapes (N = 2048

in our implementation). For our experiments, we set L = 5
as the upper bound on the number of layers. We analyse the
effect of different L on the generated results for a given text
prompt in section 5. We then fit cubic Bézier curves to each
of our layers using an open source image tracing software
(Inkscape [14]).

4. Experiments

Dataset. We use the prompt dataset curated by VectorFu-
sion [3] to generate our qualitative results and compute our
quantitative metrics. This dataset consists of two prompt
families: (i) line drawings with prefix and suffix ”Line
drawing of ..., minimal 2d line drawing, on a white back-
ground, black and white”, and (ii) minimal lineal colors
with suffix ”..., minimal flat 2d vector art, lineal color, on a
white background, trending on artstation”. We include all
prompts in section E.
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CLIP L/14
Method Parameters R-Prec ↑ Sim ↑

mean std mean std

VectorFusion 1K 59.5 1.51 21.4 0.78
12K 71.3 2.37 26.7 0.73

NIVeL 1K 68.2 1.26 25.1 0.81
12K 78.5 1.40 32.0 0.72

Table 1. CLIP metrics computed with the clip-vit-large-patch14
pre-trained model on rasterized SVG results of NIVeL and Vector-
Fusion [16] under our two parameter settings. Both methods are
optimized with DeepFloyd [2]. We also show the official reported
results from VectorFusion when optimized with Stable Diffusion
(row “with SD”). We note their implementation is not available,
thus, the number of parameters in their experiments is unknown.

Comparison. We compare with VectorFusion [16], which
shares the same goal of creating vector art from text prompt
as our method. We note that we use our own implementa-
tion of VectorFusion, since it is not publicly available. Their
method optimizes randomly initialized cubic Bezier curves
with SDS. For a fair comparison, we plugged the same dif-
fusion model DeepFloyd [2] (DF for shot) as ours. In addi-
tion, we adjust both VectorFusion and our method to use a
comparable number of parameters for optimization. More
specifically, we use the following two settings:
1. 1K parameters. VectorFusion uses 16 paths each con-

taining up to 5 cubic Bézier curves. Each Bézier curve
has 17 parameters (control points, stroke width and
color, fill color) ⋎ . NIVeL uses an MLP with 32 hidden
nodes and 3 layers and F = 2 (number of octaves).

2. 12K parameters: VectorFusion uses 256 paths each
containing up to 5 cubic Bézier curves (17 parameters
each) . NIVeL uses an MLP with 64 hidden nodes and 4
layers with F = 6 octaves.
For both settings, we extract Bezier curves for our

method, using the procedure discussed in Section 3.3. We
note that our output number of Bezier paths is not the same
with VectorFusion. For our method, their number is auto-
matically selected according to Inkscape’s implementation
operating on our output. We argue that automatically ad-
justing the number of paths depending on the target output
is more desirable than imposing a hard constraint on their
number.

Evaluation metrics. First, we report the CLIP-based
score (denoted as “Sim”) [1] also used in VectorFusion [16].
The score measures the cosine similarity between the em-
beddings for a raster image and the embeddings for a text
caption. To this end, we rasterize the Bézier curves ex-
tracted from VectorFusion and NIVeL in the same resolu-
⋎ 4 control points * 2 (x,y) + 1 (stroke width) + 8 (rgba for both stroke and
fill color) = 17

Q2: Which image better matches the text prompt? 

72.4 4.3 23.3

66.8 5 28.2

Q1: Which image looks better?

NIVeL both/none VectorFusion

Figure 6. User study voting results.

tion (224 × 224) using the same rasterizer [14]. The CLIP
score is averaged over all prompts. We also report the R-
Precision, as also used in VectorFusion (“R-Prec”). This is
the percent of output images having maximal CLIP similar-
ity with the correct input caption among all text prompts.
Finally, we conduct a perceptual evaluation based on a user
study asking participants to compare results between our
method and VectorFusion in terms of their plausibility and
degree of matching with the input text.

Quantitative comparisons. Table 1 reports results for the
CLIP-based similarity and precision measures, comparing
our method and VectorFusion. We outperform VectorFu-
sion for both parameter setting, demonstrating the parame-
ter efficiency of our representation and faithfulness of our
generation to the input prompt. The table row “VectorFu-
sion (with SD)” represents their originally reported metrics
when optimizing randomly initialized curves with Stable
Diffusion (SD for short) on the same dataset [16]. We note
that their implementation is not available, thus, the number
of parameters used in their experiments is unknown.

Qualitative comparisons. Figures 1, 5, and 11 compare
the results of our method and VectorFusion qualitatively.
Compared to VectorFusion, our results are devoid of ar-
tifacts (floating curves, degenerate geometry) and capture
cleaner shapes and appearance (i.e., properties commonly
associated with vector graphics). In addition, our repre-
sentation is parameter-efficient: with just 1K parameters,
our generated results are faithful to the prompt and capture
the input concepts. On the other hand, VectorFusion cannot
faithfully capture the geometry of objects with low param-
eter count. With 12K parameters, VectorFusion’s generated
results include redundant curves and suffers from the afore-
mentioned artifacts, making their results much harder to edit
intuitively (Figure 1). Section B details results on the line
drawing style.

User study. We also conducted two Amazon MTurk stud-
ies as additional perceptual evaluations. In the first study,
each questionnaire page showed participants a randomly
ordered pair of raster outputs from our method and Vec-
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Figure 7. For the prompts “A cake with chocolate frosting and cherry, 2D vector art” and “A match stick on fire, 2D vector art” we sample
raster images from a pre-trained text-to-image Diffusion Model via DDPM (a) We optimize NIVeL by using the reconstruction-based loss
Lrec on the sampled image (no SDS optimization). (b) We optimize NIVeL by using our SDS-based loss Ltotal with random initialization.
(c) We optimize NIVeL by using the reconstruction-based loss Lrec on the RGB generator network (no SDS optimization), (d) We optimize
NIVeL by fine-tuning with SDS-based loss after initialization from the RGB generator network. The last strategy offers the most visually
compelling vector art outputs.

torFusion. We asked participants “which image looked
better”, explaining to them in our instructions that they
should choose based on which image had fewer artifacts
and looked more aesthetically plausible. Participants could
pick either image, specify “none” or ”both” images looked
good enough. We asked questions twice in a random order
to verify participants’ reliability. We had 100 reliable par-
ticipants, each comparing 10 unique pairs generated from
our pool of text prompts (total 1000 comparisons).

In our second study, we showed participants randomly
ordered pairs of outputs from NIVeL and VectorFusion,
along with the input text prompt, and asked them “which
image better matches the input text prompt”. Participants
could again pick either image, specify “none” or ”both” im-
ages matched the input text well. We also asked questions
twice in a random order to verify participants’ reliability.
We again had 100 reliable participants, each comparing 10
unique pairs as before (total 1000 comparisons).

Figure 6 summarizes the percentage of votes for the
above two types of questions. We observe that our method’s
outputs were preferred by a significantly larger proportions
of participants for both questions.

Ablation. In Figure 7 we demonstrate the importance of a
good initialization strategy. A randomly initialized network
is often prone to failure modes, wherein it allocates entire
shapes into the initial layers (Figure 7b). This prevents the
generation of semantically meaningful decomposed shapes.
Another possibility is to initialize our network by fitting it
to reconstruct a sampled image from the diffusion model
(Figure 7a). This initialization yields a rather coarse, over-
simplified layers. In contrast, initializing the network by
fitting it to reconstruct the implicit RGB generator’s output

provides a more appealing starting point (Figure 7c). Fine-
tuning the network through SDS-based optimization after
this initialization provides the best results (Figure 7d). Ef-
fects of using different random seeds is detailed in section
A. We additionally visualize the output of SDS optimization
iterations in section C.

5. Conclusion

We presented a method that proposes a layered implicit field
representation as a mediator for generating vector graphics.
We demonstrated significantly better results than the state-
of-the-art in the case of text-to-vector synthesis.

Limitations and future work. Our method still has lim-
itations that can spur new research directions for genera-
tive vector graphics. First, our representation is currently
bounded by an upper number of layers. Generating layers
dynamically would alleviate this issue. Currently, we use an
open-source vectorizer to convert our implicit field to para-
metric curves. It would be worth investigating a differen-
tiable implicit-to-vector module to perform this conversion.
Investigating better SDS-based optimization strategies e.g.,
with more adaptive time-step schedulers and more stability
could further improve our results. Finally, extending our
representation to the 3D domain for predicting 3D paramet-
ric modeling primitives guided by neural implicits is gener-
ally a worthwhile research direction.
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Appendix

A. Additional Ablations

"† A green dragon 
breathing fire ..."

Decomposed Vector Layers

L = 1

L = 2

L = 3

L = 4

L = 5

Figure 8. For the given input text prompt we show our generated
results changing only the value of L (the number of output decom-
posed layers). †: ”... minimal 2D vector art, lineal colors”

Effect of number of layers L. The number of decom-
posed layers generated by our system is set by the hyperpa-
rameter L. In Figure 8, we show the effect on the generated
results for values of L ranging from 1 (minimum) to 5 (de-
fault value in our experiments). We fix the prompt and all
other settings for all results. Our method can generate plau-
sible shapes and colors under each constrained setting. We
observe presence of distinguishable semantic parts as the
number of layers L increase.

Effect of random seeds. Figure 9 and 10 show the
stochasticity of the results achieved by changing the ran-
dom seed of the image diffusion model.

B. Qualitative Results
In Figure 11 we compare NIVeL (ours) vs VectorFusion for
a line drawing style. Since the style involves shape out-
lines or contours, here we use a single layer (L = 1). For
the rest of the hyperparameters, we set F = 6 octaves in

"† A spaceship ..."

Figure 9. The effect of changing the random seed for the given
input text prompt. †: ”... minimal 2D vector art, lineal colors”

the positional encoding, and the MLP architecture has 12K
parameters. For VectorFusion, we use 256 paths each con-
taining upto 5 Bézier curves for a total of also 12K param-
eters. We visualize the generated SVGs without the curve
fill attribute to demonstrate the accuracy and smoothness of
our produced line drawings of shapes compared to Vector-
Fusion’s results which contain redundant overlapping and
self-intersecting lines.

C. Visualization of SDS gradients

The SDS gradients provided by the frozen pre-trained dif-
fusion model contain rich and visually interpretable signals
for shape generation. In Figure 12 and Figure 13, we show
the SDS gradients visualized as an RGB image (1st row)
and the generated images (2nd row) across a subset of the
8000 optimization steps. In Figure 12, we initialize one
layer with a Gaussian blob and show the evolution of the
generated shape during the optimization. Note the abil-
ity of our representation to freely add or remove holes i.e
change genus. Our entropy-based loss helps in producing
clean boundaries. Similarly, in Figure 13, we show these
effects on multi-layer generations. We set the initialized
layers to be either 2D boxes or ellipses. The choice of these
two initialization procedures allows an easier interpretation
of the gradient signals. This also demonstrates that the ini-

11



"† A 3D rendering of a temple ..."

Figure 10. Rich priors learned by the image diffusion model are
preserved in our generated shapes. Specifically, the shape of the
shadow matches the style and structure of the roof of the temple
across the three shown synthesis runs. Each generation uses a dif-
ferent random seed. †: ”... minimal 2D vector art, lineal colors”

tialization for NIVeL can be handcrafted, if desired. For
the two prompts, ”A grizzly bear karate master...” and ”A
flamingo karate master...”, one can observe the effect of the
initialization not just on the generated shapes during the op-
timization but also in the SDS gradients. These two initial-
ization show the different outcomes explored via SDS and
how geometric properties of the initial shapes are preserved
i.e., the presence of sharp corners with the boxes.

D. User study details
Figure 14 shows a screenshot of the webpage containing an
example question used in our perceptual evaluation ques-
tionnaires. Each questionnaire was released via the MTurk
platform. It contained 10 unique questions, each asking for
one comparison between NIVel and VectorFusion. Then
these 10 questions were repeated in the questionnaire in
a random order. In these repeated questions, the order of
compared illustrations was flipped. If a worker gave more
than 3 inconsistent answers for the repeated questions, then
he/she was marked as “unreliable”. Each participant was

Hyperparameters
Guidance scale 14.0
t (timestep) ∼ U(0, 1)
L 5
Iterations 8000
Learning rate (Color) 5e−3

Batch size 3
λ 1e−5

λ′ 1e−4

12K Model
F 6
Layers 4
Hidden nodes 64
Activation LeakyReLU
Learning rate (MLP) 1e−2

1K Model
F 2
Layers 3
Hidden nodes 32
Activation LeakyReLU
Learning rate (MLP) 1e−3

Table 2. Model cards of NIVeL’s variants used in our experiments.

allowed to perform the questionnaire only once. The results
are shown in Figure 6 of the main text.

E. List of prompts used in our experiments

Below we show all the text prompts used in our compar-
isons with VectorFusion (including our user study), as
discussed in the main text.

”Line drawing of Third eye, minimal 2d line drawing, on a white

background, black and white”

”Line drawing of a baby penguin, minimal 2d line drawing, on a white

background, black and white”

”Line drawing of a ladder, minimal 2d line drawing, on a white back-

ground, black and white”

”Line drawing of a crown, minimal 2d line drawing, on a white back-

ground, black and white”

”Line drawing of A cat as 3D rendered in Unreal Engine, minimal 2d line

drawing, on a white background, black and white”

”Line drawing of Fast Food, minimal 2d line drawing, on a white

background, black and white”

”Line drawing of Happiness, minimal 2d line drawing, on a white

background, black and white”

”Line drawing of Family vacation to Walt Disney World, minimal 2d line

drawing, on a white background, black and white”

”Line drawing of a bottle of beer next to an ashtray with a half-smoked

12



"‡ a spider 
web..."

VectorFusion Ours

"‡ a bottle of 
beer next to an 
ashtray with a 
half-smoked 
cigarrette..."

"‡ a yeti taking a 
selfie..."

"‡enlightenment .
.."

"‡ fast food ..."

"‡ the Great 
Wall ..."

VectorFusion Ours

"‡ a hot air 
balloon with a 
yin-yang symbol, 
with the moon 
visible the sky ..."

"‡ a clown riding 
a unicycle ..."

"‡ a plate piled 
high with 
chocolate chip 
cookies ..."

"‡ a banana 
wearing 
sunglasses ..."

Figure 11. Text-to-Vector Graphics generation results. We compare generated SVG results for the input text prompt between NIVeL (ours)
vs VectorFusion . Our vector results contain much cleaner shape geometry across diverse topology while VectorFusion’s SVGs contain
redundant, degenerate curves, and self-intersecting shapes. ‡: ”Line drawing of ... black and white”

cigarrette, minimal 2d line drawing, on a white background, black and

white”

”Line drawing of A Japanese woodblock print of one cat, minimal 2d line

drawing, on a white background, black and white”

”Line drawing of A torii gate, minimal 2d line drawing, on a white

background, black and white”

”Line drawing of an elephant, minimal 2d line drawing, on a white

background, black and white”

”Line drawing of A spaceship flying in a starry sky, minimal 2d line

drawing, on a white background, black and white”

”Line drawing of Enlightenment, minimal 2d line drawing, on a white

background, black and white”

”Line drawing of A 3D rendering of a temple, minimal 2d line drawing,

on a white background, black and white”

”Line drawing of a fire-breathing dragon, minimal 2d line drawing, on a

white background, black and white”

”Line drawing of A realistic photograph of a cat, minimal 2d line drawing,

on a white background, black and white”

”Line drawing of a tree, minimal 2d line drawing, on a white background,

black and white”

”Line drawing of a hot air balloon with a yin-yang symbol, with the

moon visible in the daytime sky, minimal 2d line drawing, on a white

background, black and white”

”Line drawing of A 3D wireframe model of a cat, minimal 2d line

drawing, on a white background, black and white”

”Line drawing of Hashtag, minimal 2d line drawing, on a white back-

ground, black and white”

”Line drawing of Yeti taking a selfie, minimal 2d line drawing, on a white

background, black and white”

”Line drawing of A dragon-cat hybrid, minimal 2d line drawing, on a

white background, black and white”

”Line drawing of a tall horse next to a red car, minimal 2d line drawing,

on a white background, black and white”

”Line drawing of Underwater Submarine, minimal 2d line drawing, on a

white background, black and white”

”Line drawing of A drawing of a cat, minimal 2d line drawing, on a white
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NIVeL optimization steps −−−−−−−−−−→
Init 100 300 500 800 1200 1500 1800 2400 3000 3600 4200 5000 5800 6900 8000

”A spider web ...”

”A yellow swiss cheese with holes ...”

Figure 12. We visualize the SDS gradients in rgb color space (1st row) and generated results (2nd row) during optimization for two
prompts. Initialization (Init) is the leftmost column. Columns on its right show the generated result and gradients for the ith optimization
step. The number of layers is L = 1 here.

NIVeL optimization steps −−−−−−−−−−→
Init 100 300 500 800 1200 1500 1800 2400 3000 3600 4200 5000 5800 6900 8000

Box ”A grizzly bear karate master ...”

Ellipse

Box ”A flamingo karate master ...”

Ellipse

Figure 13. We visualize the SDS gradients in rgb color space (1st row) and generated results (2nd row) during optimization for two
prompts. Initialization (Init) is the leftmost column. Columns on its right show the generated result and gradients for the ith optimization
step. The number of layers is L = 3 here.
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Figure 14. Screenshot of an example question used in our MTurk
questionnaires.

background, black and white”

”Line drawing of a photograph of a fiddle next to a basketball on a ping

pong table, minimal 2d line drawing, on a white background, black and

white”

”Line drawing of Forest Temple as 3D rendered in Unreal Engine,

minimal 2d line drawing, on a white background, black and white”

”Line drawing of Horse eating a cupcake, minimal 2d line drawing, on a

white background, black and white”

”Line drawing of A realistic painting of a sailboat, minimal 2d line

drawing, on a white background, black and white”

”Line drawing of the Great Wall, minimal 2d line drawing, on a white

background, black and white”

”Line drawing of a boat, minimal 2d line drawing, on a white background,

black and white”

”Line drawing of A watercolor painting of a cat, minimal 2d line drawing,

on a white background, black and white”

”Line drawing of The space between infinity, minimal 2d line drawing, on

a white background, black and white”

”Line drawing of a basketball to the left of two soccer balls on a gravel

driveway, minimal 2d line drawing, on a white background, black and

white”

”Line drawing of The Eiffel Tower, minimal 2d line drawing, on a white

background, black and white”

”Line drawing of A painting of a starry night sky, minimal 2d line

drawing, on a white background, black and white”

”Line drawing of Translation, minimal 2d line drawing, on a white

background, black and white”

”Line drawing of a triangle, minimal 2d line drawing, on a white

background, black and white”

”Line drawing of a circle, minimal 2d line drawing, on a white back-

ground, black and white”

”Line drawing of a dragon breathing fire, minimal 2d line drawing, on a

white background, black and white”

”Line drawing of a group of squirrels rowing crew, minimal 2d line

drawing, on a white background, black and white”

”Line drawing of a fox and a hare tangoing together, minimal 2d line

drawing, on a white background, black and white”

”Line drawing of a plate piled high with chocolate chip cookies, minimal

2d line drawing, on a white background, black and white”

”Line drawing of a walrus smoking a pipe, minimal 2d line drawing, on a

white background, black and white”

”Line drawing of a stork playing a violin, minimal 2d line drawing, on a

white background, black and white”

”Line drawing of a match stick on fire, minimal 2d line drawing, on a

white background, black and white”

”Line drawing of a friendship, minimal 2d line drawing, on a white

background, black and white”

”Line drawing of a banana with sun glasses, minimal 2d line drawing, on

a white background, black and white”

”Line drawing of a clock with dials, minimal 2d line drawing, on a white

background, black and white”

”Line drawing of a classic wristwatch, Minimal 2D line drawing, On a

white background, black and white”

”Line drawing of a vintage camera, Minimal 2D line drawing, On a white

background, black and white”

”Line drawing of a coffee cup and saucer, Minimal 2D line drawing, On a

white background, black and white”

”Line drawing of a Clown on a unicycle, Minimal 2D line drawing, On a

white background, black and white”

”Line drawing of a Utah teapot, Minimal 2D line drawing, On a white

background, black and white”

”Line drawing of a computer vision conference, Minimal 2D line drawing,

On a white background, black and white”

”Line drawing of a Science conference, Minimal 2D line drawing, On a

white background, black and white”

”Line drawing of a human hand, Minimal 2D line drawing, On a white

background, black and white”

”Line drawing of a still life, Minimal 2D line drawing, On a white

background, black and white”

”A 3D wireframe model of a cat, minimal 2D vector art, lineal color”

”a bottle of beer next to an ashtray with a half-smoked cigarrette, minimal

2D vector art, lineal color”

”A human hand, minimal 2D vector art, lineal color”

”A dragon breathing fire, minimal 2D vector art, lineal color”

”A group of squirrels rowing crew, minimal 2D vector art, lineal color”

”A fox and a hare tangoing together, minimal 2D vector art, lineal color”

”A plate piled high with chocolate chip cookies, minimal 2D vector art,

lineal color”

”A walrus smoking a pipe, minimal 2D vector art, lineal color”

”A stork playing a violin, minimal 2D vector art, lineal color”

”A match stick on fire, minimal 2D vector art, lineal color”

”A tiger karate master, minimal 2D vector art, lineal color”

”a squirrel dressed up like a victorian woman, lineal color”

”A baby bunny sitting on top of a stack of pancakes, minimal 2D vector

art”

”A baby python sitting on top of a stack of books, minimal 2D vector art”

”A vintage camera, minimal 2D vector art, lineal color”

”A coffee cup and saucer, minimal 2D vector art, lineal color”

”A Clown on a unicycle, minimal 2D vector art, lineal color”

”A still life, minimal 2D vector art, lineal color”
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”A banana with sun glasses, minimal 2D vector art, lineal color”

”A clock with dials, minimal 2D vector art, lineal color”

”A classic wristwatch, minimal 2D vector art, lineal color”

”A Utah teapot, minimal 2D vector art, lineal color”

”A computer vision conference, minimal 2D vector art, lineal color”

”A Science conference, minimal 2D vector art, lineal color”

”A friendship, minimal 2D vector art, lineal color”

”A tree, minimal 2D vector art, lineal color”

”A hot air balloon with a yin-yang symbol, with the moon visible in the

daytime sky, minimal 2D vector art, lineal color”

”Yeti taking a selfie, minimal 2D vector art, lineal color”

”A dragon-cat hybrid, minimal 2D vector art, lineal color”

”A spider web, minimal 2D vector art, lineal color”

”Underwater Submarine, minimal 2D vector art, lineal color”

”A boiling water on a fire stove, minimal 2D vector art, lineal color”

”A photograph of a fiddle next to a basketball on a ping pong table,

minimal 2D vector art, lineal color”

”Forest Temple as 3D rendered in Unreal Engine, minimal 2D vector art,

lineal color”

”Horse eating a cupcake, minimal 2D vector art, lineal color”

”A sailboat, minimal 2D vector art, lineal color”

”the Great Wall, minimal 2D vector art, lineal color”

”A boat, minimal 2D vector art, lineal color”

”A fluid simulation, minimal 2D vector art, lineal color”

”The space between infinity, minimal 2D vector art, lineal color”

”A basketball to the left of two soccer balls on a gravel driveway, minimal

2D vector art, lineal color”

”A triangle, minimal 2D vector art, lineal color”

”A circle, minimal 2D vector art, lineal color”

”A Japanese woodblock print of one cat, minimal 2D vector art, lineal

color”

”A torii gate, minimal 2D vector art, lineal color”

”An elephant, minimal 2D vector art, lineal color”

”A spaceship flying in a starry sky, minimal 2D vector art, lineal color”

”Enlightenment, minimal 2D vector art, lineal color”

”Third eye, minimal 2D vector art, lineal color”

”A baby penguin, minimal 2D vector art, lineal color”

”A ladder, minimal 2D vector art, lineal color”

”A crown, minimal 2D vector art, lineal color”

”A cat as 3D rendered in Unreal Engine, minimal 2D vector art, lineal

color”

”Fast Food, minimal 2D vector art, lineal color”

”Happiness, minimal 2D vector art, lineal color”

”Family vacation to Walt Disney World, minimal 2D vector art, lineal

color”

”Line drawing of A 3D wireframe model of a Monkey, 2d vector art line

drawing, black and white”

”Line drawing of a bottle of beer next to an ashtray with a half-smoked

cigarrette, 2d vector art line drawing, black and white”

”Line drawing of A human hand showing the peace sign, 2d vector art

line drawing, black and white”

”Line drawing of A plate piled high with chocolate chip cookies, 2d vector

art line drawing, black and white”

”Line drawing of A flamingo playing a cello, 2d vector art line drawing,

black and white”

”Line drawing of A leopard karate master, 2d vector art line drawing,

black and white”

”Line drawing of a Lizard dressed up like a victorian woman, lineal

color”

”Line drawing of A vintage telephone, 2d vector art line drawing, black

and white”

”Line drawing of An orange with sun glasses, 2d vector art line drawing,

black and white”

”Line drawing of A duck taking a selfie, 2d vector art line drawing, black

and white”

”Line drawing of A dragon-corgi hybrid, 2d vector art line drawing, black

and white”

”Line drawing of Horse eating a hotdog, 2d vector art line drawing, black

and white”

”Line drawing of An elephant surfing, 2d vector art line drawing, black

and white”

”Line drawing of A plate of healty fast Food, 2d vector art line drawing,

black and white”

”A 3D wireframe model of a Monkey, minimal 2D vector art, lineal color”

”a bottle of beer next to an ashtray with a half-smoked cigarrette, lineal

color”

”A human hand showing the peace sign, minimal 2D vector art, lineal

color”

”A dragon breathing fire, minimal 2D vector art, lineal color”

”A group of squirrels rowing crew, minimal 2D vector art, lineal color”

”A fox and a hare tangoing together, minimal 2D vector art, lineal color”

”A plate piled high with chocolate chip cookies, minimal 2D vector art,

lineal color”

”A walrus smoking a pipe, minimal 2D vector art, lineal color”

”A flamingo playing a cello, minimal 2D vector art, lineal color”

”A match stick on fire, minimal 2D vector art, lineal color”

”A leopard karate master, minimal 2D vector art, lineal color”

”a Lizard dressed up like a victorian woman, minimal 2D vector art,

lineal color”

”A baby python sitting on top of a stack of books, minimal 2D vector art,

lineal color”

”A vintage telephone, minimal 2D vector art, lineal color”

”A coffee cup and saucer, minimal 2D vector art, lineal color”

”A Clown juggling balls, minimal 2D vector art, lineal color”

”A still life painting, minimal 2D vector art, lineal color”

”An orange with sun glasses, minimal 2D vector art, lineal color”

”A symbol of friendship, minimal 2D vector art, lineal color”

”A banyan tree, minimal 2D vector art, lineal color”

”A duck taking a selfie, minimal 2D vector art, lineal color”

”A dragon-corgi hybrid, minimal 2D vector art, lineal color”

”A spider web, minimal 2D vector art, lineal color”

”A Temple as 3D rendered in Unreal Engine, minimal 2D vector art,

lineal color”

”Horse eating a hotdog, minimal 2D vector art, lineal color”

”A luxury boat, minimal 2D vector art, lineal color”

”A fluid simulation, minimal 2D vector art, lineal color”
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”The space between infinity, minimal 2D vector art, lineal color”

”A torii gate, minimal 2D vector art, lineal color”

”An elephant surfing, minimal 2D vector art, lineal color”

”A spaceship flying in a starry sky, minimal 2D vector art, lineal color”

”Enlightenment, minimal 2D vector art, lineal color”

”Third eye, minimal 2D vector art, lineal color”

”A baby penguin and a polar bear taking an impossible selfie, minimal

2D vector art, lineal color”

”A plate of healty fast Food, minimal 2D vector art, lineal color”

17


	. Introduction
	. Related Work
	. Method
	. Representation
	. Parameter estimation
	. Implementation details

	. Experiments
	. Conclusion

