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Abstract
We present mean-shift distillation, a novel diffu-
sion distillation technique that provides a provably
good proxy for the gradient of the diffusion output
distribution. This is derived directly from mean-
shift mode seeking on the distribution, and we
show that its extrema are aligned with the modes.
We further derive an efficient product distribution
sampling procedure to evaluate the gradient.

Our method is formulated as a drop-in replace-
ment for score distillation sampling (SDS), requir-
ing neither model retraining nor extensive mod-
ification of the sampling procedure. We show
that it exhibits superior mode alignment as well
as improved convergence in both synthetic and
practical setups, yielding higher-fidelity results
when applied to both text-to-image and text-to-
3D applications with Stable Diffusion.

1. Introduction
Soon after image diffusion (Dhariwal & Nichol, 2021) mod-
els exploded in popularity, Poole et al. (2022) introduced the
idea of using them for image optimization. Intuitively, this
can be expressed as the notion that images more likely to
be generated by a diffusion model are “better” in the sense
of being more faithful to the data distribution the diffusion
model was trained on.

Formally, diffusion models provide a mechanism to sample
images x ∈ I from some learned distribution p(x). We
then have a parameter vector ϑ ∈ P , along with an image-
generating model g : P → I. Given an initialization ϑ0, we
seek to optimize a ϑk such that p(g(ϑk)) > p(g(ϑ0)). We
expect this to yield an image g(ϑk) of higher quality, under
the metric the diffusion model is trained for.

We could imagine optimizing ϑ by determining the gradient
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∇p(g(ϑ)) and ascending along it. However, while we may
use our diffusion model to sample from p(x), we can nei-
ther easily evaluate p(x) nor determine its gradient∇xp(x).
Even though we can formally express p(x) in terms of the
score function ϵ(x, t) through the instantaneous change of
variable formula (Grathwohl et al., 2019), evaluating this
formula requires calculating the divergence of the score
function along the entire ODE path, making this of only
theoretical interest. Evaluating the gradient of this quantity
is even less practical.

Score distillation sampling (SDS) (Poole et al., 2022) at-
tempts to address this problem by offering proxies for the
density gradient that are easier to estimate. However, their
theoretical properties are not rigorously established, and
SDS suffers from significant bias as well as variance, yield-
ing inaccurate gradients. Examining the loss landscape of
SDS in Figure 1, we indeed see that not only are the maxima
of this function not collocated with the modes of p(x), but
even in the simplest cases the loss creates “phantom modes”
that are well out of distribution.

Our method offers both better alignment with the distribu-
tion and lower variance of the gradient estimate.

Contributions. In this paper, we propose mean-shift distil-
lation, a distribution-gradient proxy based on a well-known
mode-seeking technique. Furthermore, we show that:

• This proxy can be implemented easily, with minimal
changes to the diffusion sampling procedure;

• It evaluates with less variance than SDS with improved
mode alignment;

• It has superior behavior, converging to modes of the
trained distribution with a clear termination criterion.

2. Related Work
Denoising diffusion. In our work we rely most directly
on the mean-shift method of mode seeking (Cheng, 1995;
Comaniciu & Meer, 2002), but our ability to apply it to dif-
fusion rests on a body of theoretical analysis of this process.

Mathematically, denoising diffusion consists of solving an
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Mean-Shift Distillation for Diffusion Mode Seeking

initial value problem (IVP) on a random variable from a
simple, typically standard normal distribution, where the
time-dependent gradient is learned by reversing the process
of adding noise to the distribution being modeled (Song
et al., 2021b;a). Already in these works authors suggest
ways in which the output distribution may be manipulated
by adding terms to the differential equation underlying the
initial value problem, a property we will rely on to manipu-
late the output to our method’s advantage.

A surprising connection between mean shift and diffu-
sion emerged from the analysis of the optimal denoising
model (Karras et al., 2022; Chen et al., 2024). Since the
forward (noising) process can be expressed as successive
convolutions with a Gaussian kernel, the intermediate distri-
butions are in fact Gaussian-kernel density estimates of the
data distributions, with kernel bandwidth proportional to the
time parameter. Therefore in the ODE of the reverse (infer-
ence) process, the gradient of the denoiser is theoretically
equal to the mean-shift vector with appropriate kernel and
bandwidth. Mean-shifting on the IVP time domain does not
in fact seek modes of the output distribution, but we take
advantage of this knowledge to implement mean shift on
that domain.

Further related to the analysis of modes in particular, Kar-
ras et al. (2024); Bradley & Nakkiran (2024) suggest that
applying classifier-free guidance (CFG) (Ho & Salimans,
2021) to diffusion has the effect of sharpening the modes
of the output distribution. This guidance does not explicitly
seek modes, but we have found that using CFG synergizes
well with both SDS and our methodß.

Distilling diffusion priors. Score distillation sampling
(SDS) (Poole et al., 2022; Wang et al., 2022) has emerged
as a useful technique for leveraging the priors learned by
large-scale image models beyond 2D raster images. SDS
provides an optimization procedure to estimate the param-
eters of a differentiable image generator, such that the ren-
dered image is pushed towards a higher-probability region
of a pre-trained prompt-conditioned image diffusion model.
Originally proposed to optimize volumetric representations
like NeRFs, it has been extended to other non-pixel-based
representations (Jain et al., 2023; Yi et al., 2024; Bahmani
et al., 2024; Thamizharasan et al., 2024).

The tendency of SDS to produce over-smoothened results
due to high variance is well documented. A plethora of
works have been proposed to mitigate this behavior, e.g. to
factorize the gradient to reduce the bias (Hertz et al., 2023;
Yu et al., 2024; Katzir et al., 2024; Alldieck et al., 2024), or
to replace the uniform noise sampling in SDS with noise
obtained by running DDIM inversion Liang et al. (2023);
Lukoianov et al. (2024). Wang et al. (2023a) propose a con-
trol variate for SDS, Wang et al. (2023b); Xu et al. (2024);

Yan et al. (2025) improve diversity of generations, and Wang
et al. (2024) alleviate the multi-view inconsistency problem.

3. Mean-Shift Distillation
In this section we derive the mean-shift vector for the diffu-
sion output distribution, and show how it approximates the
gradient thereof. We further show how an efficient estimate
of this vector may be obtained with a minimal modification
of diffusion sampling. We begin with a motivation of our
development by illustrating the pitfalls of SDS.

3.1. Motivation

Given a pre-trained diffusion model ϵϕ, the SDS loss penal-
izes the KL-divergence of a unimodal Gaussian distribution
centered around x and the data distribution pϕ(zt; y, t) cap-
tured by the frozen diffusion model conditioned on text
embeddings y. With x = g(ϑ), an image rendered by ϑ via
a differentiable renderer g, Poole et al. (2022) derive the
gradient of the loss LSDS with respect to ϑ:

∇ϑLSDS = Et,ϵ
[
α(t) (ϵϕ(α(t)x+ ϵ; t)− ϵ)

]∂x
∂ϑ
,

with t ∼ U(0, T ), ϵ ∼ N (0, σ(t)I). (1)

To illustrate the pitfalls of SDS, we simulate it in 2D us-
ing a small denoising diffusion network (Figure 1). This
allows us to set ϑ = x ∈ R2 (where g becomes an iden-
tity map). We construct a fractal-like dataset as shown by
Karras et al. (2024), with analytic ground-truth probability
density and score. This data distribution is a mixture of
highly anisotropic Gaussians, where most of the probability
mass resides in narrow regions, emulating the low intrinsic
dimensionality of natural images (Roweis & Saul, 2000;
Belkin & Niyogi, 2003). For a baseline, we compare it
with DDIM (Song et al., 2021a), a popular first-order sam-
pling algorithm, with classifier-free guidance (CFG) (Ho &
Salimans, 2021). More details can be found in Section 4.2.

It is immediately apparent how even in this simple setting,
the optima to which SDS converges do not model the output
distribution well. Furthermore, the convergence itself is
problematic due to very high variance of SDS, which we
will address later.

3.2. Mean-shift Gradient Approximation

We start by convolving the data density p with a radial
Gaussian kernel Gλ(x) = cλe

−x2/λ2

with bandwidth λ,
normalized by a constant cλ. This convolution yields a
smoothed density p∗λ(x):

p∗λ(x) = p ∗Gλ(x) =
∫
Gλ(x− y)p(y)dy. (2)
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(a) Ground truth (b) DDIM ⋆ (c) SDS ⊗ (d) Our MSD ⊗

• data sample ⊗ without guidance ⋆ with guidance (CFG=4) loss landscape

Figure 1: Mode-seeking simulated in a fractal-like 2D distribution with two (orange, gray) classes, adapted from Karras
et al. (2024). We compare the behavior of diffusion sampling (DDIM) to optimization-based diffusion distillation, in a
class-conditional setting. With class=orange, (a) Ground truth distribution, (b) DDIM sampling, (c) SDS optimization
without guidance, and (d) our MSD optimization without guidance.

We now take the gradient∇xp∗λ(x) of the smoothed density
and substitute the Gaussian kernel’s gradient:

∇xp∗λ(x) =
∫
∇xGλ(x− y)p(y)dy (3)

=

∫
cλ(x− y)Gλ(x− y)p(y)dy. (4)

We then take the stationary-point equation and reorganize it
as a fixed-point iteration:

∇xp∗λ(x) = 0 =⇒ x′=

∫
yGλ(x− y)p(y)dy∫
Gλ(x− y)p(y)dy

, (5)

where the constant cλ cancels out. We will discuss the
practical estimation of the integrals in Section 3.3 below.

The iterative process in Equation (5) is a continuous version
of mean shift (Comaniciu & Meer, 2002). We may turn
this into gradient proxy with several desirable properties.
Defining the mean-shift vector m⃗(x) = x′ − x, it follows
from Equation (3) that

m⃗(x) ∝ p∗λ(x)∇xp∗λ(x). (6)

Since the smoothed density p∗λ(x) is always non-negative,
m⃗(x) is always aligned with its gradient∇p∗λ(x). It is also
aligned with the gradient of the true density p as λ → 0
(when such gradient exists). This means that a differential
step along the vector m⃗(x) will improve the likelihood of x,
making this a good proxy for the kernel density estimation
gradient. Furthermore, it implies that m⃗(x) will be zero at
the modes of p∗λ(x), giving us a convergence criterion.

3.3. Gradient Estimation via Product Sampling

The integrals in Equation (5) can be both estimated using
samples y from the density p; such estimation yields the
classical mean-shift expression

x′ =

∑
yi∼pKλ(x− yi)yi∑
yi∼pKλ(x− yi)

. (7)

In our case, we do not have such samples readily available.
We could in theory use images from the training dataset as
these samples, or else use the diffusion model to generate
them – either as a pre-process or on-the-fly during iteration.
Unfortunately, that would be prohibitively costly as the
datasets are typically quite large and accurate estimation
would require a very large number of samples for practical
(i.e. small) kernel bandwidths λ.

Our key insight is that the right-hand side of Equation (5)
can be viewed as an expectation with respect to a density
ṗλ that is the product of p and the kernel Gλ centered at x:

x′ =

∫
y ṗλ(y|x)dy = Ey∼ṗλ(y|x)[y]. (8)

To generate samples y from this product density, we exploit
the fact that diffusion models employ score-based sampling
(Song et al., 2021b; Dhariwal & Nichol, 2021). Instead of
using the score∇log p of the density p in DDIM sampling,
we use the score of our product density:

∇zt log(ṗλ(y|x)) = ∇zt log p(zt) +∇zt logGλ(x− zt)

= ∇zt log p(zt)−
x− zt
λ2

, (9)
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which is the sum of the density score (provided by the
diffusion model) and the score of our Gaussian kernel.

Having the ability to generate samples yi from the product
density, we can estimate the mean-shift iterate (8) as

x′ ≈ 1

N

∑
yi∼ṗλ(y|x)

yi. (10)

In practice we use a single sample y, which simplifies our
mean-shift vector to

m⃗(x) = y − x. (11)

We can thus step along m⃗ to seek the modes of the data den-
sity p. Substituting a learned score model into Equation (9)
gives us

ϵ̂t = ϵθ(zt; t)−
x− zt
λ2

. (12)

3.4. Practical Considerations

Impact of guidance. Conditional score estimates from
diffusion models, ϵθ(zt, c) ≈ −σt∇zt log p(zt|c), are im-
proved in practice with classifier-free guidance (CFG) (Ho
& Salimans, 2021), which sharpens the distribution around
the modes:

ϵ̃θ(zt, c) = (1 + w)ϵθ(zt, c)− wϵθ(zt). (13)

We may directly substitute this for the denoiser term in
Equation (12). Despite its practical success, the denoising
direction induced by CFG does not provide theoretical guar-
antees in producing samples from p0,w(zt|c) (Bradley &
Nakkiran, 2024). Even in simple settings, as observed in
Figure 1(b), CFG can lead to mode drops. While alternative
guidance strategy exists (Karras et al., 2024), we stick with
the dominant practice of using CFG (Equation (13)). We
have found that this synergizes well with mode-seeking by
mean-shift, and show the effects of this in evaluation below.

Integrating kernel score. Because the magnitude of the
kernel term in Equation (12) can be quite high when |y − zt|
is high relative to λ, directly implementing this can result
in instability while denoising particularly with explicit inte-
grators. Higher-order integrators are generally capable of
dealing with this instability, but require many more score
function evaluations.

To address this, we note that in isolation the kernel term
has the form of a negative exponential centered on y, or
explicitly:

zt+∆t = y + (zt − y)e
∆t
λ2 , (14)

where ∆t is negative. We take advantage of this to formulate
a stable approximation that avoids the stability issues with
a minimal change to the integration process. Instead of

feeding the full composite score function to the integrator,
in each time step we first integrate only the score function
with the existing integrator to get z′t+∆t. Immediately after,
we separately account for the kernel term by computing the
final output as

zt+∆t = y + (z′t+∆t − y)e
∆t
λ2 . (15)

We note such numerically instability has been observed
when using high CFG values. A remedy is to apply guid-
ance in a limited interval (Kynkäänniemi et al., 2024). We
leverage similar ad-hoc tricks by applying the kernel term
in limited interval through the sampling chain.

4. Practical Implementation and Evaluation
In this section, we construct synthetic examples on which
we demonstrate that our proposed method behaves as theory
predicts, alleviating the issues SDS exhibits even in these
simple scenarios. We further explain the issues encoun-
tered when translating this theory into practice, and describe
adaptations we designed to make our method work with
real-world diffusion models. Finally, we evaluate that in
these real-world scenarios, we retain the desirable properties
and performance of our method. When applicable, we make
comparisons with SDI (Lukoianov et al., 2024), a method
that improves upon SDS by proposing a better noise term,
yet, retaining the same gradient computation.

4.1. Idealized Setting

In order to manage large data dimensionality as well as mas-
sive training datasets, diffusion in practice employs a trained
neural network to represent the denoiser D. However, Kar-
ras et al. (2022) have identified an analytical solution to
minimizing the denoiser error, the ideal denoiser D∗(x; t):

D∗(x; t) =

∑
i yiN (x; yi, σ(t))∑
iN (x; yi, σ(t))

, (16)

where y0 . . . yn are samples in our training set. Attentive
readers will notice that this is in fact the discrete mean shift
formula (Comaniciu & Meer, 2002), with training samples
taking the place of data samples and noise magnitude σ(t)
taking place of the kernel bandwidth λ. This expression is
feasible to compute in practice for small datasets, and we
may substitute it into the SDS formula (1) to get an explicit
solution for the SDS gradient:

∇xLSDS = Et,zt∼N (αtx,σ2
t I)

[
w(t)

zt −D∗(zt;σt)

σt

∂x

∂θ

]
.

This gives us an integral we can numerically evaluate with
reasonable guarantees of its behavior. This allows us to
compare both methods on synthetic datasets, eliminating
any error introduced by training and evaluating a neural
model to show that the theoretical properties hold.
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(a) DDIM (b) SDS⋆ (c) SDI⋆ (d) Ours⋆ f -1

⊗ ⋆

⊗ without guidance ⋆ with guidance ♦ guidance in limited interval f−1 noise scaling

Figure 2: We juxtapose diffusion sampling vs diffusion distillation in low-dimensional (R2) and high-dimensional
(R64×64×4) setting. Top: (a) text-conditioned generation of image via DDIM with 32 steps, (b) - (d) optimized coordinate-
based neural implicit image for SDS, SDI, and our MSD respectively with StableDiffusion (CFG=7.5, § 4.4). Bottom: (a)
class-conditioned generation of 2D points via DDIM with 32 steps, (b) - (d) optimized 2D points for SDS, SDI, and our
MSD respectively (CFG=4, § 4.2). Text-prompts in clockwise order: “A DSLR photo of a ... hamburger, squirrel dressed as
a samurai weighing a katana, knight in silver armor, and bluejay on basket of macarons”.

4.2. Toy Distributions in R2

In addition to the fractal dataset (Figure 1), we extend our
analysis to other 2D datasets, with yimi=1 ⊂M ∈ R2 sam-
pled from various challenging toy 2D densities (van der Walt
et al., 2014; Rozen et al., 2021). Given 104 samples from
the data distribution and points densely initialized across a
grid [−1.5, 1.5]2, we evaluate SDS (Algorithm 1) and our
MSD (Algorithm 2) with 103 Monte Carlo samples. We
perform distillation with a learned denoiser (13) and an ideal
denoiser (16). For the learned denoiser, we use the archi-
tecture and training setup used by Karras et al. (2024) and
similarly represent the densities as mixtures of Gaussians.
We use the Adam optimizer (Kingma & Ba, 2015) and run
the optimization procedure for 150 steps with a learning
rate of 0.08. For our MSD, we set an initial bandwidth of
0.316 ∼

√
0.1 which is linearly decayed over the course of

the optimization. For the ideal denoiser, due to it’s high cost
requirements in time and memory, we instead opt to use a
few steps of gradient descent with high learning rate.

We visualize the generated samples produced by our method
and SDS after the optimization in Figure 3. In addition

to optimizing samples, we evaluate both SDS and MSD
gradients across the domain and then numerically integrate
them to reconstruct the loss functions they represent. This
makes the bias in SDS particularly obvious, as the peaks of
this reconstructed function may be well out of distribution.

We suspect that this bias persists in SDS in higher dimen-
sional settings and is what causes SDS optimized results to
be blurry and exhibit other artifacts (top row of Figure 2).

In addition to bias, we are interested in evaluating the vari-
ance of the gradient estimate. This is an important factor
for convergence, since ascending a stochastic estimate of
the gradient is essentially a random walk. In such, high
variance of the estimate may make the walk take longer to
converge – indeed, with sufficiently high variance we may
find the iteration often taking backwards steps with respect
to the true gradient. Furthermore, a walk with high variance
may not stay converged at an optima, and instead randomly
oscillate around them.

To quantify the variance of an estimate ĝ(x) of the gradi-
ent g(x), we employ a slight variation of the Monte Carlo
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Table 2: Metrics for 2D toy density datasets. Left: ideal
denoiser (D∗) / Right: learned denoiser (Dθ). MMD scaled
by 10−4.

Dataset Method NLL ↓ Precision ↑ Recall ↑ MMD ↓

Fractal
DDIM† -1.85 / -1.51 0.97 / 0.95 0.93 / 0.96 0.86 / 0.007

SDS 36.15 / 9.12 0.08 / 0.01 0.03 / 0.0 328.03 / 87.04
Ours -1.32 / -2.02 0.92 / 0.97 0.33 / 0.42 30.46 / 12.79

Spiral
DDIM† -1.39 / -1.32 0.97 / 0.96 0.93 / 0.96 0.41 / 1.16

SDS 30.37 / 8.13 0.02 / 0.04 0.03 / 0.11 13.85 / 274.35
Ours -1.28 / -1.51 0.99 / 0.98 0.18 / 0.18 4.49 / 18.41

Pinwheel
DDIM† -1.19 / -1.1 0.97 / 0.97 0.94 / 0.97 1.05 / 0.27

SDS 2.29 / 2.00 0.85 / 0.90 0.03 / 0.005 5.18 / 36.37
Ours -1.94 / -2.19 0.99 / 0.99 0.01 / 0.13 5.83 / 7.25

estimator efficiency formula

ε(ĝ(x)) =
|g(x)|2

MSE(ĝ(x)) cost(ĝ(x))
. (17)

We measure cost as number of invocations of the score
model, since that is the typical bottleneck in diffusion. Nor-
malization by the squared norm of g is included to account
for the fact that due to bias and scaling, different estimators
may converge to gradients of different magnitude, and the
normalized MSE then roughly describes the probability of
the estimated gradient pointing the “right” way.

We accumulate both MSE and cost over many indepen-
dent estimations, and average over many values of x.

Table 1: Efficiency ↑

Dataset SDS Ours

Fractal -6.89 7.65
Spiral -7.57 6.32
Pinwheel -6.99 7.08

The result of these efficiency com-
parisons between our method and
SDS is in Table 1 (in log-scale).
Although getting a single estimate
with our method requires more
score model invocations, the ef-
ficiency of our method is signif-
icantly higher. We observe similar
behavior in complex settings (Fig-
ure 4). In Table 2, we evaluate the quality of the generated
samples. Our method outperforms SDS, in both the ideal
denoiser and learned denoiser setting.

4.3. Practical Setting

For large-scale image datasets, idealized denoiser is no
longer tractable and we have to contend with a learned
denoising function, as well as all the associated machinery.

This introduces numerical issues. Namely, as already men-
tioned in Section 3.4, the magnitude of the kernel term may
grow to where the standard first or second order integra-
tors can no longer manage it; but conversely, so does the
magnitude of the learned score term when zt is far out of
distribution; why this is the case becomes apparent when we
consider that the ideal denoiser (Section 4.1) uses the same
equation as mean shift. This is a problem because at the start

input samples

D* 

SDS Ours

Dθ 

D* 

Dθ 

Figure 3: Unconditional distillation on two toy density
datasets, given an ideal denoiser (D∗) and a learned denoiser
(Dθ). For each method and denoiser, we show the optimized
samples (left) and the loss landscape (right). Zoom in for
clarity.

of the optimization, it is likely in a high-dimensional space
that x will be out of distribution and we have to choose
between the integration failing because the denoiser term
has a high magnitude, or because the kernel term has a high
magnitude.

To alleviate this, we use two heuristic approximations: ap-
plying guidance in limited interval (Section 3.4) and scaling
our sample in Equation (15) by noise corresponding to time
step t. In practice, we apply inversion to get the latter. These
are designed to keep the iterate in a region with reasonable
score magnitude and still sample a distribution that is an
approximation of the product distribution.

4.4. Pre-trained Stable Diffusion

We use the latent-space diffusion model, Stable Diffusion,
as the diffusion prior for text-conditioned optimization of
parameters of differentiable image generators. Specifically,
we optimize parameters ϑ of generator g, a rendering func-
tion that maps ϑ to an image I . The rendered image I is fed
to the image encoder to get xk, our latent at optimization
step k, over which the gradient is computed. We define
two settings, (1) where ϑ represents an RGB image, and (2)
where ϑ represents a 3D volume. Specifically:

1. Text-to-2D. We represent 2D images via a coordinated-
based MLP f with learnable parameters ϑ that takes
as input a 2D point p in the unit square p = (x, y) ∈
[0, 1]2 and outputs RGB ∈ [0, 1]3; f(p;ϑ) : R2 →
RGB. We use this non pixel-based representation of an
image for two reasons, (1) to prevent our method and
the baselines from taking the exact gradient step i.e.
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Table 3: Text-to-2D quantitative comparison. We evaluate fi-
delity with FID and CLIP-SIM. †FID measured with DDIM
as ground truth.

Method FID ↓ CLIP-SIM (L/14) ↑

DDIM† - 44.1 ± 2.8
SDS 198.90 27.7 ± 1.9
SDI 166.16 31.0 ± 0.7
Ours 114.12 32.6 ± 0.8

Figure 4: FID vs optimization iterations.

running diffusion sampling and setting xk to the de-
noised latent z0, and (2) we can directly compare with
images sampled via DDIM, an unconstrained image
generation setting.

2. Text-to-3D. We represent 3D volumes as NeRFs, fol-
lowing (Poole et al., 2022). The NeRF is parameterized
by two MLPs, one for foreground and one for back-
ground. The former has 64 hidden nodes and 2 layers,
with input (x, y, z) coordinates encoded via HashGrid
(Müller et al., 2022).

Implementation details. We implement all our code in
PyTorch, on a single NVIDIA A100 gpu. We use the Three-
studio (Guo et al., 2023) framework for experiments in-
volving pre-trained Stable Diffusion. All the experiments
use Adam optimizer with lr= 10−2. We set optimization
steps to 400 for text-to-2D and 7k for text-to-3D. We use a
monotonically decreasing schedule for the bandwidth λ.

4.5. Evaluation

Dataset. We use a subset of the prompts curated by Poole
et al. (2022); Hertz et al. (2023). We include all prompts in
Appendix B.

Metrics. For toy density dataset (Section 4.2), we com-
pute negative log-likelihood scores (NLL), generative preci-
sion and recall (Kynkäänniemi et al., 2019), and maximum
mean discrepancy (MMD). For text-to-2D, we use images

produced by DDIM to represent the ground truth distribu-
tion. To evaluate fidelity of the images, FID (Heusel et al.,
2017) is computed for each baseline (SDS, SDI) and ours
against this ground truth image set. We also compute CLIP
scores (cli) to measure prompt-generation alignment.

Quantitative comparisons. Table 3 reports results for
FID and CLIP-based similarity, comparing our method with
SDS and SDI. We outperform both baselines in image fi-
delity and are our generations are more faithful to the input
prompt.

Qualitative comparisons. Figure 2 (top row) and Figure 8
compares our method with SDS and SDI on text-to-2D gen-
eration, qualitatively. In the latter, we show the importance
of the two heuristics (Section 4.3) to resolve numerical in-
stabilities, absence of which can result in visual artifacts.
SDS, as discussed, produces low-fidelity results while SDI’s
inversion accumulates numerical errors during early stages
of optimization. In Figure 5, we qualitatively compare re-
sults for text-to-3D optimization. We restrict to qualitative
comparison for this task as quantitative metrics have high
variance due to the absence of a ground truth dataset.

Impact of bandwidth. Figure 6 shows the impact of the
bandwidth (λ) term on the denoising process. First, we sam-
ple three parameters {ϑk} from our text-to-2D optimization
pipeline at iterations k = {100, 200, 400} and also sample
three discrete λ values {λ1 ≪ λ2 ≪ λ3}. Then, we run our
forward pass once for each λi, independently. We visualize
four decoded denoised latents z0 (with different random
seeds). The highlighted images show the optimal choices of
λ for each xk (the encoded latent for ϑk). At high bandwidth
value λ3, the influence of the kernel term in the product sam-
pling is negligible. This degenerates to vanilla denoising
and we observe high variance in the output, irrespective of
our current xk. This is ideal at early stages of optimization.
As bandwidth is annealed, we observe reduction in variance.
Yet, the quality of the outputs can degrade if the kernel
term dominates while xk is not “in-distribution”. As xk

approaches the mode of the distribution corresponding to
the input text-prompt at final stages of optimization (when
k = 400), with a low bandwidth λ1, our denoised latent
z0 ≈ xk. This provides us with a convergence criteria and
we terminate when λ is below the threshold λ1.

5. Conclusion
In this paper, we have reframed diffusion distillation in terms
of explicitly ascending the gradient of the data distribution.
We have derived mean-shift distillation as a proxy that prov-
ably aligns with this gradient, and in the limit its maxima
are collocated with the modes of the data distribution.

7



Mean-Shift Distillation for Diffusion Mode Seeking

”†a hamburger” ”†a tulip” ”†a statue‡”
SD

S
SD

I
O
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s

Figure 5: Comparison of 3D generation with other score
distillation methods. Full prompt: †“A DSLR photo of a ...”,
‡“a Michelangelo statue of a man on a chair”.

We have demonstrated that compared to SDS, this method
achieves better mode alignment as well as lower gradient
variance, which in practice translates to more realistic opti-
mization results as well as improved convergence rate.

Since this method simply provides optimization gradient
much like SDS does, it may be used as a one-to-one replace-
ment without retraining of the underlying model, or indeed
substantial code modification.

While the basic algorithm works as the theory predicts in
synthetic scenarios, with real-world models we have to con-
tend with integrator error due to large score magnitudes.
We have designed heuristics to alleviate this and achieve
improvements on SDS in practice, but we hope future work
will be able to improve the integration and/or sampling pro-
cedure, obviating the need for heuristics.

Impact Statement
As a more or less straightforward substitute of an existing
method (SDS), our method inherits ethical concerns of the
diffusion models it is being applied to, and the applications
it is being put towards. It remains important to take care
with sourcing training data to avoid copyright issues, bias
issues, and training harmful content into the model. On
the output side, generative models improve accessibility to
creative expression, which however also makes it easier to
produce harmful content including, but not limited to, mis-
information, defamatory and obscene images. Ultimately
these issues are impossible to fully solve on the tooling side
and we must rely on other methods to analyse content and
establish authenticity thereof to compensate.
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Figure 6: Impact of bandwidth (λ) on the denoised latent
(z0). We set λ3 = 103, λ2 = 10, λ1 = 10−2. Highlighted
images show the optimal bandwidth value corresponding to
the kth optimization.

That said, improved convergence properties of our method
mean that less computation is required to achieve the same
result, alleviating some of the environmental impacts asso-
ciated with these generative methods.
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A. Implementation details

Input : pre-trained diffusion model ϵθ : Rd1×···×dk → Rd1×···×dk , target parameters ψ ∈ Rd, condition c, mapping
function g(ψ) : Rd → Rd1×···×dk , time-dependent functions w(t), α(t), Monte Carlo sample size N .

Output :ψ∗

Algorithm 1 Distillation via SDS
for k = 1, . . . , steps do

xk ← g(ψ)
for i = 1, . . . , N do

t← U(0, 1)
zt ← α(t)xk + ϵt
yi ← w(t)[ϵθ(zt, t, c)− ϵt]

end
∇ψLSDS ← 1

N

∑
(yi − xk)

// Backpropagate ∇ψLSDS, update ψ

end

Algorithm 2 Distillation via MSD (Ours)
function ODESolver(x, λ) (eq 12)

zT ← N (0, I)
for t = T − 1, . . . , 0 do

zt ← ϵθ(zt, t, c)− (x− zt)/λ2

end
return z0

function ODESolver(x, λ, stable) (eq 15)
{z∗t }Tt=0 ← inversion(x)

zT ← z∗T + (ϵ− z∗T )e−∆t/λ2

for t = T − 1, . . . , 0 do
zT ← z∗t + (ϵθ(zt, t, c)− z∗t )e−∆t/λ2

end
return z0

// initialize λ, set λmin
for k = 1, . . . , steps do

xk ← g(ψ)
for i = 1, . . . , N do
yi ← ODESolver(xk, λ)

end
∇ψLMSD ← 1

N

∑N
i (yi − xk)

// Backpropagate ∇ψLMSD, update ψ
// Anneal λ
if λ < λmin then

// terminate
end

end

Figure 7: Pseudocode of SDS and our procedure, MSD. We additionally show the numerically stable solver, which is used
for experiments with Stable Diffusion.

B. List of prompts
“A DSLR photo of a hamburger”

“A blue jay standing on a large basket of rainbow macarons”

“A DSLR photo of a squirrel dressed as a samurai weighing a katana”

“A DSLR photo of a knight in silver armor”

“Line drawing of a Lizard dressed up like a victorian woman, lineal color”

“A photo of a car made out of sushi”
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“A DSLR photo of a tulip”

“A DSLR photo of a Pumpkin head zombie, skinny, highly detailed, photorealistic”

“A watercolor painting of a sparrow, trending on artstation”

“Michelangelo style statue of man sitting on a chair”

C. Ablations and more results

Ours⋆

Ours⋆ f -1

Ours 

SDI

SDS

⋆ f -1

⋆

⋆
Figure 8: We extend Figure 2 with two ablations; applying guidance in the entire denoising trajectory (row 1) and noise
scaled sample in the kernel term (row 2) (§ 4.3). We also show additional results for our method, SDI and SDS (row 3,4,5
respectively).
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