2106.06866v1 [cs.CV] 12 Jun 2021

arxXiv

A Multi-Implicit Neural Representation for Fonts

Pradyumna Reddy1 Zhifei Zhang2 Matthew Fisher” Hailin Jin®
Zhaowen Wang2 Niloy J. Mitra' "
1University College London ? Adobe Research

Abstract

Fonts are ubiquitous across documents and come in a variety of styles. They are
either represented in a native vector format or rasterized to produce fixed resolution
images. In the first case, the non-standard representation prevents benefiting
from latest network architectures for neural representations; while, in the latter
case, the rasterized representation, when encoded via networks, results in loss of
data fidelity, as font-specific discontinuities like edges and corners are difficult
to represent using neural networks. Based on the observation that complex fonts
can be represented by a superposition of a set of simpler occupancy functions, we
introduce multi-implicits to represent fonts as a permutation-invariant set of learned
implict functions, without losing features (e.g., edges and corners). However,
while multi-implicits locally preserve font features, obtaining supervision in the
form of ground truth multi-channel signals is a problem in itself. Instead, we
propose how to train such a representation with only local supervision, while the
proposed neural architecture directly finds globally consistent multi-implicits for
font families. We extensively evaluate the proposed representation for various
tasks including reconstruction, interpolation, and synthesis to demonstrate clear
advantages with existing alternatives. Additionally, the representation naturally
enables glyph completion, wherein a single characteristic font is used to synthesize
a whole font family in the target style.

1 Introduction

Fonts constitute the vast majority of documents. They come in a variety of styles spanning a range
of topologies representing a mixture of smooth curves and sharp features. Although fonts vary
significantly across families, they remain stylistic coherent across the different alphabets/symbols
inside any chosen font family.

Fonts are most commonly stored in a vector form (e.g., a collection of spline curves) that is compact,
efficient, and can be resampled at arbitrary resolutions without loss of features. This specialized
representation, however, prevents the adaptation of many deep learning setups optimized for regular
structures (e.g., image grids). In order to avoid this problem, custom deep learning architectures have
been developed for directly producing vector output but they typically require access to ground truth
vector data for training. This is problematic: first, collecting sufficient volume of vector data for
training is non trivial; and second, vector representations are not canonical (i.e., same fonts can be
represented by different sequence of vectors), which in turn requires hand-coded network parameters
to account for varying number of vector instructions.

An alternate approach is to rasterize vectorized fonts and simply treat them as images. While this
readily allows using image-based deep learning methods, the approach inherits problems of discretized
representations leading to aliasing artifacts and loss of sharp features. Further, the resultant images
are optimized for particular resolutions and cannot be resampled without introducing additional
artifacts.

Preprint. Under review.

—Input— —— Reconstruction Generation

MMIImplicitse

ImageVAE Ours

LQL- Q-

Figure 1: Multi-implicit neural representation for high fidelity font reconstruction and generation.
Note that while ours perform similar to ImageVAE at lower/training resolution, the advantage of ours
become clear when we test at higher resolution (e.g, how corners continue to be preserved).

Recently, implicit representation has emerged as an attractive representation for deep learning as,
once trained, they can resampled at different resolutions without introducing artifacts. Unfortunately,
implicit representations (e.g., signed distance fields) for fonts are often too complex to be represented
accurately by neural networks. As a results, although deep implicits work for simple fonts, they can
fail to retain characteristic features (i.e., edges and corners) for complex fonts.

Drawing inspiration from multi-channel SDFs|Chlumsky et al.|[2018]], we observe that complex fonts
can be expressed as a composition of multiple simple regions. For example, a local corner can be
represented as a suitable composition of two half-planes, each of which can easily be individually
encoded as deep implicit functions. We build on this idea by hypothesizing that complex fonts can
also be encoded as suitable composition of global implicit functions. We call such a representation to
be a multi-implicit neural representation, as each (global) implicit function is neurally encoded.

Thus, multi-implicits provide a simple representation
that is amenable for processing by neural networks oriinal Shape Bimap Single Channel ~ Multi-channel SDF

SDF Re-sampling Re-sampling(Ours)

and the output fidelity remains comparable, even un- e
der resampling, to vector representations without los-
ing edge or corner features. A remaining challenge is v 4 4

how to supervise such a network as there is no dataset y |
with reference multi-implicits that be directly used.
In this paper, we present a network structure and train-
ing procedure that allow multi-implicts to be trained Figure 2: Corner preserving capability of dif-
using only local supervision. We describe how to ferent sampling methods.

extract necessary local supervision from vector input

and to adaptively obtain training information for the multi-implicits.

We extensively evaluated the proposed multi-implicits representation for various tasks including
reconstruction, interpolation, and synthesis to demonstrate clear advantages over several existing
state-of-the-art alternatives. Additionally, the representation naturally enables glyph completion,
wherein a single characteristic font glyph is used to synthesize a whole font family in consistent
style.

2 Related Work

Raster-based representation. One of the most intuitive representation of shapes is raster, i.e.,
representing a 2D shape by pixels or a 3D shape by voxels, which provides the grid-format data
that is perfectly compatible with (regular) CNN models. Hence it has acted as a catalyst for many
deep learning based methods for semantic editing of raster-based shapes. A general idea is to learn
an encoding-decoding model and then manipulate the shape in the latent space. Sharing a similar
spirit, many generative models Sinha et al.|[2017], (Choi et al.[[2018], Liu et al.[[2019] engaged in
the raster-based generation and attribute transfer. |Azadi et al.| [2018]],|Yizhi Wang*|[2020] narrowed
down the scope to fonts specifically, which focus more on the shape instead of texture. While the
raster-based representation has shown strong semantic editability as incorporated with deep models,
it is still limited by its intrinsic resolution. Since image super-resolution is an ill-posed problem,
details cannot be fully recovered after upscaling.

Deep learning based vector graphs. Vector graphics (e.g., SVG) have been widely adopted as a
scalable representation. Typically, it is constructed by sequences of Bézier curves, which are difficult
to be modeled by traditional CNN models since the diverse sequence length across different shapes, as
well as diverse types and numbers of Bézier curves for the similar or even the same shape. Therefore,
RNN-based models (e.g., LSTM) are commonly adopted in recent works [Lopes et al.|[2019], |Carlier
et al.[[2020] to learn the dynamic sequence of curves. Although the sequential modeling could
achieve semantic editing and/or interpolation between shapes, it is still lagging behind CNN-based
models (raster-based methods) in terms of reconstruction accuracy because it has to model much
longer temporal dependency. Also, there is no specific attention given to features like edges and
corners.

Transformation from raster to vector. Instead of directly modeling raster or vector, an idea of
achieving both scalability and editability is to model the transfer from raster to vector Reddy et al.
[2021] (we will not consider vectorization methods that purely transfer images to vectors). Such an
approach inherits the advantages of raster-based methods and supports easy editability. In addition,
they output scalable vectors directly. However, this method would be still limited by the raster
resolution, i.e., the output vector graph cannot capture enough details since the corresponding
raster input may have already lost those finer details. Another challenge for such methods is the
high complexity of the shape, e.g., interpolation between shapes with different topologies leads to
undesirable intermediate shapes.

Deep implicit representation. Deep implicit functions |Groueix et al.| [2018]], |Chen and Zhang
[2019], |Genova et al.|[2020], |Sitzmann et al.| [2020]], Mildenhall et al.|[2020], Takikawa et al.|[2021]]
have achieved great success in shape representation. They take advantage of deep learning techniques
to fit an implicit function, which provides a continuous representation breaking the grid limitation
of a raster domain. In addition, deep implicit functions model shapes spatially instead of modeling
sequentially as aforementioned in deep learning based vector graphs. Therefore, deep implicit
functions could preserve the editability like raster-based representation and potentially achieves
scalable representation like vectors. Unfortunately, existing works seldom explore the scalability
and fidelity of shapes in their representations, especially during editing, interpolation, and upscaling.
For instance, sharp corners always suffer from editing and scaling. This is particularly problematic
in the domain of fonts, and our work addresses this limitation via the proposed multi-implicit
representations.

3 Methods

We represent fonts as the composition of multiple global implicit functions. An implicit representation
has two key advantages: it allows for rendering at arbitrary resolution; it can be locally supervised
in characteristic areas such as sharp edges and corners. Unlike a single implicit function, our
multi-implicit representation can faithfully reconstruct sharp features with low reconstruction error

(Figure2).
We train a generative neu- Multi-Curve Representation

ral network, as shown in the
inset, that models fonts us- Importance

ing this representation. In- ~ S*mPling » Implicit Multi-SDF | Differentiable Image
. . + Model Rasterization Rendering
stead of directly learning Z
the inside-outside status of l I
the font image |Chen and
T L Corner Global Gradient
Zhang|[2019]], we predict a L, regularization El'emplate Lossj [Shape Toss ™ Lose j

set of distance fields of 2D
shapes. Their composition is then fed into a differentiable rasterizer to produce the final image.
We will show in Section f| how this generative model enables a diverse set of font reconstruction
and editing operations. Section details differentiable rasterization of 2D distance fields, and
corresponding corner preservation is discussed in Section[3.2] Finally, training losses and details are

given in Section

Ground Truth Only SDF Loss SDF + Raster Image Loss Raster Image Loss(Ours)

SHEIFEINEEE
oo e

Figure 3: Reconstruction with different training signals. Training using SDF (2nd column) does
not ensure good reconstruction in raster domain, while training with both SDF and rasterized image
(3rd column) and only rasterized SDF (ours) yields smoother boundary.

3.1 Differentiable Rasterization of Distance Field

As aforementioned, we use the signed distance field (SDF) to model 2D shapes. The common
supervisions for SDF are SDF labels from the ground truth curves or distance transform on the
silhouette [Lin et al| [2020]. Figure [3|compares the results between training with SDF and training
with raster, where training only on the ground truth SDF does not always result in a good raster image
in terms of boundary smoothness. In contrast, training with the supervision of raster yields smoother
boundary. Therefore, we will draw supervision on rasterized SDF to achieve better shape.

Sharing the spirit from vector graphics rasterization works |[Fabris and Forrest| [[1997]], Gupta and
Sproull| [1981]], [Loop and Blinn|[2005]], Nehab and Hoppe| [2008]], [Turkowski| [[1982]], we simplify
general vector graphics rendering by analytically approximating the point to curve distance as,

I(z,y) = K(rirégldi(x,y))g(x,y), (1)
1 it d> v,
3
K(d) = k(%)=%+i((%) —3(%)) if —ysdsn, 2)
0 if d< -7,

where d;(x,) indicates an SDF of distance from pixel (x, y) center to the closest point on the i-th
curve corresponding the font F, and K denotes a function that approximates the opacity based on
the distance value. There are many works for estimating d;(z, y) from scene parameters but most of
them are constrained by the choice of the parameterization. In this paper, we model each d;(z, y)
using an implicit neural network. The function g models the spatially-varying texture of the shape.
For solid fonts, we set g = 1. In the supplemental we show examples of textured fonts where we
make use of spatially varying g. In the function K, «y is the anti-alias range, and the kernel & is
a radially symmetric continuous filter that satisfies the constraint k(1) = 0 and k(1) = 1. In our
work, we approximate k(-) using a parabolic kernel similar to [Nehab and Hoppe/ [2008], [Li et al.
[2020]]. Note that the rasterization function I(x, y) has non-zero gradients only if (x, y) falls inside
of the anti-aliasing range. We use a progressively decreasing anti-aliasing range strategy for better
convergence and fidelity (see Sec.[3.3).

3.2 Multi-Curve Representation for Sharp Corners

We will lose details like sharp corners when upscaling bitmaps or sign distance functions. Resampling
an implicit model that encodes the pixel values or signed distance values of a shape similarly suffers
from blurry corners. An brute force solution is to train the implicit model with extremely high-
resolution images, but this would drastically increase the burden of training, and still limited by the
training resolution. Rather than directly modeling corners, we represent corners as the intersection of
multiple curves (e.g., lines or parabolas), drawing inspiration from traditional representations |Green
[2007]. Note that even though these individual sub-curves may be smoothed after encoded by a
deep model, the sharpness of their intersection will be preserved. With this insight, we construct
sharp corners from multiple smooth curves predicted by the implicit model. More specifically, the

implicit model is designed to predict multiple SDFs (and rasterization of distance fields), each of
which carries smooth curves/shapes decoupled from corners and edges as illustrated in Figure [4a]
a set of curves C = {C,Cy, -+, C,,},

where (), is a binary map indicating \

whether a pixel is inside (i.e., 1) or

outside (i.e., 0) the n-th curve, like shside = max(Ci, C) F=min(C., C)

the example in Figure fa] In our sce- . .

nario, C,, = K(d,,), where d,, is the (a) P0551’ble corner preserving shapes repre- (b) Corner tem-
n-th SDF channel estimated by the sented with n=2. plate.

implicit model. Then, a function over Figure 4: Intersection of two curves to encode concave and
all curves F'(C) will fuse those curves convex corners.

to reconstruct the shape, preserving

sharp corners. As illustrated in Figure[da] two curves can sufficiently represent a corner, either convex
or concave by adopting maximum or minimum as the function F'. To represent a shape with arbitrary
corners, however, it requires three curves at least. For example, F(C) = min(max(C{, C3), C3) can
model all corners in a shape. Therefore, we set n = 3, i.e., C = {C, Cy, Cs3}. Since deep models
are sensitive to the permutation of guidance signals during training, we use the median function as
F', which achieves sharp corners and permutational invariance to the order of these curves. Thus, a
corner-related loss on F(C) could be robust to the ordering ambiguity.

Curve |

Assume a shape F is represented by

Curve 2

Based on F/(C) (median function on three curves), a typical corner O is presented in Figure where
intersection of two curves divides its local space into four quadrants, i.e., from Q)7 to Q4. There are
always two opposite quadrants that one is inside area (i.e., (1) where corresponding values from
F(C) are 1, and the other is outside area (i.e., Q4) where corresponding values from F(C) are 0. The
rest two opposite quadrants (i.e., Q5 and Q3) are equal on F(C) but different on C. For example, the
values on {C}, Cy, Cs} corresponding to the Q4 areais (1,0, 0), so F(C) on Q5 is 0. Then, F(C) on
Q3 should be 0 as well. However, the values on {C, C5, C3} corresponding to the (3 region must be
different from (1, 0, 0), i.e., could be (0, 1, 0) or (0,0, 1). If F(C) on Q5 and Qs is 1, O is a concave
corner. Otherwise, O is a convex corner. Such distribution of C along the four quadrants around a
corner O is referred to as corner template.

The shapes are encoded as the multi-curve representation through an implicit model. The implicit
model takes sample (x, y,1) (i.e., 2D spatial location (z, y) and glyph label I), as well as embedding z
that indicates the font style, and outputs three channels of SDF {d;, do, d3}. Then, the rasterization
approach discussed in [Differentiable Rasterization of Distance Field| converts each d; to C; (i =
1,2, 3). Finally, the median function F'(C) renders the final shape. We optimize the global shape using
the final render output and (locally) supervise each corner to be locally represented as an intersection
of two curves. One could use the output of (Chlumsky et al.|[2018] to train a network. However, the
edge coloring approach presented in |Chlumsky et al. [2018]] has no canonical form, which prevents a
neural network from learning a continuous latent space between shapes. Please note that since we
focus on corner supervision to ensure sharp corners at higher resolution resampling, it is unnecessary
to constraint the model by multi-channel supervision globally.

In the optimization of rendered global shape, the median operation F'(C) would route the gradients
to the correspondingly active value only, i.e., only update a single channel at each location of C.
However, at least two of the three channels of C at a certain location need to be updated to approaching
the ground truth because of the nature of the median operator. Therefore, in the training stage, we use
an approximation F (C) defined as the average of the median and the closest value to the median, thus
two channels will be updated.

3.3 Training Details

We use three losses on the shape of glyph: (i) a global shape loss that captures glyph shapes globally,
(ii) corner template loss that supervises intersection of curves locally to make the shape robust against
resampling and editing; and (iii) Eikonal loss to adhere to true SDFs.

For global shape training, since gradients are non-zero only at the anti-aliasing range, i.e., edges
of the shape, we sample the edges of the rasterized glyph to train the implicit model. We shape

3 x 3 neighborhoods around the anti-alias pixel, where we have a sample of one value outside the
shape (i.e., 0), one value inside the shape (i.e., 1), and everything in between. Meanwhile, we
sample from homogeneous areas inside and outside of the glyph, such that the model does not fit
a degenerate solution. The edge/corner-award sampling is referred to as importance sampling (see
inset). Such non-standard sampling further motivates the use of implicit models, and importance
sampling would significantly reduce the computational complexity for training on higher resolution
shapes as compared to the traditional training on grid images.

We measure global shape loss between the final rendering from F(C)

and rasterized glyph I. We use a differential approximation F (C) at
training time. All the edges, area, and corner samples from the raster
image are used to train the implicit model via mean square error as,

Eglobal = E(F(C) - I)2 . (3)

For local corner template loss, we first perform corner detection. A
corner is defined as a local where two curves intersect at an angle less than a threshold (the threshold
is 3rad or 171° in our experiments). For each corner, we generate the corner template as discussed in
section[3.2] The template size is 7 X 7 corresponding to the image size of 128 X 128. The size of the
corner template is scaled based on the size of the image, but the size of the sampling neighborhood for
the global shape training remains the same. We densely sample the edges and corners, and sparsely
sample the homogeneous areas.

To represent glyph corners as the intersection of two curves, we supervise the corner samples by
the corresponding corner templates. Since the render function F'(C) is invariant to the order of the
SDF/raster channels, the corner template loss inherits the permutation invariance to the channel order
and, in order to avoid unnecessarily constraining the network, we only supervise ()5 and ()3 of the

template using the loss,
n

. o 2
‘Clocal = IEOecorner samples . Inin (01 - TJ(O)) ’ 4
im5 3€{2,)

where O indicates a corner sample from ground truth, and n is the number of channels (i.e., n = 3

in our setting). The correspondingly predicted curves of the corner O are denoted by C’iO , and the
corresponding corner template is T(O) that has n channels indexed by j.

The gradient loss aims to constraint the output of the implicit network to resemble a distance field
this is so that the implicit re-sampling is more well behaved and resembles a closed continuous shape.
A special case of Eikonal partial differential equations (Crandall and Lions|[1983] posits that the
solution to d(z, y; 6) must satisfy E||Vd(x, y; 0)|| = 1, where d(z, y; §) denotes a simplified implicit
model parameterized by 6. Since satisfying this constraint is not completely necessary for our desired
solution, we loosen it to be greater than or equal to 1 as Eq. [5] which intuitively encourages the
function to be monotonic.

o[BIV 0] g0 <1, s

gred =10 if |Vd(x, y; O)ll2 = 1,
where || - || represents the ¢5-norm, and | - | calculates the absolute values. Finally, the total loss is
L= Cglobal + aclocal + Bﬁgrad +’7||Z||27 (6)

where «, 3, and -y are weights to balance these terms during the training.

Training Warm-up. Since the gradients mainly fall into the anti-aliasing range, network initializa-
tion would significantly affect the convergence. To this perspective, we set the initial anti-aliasing
range to be the whole image range and slowly shrink it to kew ™" during the training, where w is image
width, and k£ = 4 in our experiments. Such warm-up helps the model converge more consistently,
and the estimated SDF is more well behaved. Comparison of SDF with and without warm-up is
conducted in the supplementary.

4 Experiments

We evaluate our method against the tasks of reconstruction, interpolation, and generation. In
reconstruction and interpolation, we compare our method to ImageVAE |Kingma and Welling|[2013]],

DeepSVG |Carlier et al.[[2020], and Im2Vec Reddy et al.| [2021]], while we compare to DeepSVG and
Attr2Font|Yizh1 Wang*|[2020] in the generation task. The metrics for evaluating the rendered glyphs
are mean squared error (MSE) and soft IoU (s-IoU), which is defined as

s-IoU(I4, I5) = || L |11 /1I(11 + L2) 0,10 1l1s (7N

where I; and I, are the images to compare, || - ||; denotes the £;-norm, and |0, 1| clips the values to
the interval of [0,1]. To evaluate the fidelity of glyph rendering in larger scales, glyphs are rendered at
the resolution of 128, 256, 512, and 1024 from each method without changing the training resolution
(64 % 64).

Input ImageVAE DeepSVG Im2Vec Ours Input ImageVAE DeepSVG Im2Vec Ours

72877 3 3333
' V4=

83188 1 1111
MHNH 9IAN

Figure 5: Reconstruction examples (baseline vs. ours) with zoom-in box highlighting corners.
We have vectorized the zero-level-set of the SDF output in a piece-wise linear way. Please use
digital-zoom to take a closer look at the difference in reconstruction quality.

Reconstruction and Interpolation. We compute MSE and s-IoU over the training dataset at
different resolutions to quantify how different algorithms capture the input training dataset. For
a fair comparison, we train all the algorithms on the same dataset used by Im2Vec |[Reddy et al.
[2021]], which consists of 12,505 images. Table[I|displays MSE and s-IoU metrics on the training set.
For ImageVAE, we perform bilinear interpolation to obtain higher resolution outputs. Our method
outperforms the others on s-IoU, indicating better reconstruction of the glyph shapes. ImageVAE
gets higher scores on MSE because its training objective aligns with the MSE metric. However,
ImageVAE would show blurry shapes in interpolation and editing as demonstrated in Figure [6a]
where we achieve more continuous interpolation/latent space. Even in reconstruction, as visualized
in Figure. [5} ImageVAE cannot preserve sharp boundary and corners as compared to the other
methods. Since DeepSVG and Im2Vec directly output vectors, they can always render shapes with
clear boundaries, but they are limited in capturing the global shapes as compared to our method.
Another advantage of our method over DeepSVG and Im2Vec is that we learn a smoother latent
space, achieving better performance on interpolation as demonstrated in Table 2] Even interpolating
between complex shapes, as shown in Figure [6b} our method performs better than the state-of-the-art
Im2Vec. In Table 2] we present the MSE and s-IOU calculated between a random interpolated glyph
and its nearest neighbour in the training dataset. This helps quantify similarity between training
versus generation distribution.

Generation. To generate new fonts and the corresponding glyphs, first the implicit model is trained
with latent vector z and glyph label (i.e., one-hot encoding) concatenated to spatial locations as the
input. We train on 1,000 font families, i.e., 52,000 images, and test on 100 font families. In the
inference stage, given an unseen glyph, we first find the optimal latent vector (i.e., font style) that
makes the rendered glyph closest to the given glyph. More specifically, fixing the glyph label based
on the given glyph, its font latent vector Z can be obtained by minimizing the distance between the
raster of the given glyph and the predicted glyph using gradient descent. With the optimal Z, all the
other glyphs with the same font style can be generated by iterating the glyph label. Figure [7]compares
the font completion results between the baselines and ours, where a glyph “A” is given with unseen
font style. Our results outperform the others in terms of global shape and sharpness of boundaries
and corners. In general, raster-based methods (e.g., Attr2Font) tend to generate better shape but get

Table 1: Comparison with baselines on reconstructing training samples at different resolutions. In
training, we use resolution of 64 x 64. In testing, to achieve target resolution, we bilinearly upsample
ImageVAE output from 64, rasterize vector from DeepSVG and Im2Vec, and directly query ours.

MSE | s-IoU 1
Methods | 128 256 512 1024 128 256 512 1024
ImageVAE | .0072 .0120 .0160 .0186 | .8252 .8416 .8482 .8494
DeepSVG | .1022 .1081 .1108 .1121 | .3073 .3124 3162 .3164
Im2Vec | .0435 .0518 .0557 .0571 | 7279 7293 7294 .7294
Ours | .0118 .0170 .0201 .0218 | .8750 .8978 .9035 .9049

Table 2: Comparison with baselines on interpolation at different resolutions.

MSE | s-IoU 1
Methods | 128 256 512 1024 128 256 512 1024
ImageVAE | .0181 .0183 .0185 .0185 | .7715 .7721 7731 .7734
DeepSVG | .0544 .0556 .0569 .0575 | .6337 .6347 .6365 .6372
Im2Vec | .0434 .0445 .0463 .0473 | 7213 7218 7232 .7238
Ours | .0279 .0297 .0316 .0343 | .8181 .8184 .8222 .8234

blurry at corners. By contrast, vector-based methods (e.g., DeepSVG) eliminate the blurry effect
while difficult to achieve good global shapes. It is a dilemma of generating better global shapes or
better local corners in recent works. Our method is achieving both good shapes and corners. Table [3]
provides statistical results that further demonstrates the superior generation capacity of our method.

We conduct a more challenging task, i.e., glyph completion, to explore the potential generation
capacity of our method. As illustrated in Figure[8] given a partial glyph, it can still recover the whole
glyph, as well as other glyphs with the same font style. In addition, sharp corners are still preserved.

Table 3: Comparison with baselines on font generation task at different resolutions.

MSE | s-IoU 1
Methods | 128 256 512 1024 128 256 512 1024
DeepSVG | 2597 2768 2854 2911 | .3584 3613 .3651 .3672
Attr2Font | .2004 .2231 2481 .2563 | .6204 .6451 .6523 .6560
Ours | .0946 .1027 .1065 .1083 | .8429 8462 .8469 .8471

Pix: SDF SDF

Ablation study. The key to achieving sharp corners in our method s biscirsmine mpiciressmping

is the multi-channel SDF representation, which models multiple B B B
& & £

curves to better construct corners. An alternative can be to directly

supervise multi-channel signals by raster, i.e., removing the interme-

diate SDF representation. We compare the two methods in Table [4]

where SDF implicit re-sampling and pixel implicit re-sampling de- L‘ L‘ u‘
notes the methods with and without SDF representation, respectively.

The inset shows ablation results where the SDF implicit re-sampling achieves sharper corners. For
re-sampling higher resolution images, our method provides two ways: 1) implicit re-sampling and 2)
bilateral re-sampling. The implicit re-sampling performs dense sampling through the implicit model
to obtain higher resolution SDF and thus rendering higher resolution shapes. Bilateral re-sampling
will directly upsample the SDF prediction from the implicit model to the target resolution.

Table 4: Ablation study on reconstruction quality at different resolutions and sampling strategies.

MSE | s-IoU 1
Methods | 128 256 512 1024 128 256 512 1024
Pixel implicit re-sampling | .0135 .0172 .0192 .0203 | .8335 .8521 .8574 .8594
SDF bilateral re-sampling | .0118 .0171 .0202 .0219 | .8761 .8990 .9033 .9046
SDF implicit re-sampling | .0118 .0170 .0201 .0218 | .8750 .8978 .9035 .9049

Source

/4
A
A A

—
<3

Interpolation
Interpolatic

DeepSVG Im

DDA DB
@»&nﬁ
i

%
P

A
J Y

R PR

44
4 L
a4 4y

daaay M D

(a) Comparison of all methods. (b) A challenging example where baselines fail.

Figure 6: Comparison of interpolation between two random font styles. We color different curves in
the vector output to highlight details.

Input

AABGDERGHIJRAMN W

DPORSTUUMKWEK

ABRadedalll 1EBimn
OpPQRARUVKE YD

AABCDEFCHI JKLMN
OPCRSTUVWXY Z

abc f8b11k1mn
Stuvwxyz H{
FGHI JKLMN >

DeepSVG

Attr2Font

e
opPqdr
AABCDE
OPQR VwXYZ
dbCdC€ hiijklmn
OPqrstuvwxy?zZ

Figure 7: Font completion examples (baseline vs. ours) with zoom-in boxes highlighting the corners.

Ours

d
q
D
Q
d

5 Conclusion

We have presented multi-implicits — a new vector representation that is easy to process with neural
networks and maintains 2D shape fidelity under arbitrary resampling. The representation is learned
in a locally supervised manner allowing high precision recovery of corners and curves. The proposed
multi-implicits representation is extensively evaluated in various font applications, including high-
resolution reconstruction, font style interpolation, font family completion, and glyph completion, and
demonstrates clear advantages over prior image based and curve based approaches.

Broader Impact The proposed representation has the potential to be applied to other 2D vector
objects, such as icons and animations, which can empower artists’ creativity and productivity.

9

Input(D)

™"ABCDEFGHI JKLVMNPF
OPrqstuvwxyz M

Figure 8: Glyph completion example. Given a partial glyph unseen in the training set, our method
can complete the given glyph and other glyphs with the same font style. The zoom-in boxes highlight
the corners. The mask region in the input is ignored during optimizing the latent vector Z.

References

Samaneh Azadi, Matthew Fisher, Vladimir G Kim, Zhaowen Wang, Eli Shechtman, and Trevor Darrell. Multi-
content gan for few-shot font style transfer. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 7564-7573, 2018.

Alexandre Carlier, Martin Danelljan, Alexandre Alahi, and Radu Timofte. Deepsvg: A hierarchical generative
network for vector graphics animation. arXiv preprint arXiv:2007.11301, 2020.

Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5939-5948, 2019.

Viktor Chlumsky, Jaroslav Sloup, and I Sime&ek. Improved corners with multi-channel signed distance fields.
In Computer Graphics Forum, volume 37, pages 273-287. Wiley Online Library, 2018.

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo. Stargan: Unified
generative adversarial networks for multi-domain image-to-image translation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 8789-8797, 2018.

Michael G Crandall and Pierre-Louis Lions. Viscosity solutions of hamilton-jacobi equations. Transactions of
the American mathematical society, 277(1):1-42, 1983.

Antonio Elias Fabris and A Robin Forrest. Antialiasing of curves by discrete pre-filtering. In Proceedings of the
24th annual conference on Computer graphics and interactive techniques, pages 317-326, 1997.

Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and Thomas Funkhouser. Local deep implicit functions
for 3d shape. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4857-4866, 2020.

Chris Green. Improved alpha-tested magnification for vector textures and special eftects. In ACM SIGGRAPH
2007 courses, pages 9-18. 2007.

Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Mathieu Aubry. A papier-maché
approach to learning 3d surface generation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 216-224, 2018.

Satish Gupta and Robert F Sproull. Filtering edges for gray-scale displays. ACM SIGGRAPH Computer
Graphics, 15(3):1-5, 1981.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,2013.

Tzu-Mao Li, Michal Luka¢, Gharbi Michaél, and Jonathan Ragan-Kelley. Differentiable vector graphics
rasterization for editing and learning. ACM Trans. Graph. (Proc. SIGGRAPH Asia), 39(6):193:1-193:15,
2020.

Chen-Hsuan Lin, Chaoyang Wang, and Simon Lucey. Sdf-srn: Learning signed distance 3d object reconstruction
from static images. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

Ming Liu, Yukang Ding, Min Xia, Xiao Liu, Errui Ding, Wangmeng Zuo, and Shilei Wen. Stgan: A unified
selective transfer network for arbitrary image attribute editing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3673-3682, 2019.

Charles Loop and Jim Blinn. Resolution independent curve rendering using programmable graphics hardware.
In ACM SIGGRAPH 2005 Papers, pages 1000—-1009. 2005.

Raphael Gontijo Lopes, David Ha, Douglas Eck, and Jonathon Shlens. A learned representation for scalable
vector graphics. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
7930-7939, 2019.

10

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
Nerf: Representing scenes as neural radiance fields for view synthesis. In European Conference on Computer
Vision, pages 405-421. Springer, 2020.

Diego Nehab and Hugues Hoppe. Random-access rendering of general vector graphics. ACM Transactions on
Graphics (TOG), 27(5):1-10, 2008.

Pradyumna Reddy, Michael Gharbi, Michal Lukac, and Niloy J Mitra. Im2vec: Synthesizing vector graphics
without vector supervision. arXiv preprint arXiv:2102.02798, 2021.

Ayan Sinha, Asim Unmesh, Qixing Huang, and Karthik Ramani. Surfnet: Generating 3d shape surfaces using
deep residual networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 6040-6049, 2017.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit neural
representations with periodic activation functions. Advances in Neural Information Processing Systems, 33,
2020.

Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai, Alec
Jacobson, Morgan McGuire, and Sanja Fidler. Neural geometric level of detail: Real-time rendering with
implicit 3D shapes. 2021.

Kenneth Turkowski. Anti-aliasing through the use of coordinate transformations. ACM Transactions on Graphics
(TOG), 1(3):215-234, 1982.

Zhouhui Lian Yizhi Wang*, Yue Gao*. Attribute2font: Creating fonts you want from attributes. ACM Trans.
Graph., 2020.

11

	1 Introduction
	2 Related Work
	3 Methods
	3.1 Differentiable Rasterization of Distance Field
	3.2 Multi-Curve Representation for Sharp Corners
	3.3 Training Details

	4 Experiments
	5 Conclusion

