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Fig. 1. We propose a discontinuous 2D neural field that can jointly approximate the target image and recover unknown discontinuities. Our neural field
supports edge-preserving denoising and arbitrary resolution while continuous neural field, such as InstantNGP [Müller et al. 2022], blurs region boundaries
under close view. Zoom scales indicate inference scale. Zoom in to see details.

Effective representation of 2D images is fundamental in digital image pro-
cessing, where traditional methods like raster and vector graphics strug-
gle with sharpness and textural complexity respectively. Current neural
fields offer high-fidelity and resolution independence but require predefined
meshes with known discontinuities, restricting their utility. We observe that
by treating all mesh edges as potential discontinuities, we can represent
the magnitude of discontinuities with continuous variables and optimize.
Based on this observation, we introduce a novel discontinuous neural field
model that jointly approximate the target image and recovers discontinuities.
Through systematic evaluations, our neural field demonstrates superior per-
formance in denoising and super-resolution tasks compared to InstantNGP,
achieving improvements of over 5dB and 10dB, respectively. Our model
also outperforms Mumford-Shah-based methods in accurately capturing
discontinuities, with Chamfer distances 3.5× closer to the ground truth.
Additionally, our approach shows remarkable capability in approximating
complex artistic and natural images and cleaning up diffusion-generated
depth maps.
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1 INTRODUCTION
Digital image representations — such as pixel arrays or vector graph-
ics — discretize image functions that map 2D locations to colors. For
a variety of reasons (occlusions in captured 3D scenes, layers in
graphic designs, material boundaries, etc.), typical image functions
are well modeled as continuous functions almost everywhere with
sparse discontinuities appearing along 1D curves. Unfortunately,
images stored as regular grids of pixel colors do not directly model
discontinuities and assume a fixed resolution. Meanwhile, vector
graphics formats (e.g., .svg) represent resolution-independent dis-
continuities directly with curves, fill boundaries, or layer overlaps,
but these formats have minimal support for continuous signals
elsewhere (e.g., solid colors, basic gradients).

Recently, Belhe et al. [2023] proposed storing images as the output
of a small neural network fed a spatially varying feature vector. That
feature vector is carefully interpolated over a triangle mesh con-
structed to ensure discontinuities along certain edges. The weights
of the neural network are optimized to reconstruct samples of an
image function. This exciting representation is very compact and
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Fig. 2. Discontinuity-aware 2D neural field [Belhe et al. 2023] requires
accurate 2D discontinuities as input. In their example of denoising 3D
renderings, all types of discontinuities may not always be available. False
negatives caused by sharp texture and refracted geometries lead to blurs.

especially well suited for noisy input samples. Unfortunately, dis-
continuities must be given in advance as input, and the function
space used for interpolation by Belhe et al. does not immediately
make it clear how to treat discontinuity locations as optimization
variables. When discontinuties are missing — even partially – their
reconstruction is noticeably poor (see Fig. 2).
In this paper, we propose a non-trivial change to Belhe et al.’s

method so that image fitting no longer requires discontinuities to be
known in advance. During fitting, we treat all mesh edges as poten-
tial discontinuities, introducing variables to model the magnitude of
value-jump across the edge. These variables are continuous and hap-
pily optimized along with feature vectors and mesh vertex positions
during gradient-based reconstruction. Unlike Belhe et al.’s function
space, our function space easily affords a post-processing procedure
to identify and merge almost-continuous edges, greatly improving
storage efficiency while maintaining reconstruction fidelity.
We demonstrate that our neural fields with learned discontinu-

ities directly support denoising and super-resolution. Using a novel
systematically synthesized diffusion curve dataset, we show that our
method outperforms InstantNGP [Müller et al. 2022] with matching
size by > 5dB in the denoising task and > 10dB when examined
under super-resolution. Visually, our neural field maintains sharp
region boundaries at large zoom levels (30× in Fig. 1,3,9) while
InstantNGP blurs boundaries. Our method recover more accurate
discontinuities than Mumford-Shah-based denoising [Wang et al.
2022]: 3.5× smaller Chamfer distance to the groundtruth. We show
that our neural fields can approximate typical vector graphics im-
ages corrupted by JPEG compression. The use cases of our method
also include general 2D data, such as diffusion-generated depth
maps, which our method segments with clear cuts between depth
discontinuities. Finally, we stress test our method with complicated
artistic drawings and natural images (Fig. 1,10).

2 RELATED WORK
Geometric representation for images. Geometric image represen-

tations, such as vector graphics, address raster image limitations
by encoding discontinuities as shapes with simple color functions.
Methods combining accurate geometric boundaries with interior
samples focus on representation design, interpolation, and real-
time rendering [Bala et al. 2003; Parilov and Zorin 2008; Pavić and
Kobbelt 2010; Ramanarayanan et al. 2004; Reshetov and Luebke
2016; Sen 2004; Tarini et al. 2005; Tumblin and Choudhury 2004].
Another approach represents digital images with discrete curves or
region boundaries and smooth interior functions [Tian and Günther
2022]. Diffusion curves [Orzan et al. 2008] defines images as har-
monic functions with curve Dirichlet boundary conditions, a space
our method can accurately approximate (Section 5). Triangle mesh-
based representations [Davoine et al. 1996; Demaret et al. 2006; Su
and Willis 2004; Tu and Adams 2011] and more advanced curve-
and patch-based primitives [Lai et al. 2009; Lecot and Levy 2006;
Sun et al. 2007; Xia et al. 2009; Zhao et al. 2017] are introduced for
vectorization of natural images. These approaches, while similar to
ours in merging discrete geometries and functional representations
for interiors, often construct geometric boundaries separately, rely-
ing on edge detection, segmentation, or user input. In contrast, our
method jointly optimizes discontinuity locations and interior colors
using a mesh without predefined cuts.

Neural fields. Neural fields are widely used for representing spa-
tial functions like images and signed distance fields (SDFs), often
parameterized by neural networks [Xie et al. 2022]. Early work by
Song et al. [2015] introduced coordinate neural networks for image
encoding, a technique applicable to large image compression [Mehta
et al. 2021; Mildenhall et al. 2021; Sitzmann et al. 2020]. Although
these methods capture high-frequency details, they often fail to
represent true discontinuities, causing blurring at high zoom levels.
Hybrid neural fields, or feature fields, combine neural networks

with discrete data structures like grids [Chen et al. 2022, 2021; Mar-
tel et al. 2021; Müller et al. 2022; Shen et al. 2021; Takikawa et al.
2021, 2023; Yu et al. 2021]. These offer reduced computation, better
network capacity utilization, and explicit geometric representation.
While most hybrid fields don’t explicitly address discontinuities,
recent methods like ReLU fields [Karnewar et al. 2022] attempt to
approximate them with steep ReLUs, but still face blurring issues
as shown by Belhe et al. [2023]. Other approaches, like those by
Reddy et al. [2021], represent true discontinuities but are tailored
for specific cases like fonts. Discontinuity-aware 2D neural fields
[Belhe et al. 2023], an inspiration for our approach, show promise
but require user-provided discontinuous edges (Fig. 2). Our method
fits unknown discontinuities and is compatible with discontinuity-
aware 2D neural field offering efficient storage and inference.

Concurrent work also uses supervised learning to generate a field
of patches for discontinuity detection, especially in noisy environ-
ments [Polansky et al. 2024]. We compare to its preceding work
[Verbin and Zickler 2021] and show that their focus is on denoising
rather than accurate approximation (Fig. 3d).

Differentiable rendering. Addressing visual discontinuity in dif-
ferentiable rendering is a persistent challenge [Spielberg et al. 2023;
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Fig. 3. (a,b) Diffusion curves define an example harmonic function field with sharp discontinuities [Orzan et al. 2008]. (c) Continuous neural fields, such as
InstantNGP [Müller et al. 2022], do not represent discontinuities, resulting in blur image when zoomed-in. (d) Denoising method, Field of Junctions (FoJ)
[Verbin and Zickler 2021], fails to recover clear discontinuities due to using constant-patch-based approximation. (e, f) Mumford-Shah functional based
methods jointly approximate the target and detect discontinuities (see red edges in insets) [Wang et al. 2022], similar to our method. However, both versions
fail to achieve both goals because of limited function expressiveness. (g) Our accurate approximation and recovered discontinuities.

Zhao et al. 2020]. Traditional automatic differentiations often over-
look discontinuities’ contributions to gradients [Bangaru et al. 2021].
Differentiable rendering techniques include smoothed rasterization
[Kato et al. 2018; Laine et al. 2020; Liu et al. 2019; Loper and Black
2014], Monte Carlo-based methods with boundary and interior sam-
pling [Bangaru et al. 2020; Li et al. 2018, 2020; Loubet et al. 2019;
Zhang et al. 2023], analytic solutions [Bangaru et al. 2021], and
finite difference approaches [Deliot et al. 2024; Yang et al. 2022]. Our
approach introduces a differentiable neural primitive capable of rep-
resenting discontinuities. By framing our approximation problem
as an inverse rendering task, our method efficiently handles discon-
tinuities by leveraging existing differentiable rendering techniques.

Mumford–Shah functional. The Mumford–Shah (MS) functional,
proposed for image segmentation [Mumford and Shah 1989], models
images as piecewise-smooth functions with explicit discontinuities.
The Ambrosio-Tortorelli approximation [Ambrosio and Tortorelli
1990] made solving for MS functionals tractable with techniques
like ADMM. This functional has been widely used in 2D image tasks
[Le et al. 2022; Tsai et al. 2001; Vese and Chan 2002] and applied
to 3D surfaces [Bonneel et al. 2018; Tong and Tai 2016; Wang et al.
2022] and volumes [Coeurjolly et al. 2016]. Our method, similar to
the MS functional, jointly recovers piecewise-smooth functions and
discrete discontinuities. Unlike level-set-based methods [Esedoglu
and Shen 2002; Vese and Chan 2002], ours supports open boundaries
and produces more accurate discontinuities free of narrow bands
[Bonneel et al. 2018; Tong and Tai 2016] and staircasing artifacts [Le
et al. 2022; Tsai et al. 2001]. While Wang et al. [2022] also discretize
discontinuities on mesh edges, their representation (constant colors
per face) lacks the expressiveness of our neural model (Fig. 3).

3 METHOD
Given a 2D image function 𝐼 (x), x ∈ R2, we aim to approximate it
with a 2D neural field that is continuous everywhere, except for
locations with sharp changes in the input. In our implementation,
𝐼 (x) is given by nearest-neighbor sampling of a raster image.

The desired properties of such 2D neural fields are formulated by
Belhe et al. [2023]. Let Ω be a 2D domain and Γ = {𝛾0, · · · , 𝛾𝑛−1 |
𝛾𝑖 ∈ Ω,∀𝑖} be curves that can only intersect with each other at
endpoints 𝜕Γ. The directional discontinuity is definedwith respect to
a point x ∈ R2, a polar coordinate system centered at x and a angular
coordinate 𝛼 ∈ R. The directional limit of a function at a position x
along a direction 𝜃 is defined asℎ(x, 𝜃 ) = lim𝑟→0+ 𝑓 (C(𝑟, 𝜃 )), where
C(𝑟, 𝜃 ) maps the polar coordinate to Cartesian coordinate (see x0
in inset). A function is directionally discontinuous at x and 𝛼 if

lim
𝜃→𝛼+

ℎ(x, 𝜃 ) = lim
𝜃→𝛼−

ℎ(x, 𝜃 ) . (1)
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Following this continuity criteria, a
field 𝑓 : Ω → R𝑑 is: (1) continuous at
x ∈ Ω \ Γ (e.g., x3 in inset); (2) direction-
ally discontinuous for the two tangent
directions at x ∈ Γ \ 𝜕Γ (e.g., x2); (3) di-
rectionally discontinuous at the tangent
direction pointing inwards to the curve(s)
at x ∈ 𝜕Γ (e.g., x4). Note that 𝛾𝑖 can be a
curve [Belhe et al. 2023]. For simplicity,
we only consider the case where 𝛾𝑖 is a line segment and approxi-
mate curve geometries by adjusting triangle density.

Overview. Our neural field is built upon an underlying triangle
mesh and discontinuous feature function defined locally within each
vertex one-ring. To see how it works on triangle meshes, we first
analyze the 1D case then extend the formulation to 2D (Section 3.1).
This discontinuous feature function allows discontinuity across the
mesh edges from which we learn the target discontinuous edge set
Γ. We approximate the target image by initializing a triangle mesh
(Section 3.2.1), fitting a neural field with all edges being potentially
discontinuous (Section 3.2.2), and refining to enforce continuity on
almost-continuous edges (Section 3.2.3).
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Fig. 4. (a) Our 1D feature basis functions fit discontinuous target function with continuous variables (𝑤, l, r). (b) In a 2D vertex neighborhood, our 1D feature
basis functions are defined along the radial direction. (c) The features have a constant piecewise slope per dimension, which is enhanced by an MLP.

3.1 Neural Field with Discontinuous Features
Given a triangle mesh in R2, we define learnable discontinuous
feature function basis within vertex one-rings. Optimization of dis-
continuous functions would typically require discrete operations,
challenging automatic differentiation. We observe that by treating
all mesh edges as being potentially discontinuous, we can represent
the magnitude of discontinuity with continuous variables. In this
way, we can optimize the continuous variables with the standard
autodiff-gradient-based approach. We first introduce our feature
function basis in R (Section 3.1.1) then extend it to R2 (Section 3.1.2).

0 1

y = ax + b3.1.1 Discontinuous field in 1D. Consider a sim-
ple 1D linear function 𝑔(𝑥) = 𝑎𝑥 + 𝑏. We can
restrict its domain to 𝑥 ∈ [0, 1) and map this
function into the unit circle S1. In this way, we
construct a discontinuity at 𝑥 = 0 when 𝑎 ≠ 0.
This construction enables standard autodiff to
calculate the left and right derivatives of 𝑔(𝑥)
at the discontinuity location. Given a closed
polyline 𝑆 = (𝑉 , 𝐸) and an arbitrary reference
coordinate 𝑥 ∈ S1 on it, we define a local coor-
dinate 𝑥𝑖 = 𝑡𝑖 (𝑥) centered at each vertex 𝑣𝑖 ∈ 𝑉
and a linear function 𝜑𝑖 (𝑥𝑖 ) = 𝑎𝑖𝑥𝑖 +𝑏𝑖 . These functions form a basis
for piecewise linear functions

𝑔(𝑥) =
∑︁
𝑣𝑖 ∈𝑉

𝜑𝑖 (𝑡𝑖 (𝑥)) =
∑︁
𝑣𝑖 ∈𝑉
(𝑎𝑖𝑡𝑖 (𝑥) + 𝑏𝑖 ) , (2)

which is discontinuous at 𝑣𝑖 if 𝑎𝑖 ≠ 0. Note that its discontinuous
pieces all share the same slope of

∑
𝑣𝑖 ∈𝑉 𝑎𝑖 (see Fig. 4a).

This single-value basis has limited expressiveness. To improve
this, we extend to 𝑘-dimensional features and over-parameterize.

F(𝑥) = b +
∑︁
𝑣𝑖 ∈𝑉

F𝑖 (𝑡𝑖 (𝑥)) = b +
∑︁
𝑣𝑖 ∈𝑉

𝑤𝑖 (𝑡𝑖 (𝑥) · l𝑖 + (1 − 𝑡𝑖 (𝑥)) · r𝑖 )

(3)

= b +
∑︁
𝑣𝑖 ∈𝑉
(𝑤𝑖 (l𝑖 − r𝑖 )𝑡𝑖 (𝑥) +𝑤𝑖r𝑖 ) (4)

where, intuitively,𝑤𝑖 ∈ R controls whether a discontinuity is elimi-
nated; l𝑖 , r𝑖 ∈ R𝑘 are left and right features defined on either side
of a vertex 𝑣𝑖 ; the last term in Eq. 3 defines a linear interpolation
between these two features; b ∈ R𝑘 is a global bias (Fig. 4a).
We pass feature F(𝑥) to an MLP (R𝑘 ↦→ R3) for our neural field

𝑓 (𝑥) = MLP(F(𝑥)) . (5)

Our neural fields use shallow MLPs: two layers of 64 neurons for
1D, two layers of 128 neurons for 2D, with tanh activations.

feature
basis

We conduct a simple 1D fitting exper-
iment (inset). The target function (blue)
is a function of translated sine pieces and
discontinuities at four points. For refer-
ence, we construct a 1D feature field (𝑘 =

5) with features defined at these four lo-
cations and linearly interpolated between
them (orange,top). We compare this refer-
ence to our 1D model (𝑘 = 2) with poten-
tial discontinuities at the matching points
(orange,below; feature basis functions are F𝑖 in Eq. 3). Contracted
with our faithful approximation, the reference field not only fits the
discontinuities (red dashed lines) with inaccurate steep continuous
jumps but also fails to stay close to the continuous pieces.

F̂1

F̂0F̂2
F

3.1.2 Discontinuous field in 2D. We extend
this 1D field into 2D domain Ω on a triangle
mesh𝑀 = (𝑉 ,𝑇 ), where𝑉 ,𝑇 are vertex and
face set. The feature value at a point x ∈
Ω intersecting a triangle 𝑇𝑖 = (𝑣0

𝑖
, 𝑣1
𝑖
, 𝑣2
𝑖
) is

determined by the barycentric interpolation
of three per-vertex local features

F(x) = (1 − 𝜆1 − 𝜆2)F̂0
𝑖 (x) + 𝜆1F̂1

𝑖 (x) + 𝜆2F̂2
𝑖 (x), 𝜆1, 𝜆2 ∈ [0, 1], (6)

The local features are constructed similarly to the 1D feature
introduced in Section 3.1.1. Given a vertex v𝑖 , the local feature is

F̂𝑖 (x) = b𝑖 +
∑︁

v𝑗 ∈N(v𝑖 ),𝑖≠𝑗
F𝑖, 𝑗 (𝑡 𝑗𝑖 (x)) (7)

= b𝑖 +
∑︁

v𝑗 ∈N(v𝑖 ),𝑖≠𝑗
𝑤𝑖, 𝑗

(
𝑡
𝑗
𝑖
(x) · l𝑖, 𝑗 + (1 − 𝑡 𝑗𝑖 (x)) · r𝑖, 𝑗

)
(8)

= b𝑖 +
∑︁

v𝑗 ∈N(v𝑖 ),𝑖≠𝑗

(
𝑤𝑖, 𝑗 (l𝑖, 𝑗 − r𝑖, 𝑗 )𝑡 𝑗𝑖 (x) +𝑤𝑖, 𝑗 r𝑖, 𝑗

)
. (9)

v0

v1

v2

b

l0,1

r0,1

r1,0

l1,0
HereN(v𝑖 ) is v𝑖 one-ring and v𝑖 , v𝑗 are

connected by an edge; b𝑖 ∈ R𝑘 is a bias de-
fined at the center v𝑖 ; 𝑡 𝑗𝑖 (x) maps x to the
local polar coordinate system centered at
v𝑖 with (v𝑖 , v𝑗 ) as the polar axis. To make
the basis in Eq. 8 a linear interpolation, we
normalize 𝑡 𝑗

𝑖
(x) from [0, 2𝜋) to [0, 1). Note
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that the bias b𝑖 is introduced so a vertex reduces to a regular continu-
ous vertex [Belhe et al. 2023] when all adjacent edges are continuous.
The feature l𝑖, 𝑗 , r𝑖, 𝑗 ∈ R𝑘 and the discontinuity weight 𝑤𝑖, 𝑗 ∈ R
are defined in the same way as the 1D case. The only difference
is how l𝑖, 𝑗 , r𝑖, 𝑗 ,𝑤𝑖, 𝑗 are defined between adjacent vertices. The fea-
tures l𝑖, 𝑗 ≠ l𝑗,𝑖 , r𝑖, 𝑗 ≠ r𝑗,𝑖 are defined on the half-edges granting
freedom for vertices to have local “colors” while the discontinuity
weight𝑤𝑖, 𝑗 = 𝑤 𝑗,𝑖 are shared between two vertices for consistent
continuity behavior along an edge.

Like our 1D case, we pass the interpolated feature F(x) through a
shallow MLP (Algorithm 1 where AngleCCW computes CCW angle
between two vectors).

Algorithm 1: Field Inference
Function infer (x, M)

𝑇, 𝜆1, 𝜆2 ← PointInFace(x, 𝑀) ;
forall v𝑖 in 𝑇 = (v0, v1, v2) do

forall 𝑒 𝑗
𝑖
in AdjacentHalfEdge(v𝑖 ) do

𝜃
𝑗
𝑖
← AngleCCW((x − v𝑖 ), 𝑒 𝑗𝑖 ) ;

𝑡
𝑗
𝑖
← fmod( 𝜃−𝜃

𝑗

𝑖

2𝜋 + 1, 1);
end
F̂𝑖 (x) ←
b𝑖 +

∑
v𝑗 ∈N(v𝑖 ),𝑖≠𝑗

(
𝑤𝑖, 𝑗 (l𝑖, 𝑗 − r𝑖, 𝑗 )𝑡 𝑗𝑖 +𝑤𝑖, 𝑗 r𝑖, 𝑗

)
Eq. 8;

end
F(x) ← (1 − 𝜆1 − 𝜆2)F̂0 (x) + 𝜆1F̂1 (x) + 𝜆2F̂2 (x) Eq. 6 ;
return MLP(F(x));

end

3.1.3 Comparison to feature space in [Belhe et al. 2023]. Belhe et al.’s
per-vertex features are also defined in local polar coordinate

F̂𝑖 = Fcw𝑖
𝜃 ccw
𝑖

𝜃 cw
𝑖
+ 𝜃 ccw

𝑖

+ Fccw𝑖

𝜃 cw
𝑖

𝜃 cw
𝑖
+ 𝜃 ccw

𝑖

. (10)

This interpolation scheme (Eq. 2 [Belhe et al. 2023]) finds the
closest discontinuous edges clockwise (“cw”) and counter-clockwise
(“ccw”), then radially (based on 𝜃s) interpolates the half-edge fea-
tures Fcw

𝑖
, Fccw

𝑖
(corresponding to our l, r features). Unlike the entire

coverage of 2𝜋 of our interpolation, theirs only covers the domain
between two consecutive discontinuities. Additionally, our local

(a) [Belhe et al. 2023] (c) a�er feature removal(b) our feature

cannot be closely

approximated

a�er removal

…and linearly

approximated

can be

removed…

Fig. 5. (a) Our feature (green) differs from Belhe et al.’s feature (cyan). (b)
This allows us to easily discard almost-continuous edges.

Fig. 6. We initialize by triangulating Canny edges [Canny 1986] with Tri-
Wild [Hu et al. 2019], then deforming and remeshing interleavedly. The
deformation is posed as per-face constant color approximation.

feature function have a constant slope in each piece while theirs can
have various slopes (e.g., Fig. 5a). However, our design is tailored to
handle unknown discontinuities. When a basis vanishes, the edge is
continuous, we can easily remove its associated features. Compared
to ours, Belhe et al.’s feature definition allows almost-continuous
edges have significantly different slopes in its two adjacent domains.
This difference makes linear approximation (magenta line in Fig. 5a)
inaccurate after redundant feature removal, and as a result, Belhe
et al.’s needs to save more redundant features.

The disadvantage of having constant piecewise slopes is mitigated
by the MLP as experimentally demonstrated in Section 5. Further-
more, our feature and interpolation scheme can be easily shown to
satisfy the continuity criteria proposed by Belhe et al. (Section 3).
The discontinuous edge set Γ is a subset of the mesh edges 𝐸 and
consists of edges where𝑤𝑖 (l𝑖, 𝑗 − r𝑖, 𝑗 ) ≠ 0. On each edge, we define
the largest feature value jump among all half edges and feature
dimensions as 𝐷𝑖, 𝑗 = max(𝑤𝑖 (l𝑖, 𝑗 − r𝑖, 𝑗 )). This value, discontinuity
indicator, reflects the magnitude of the feature space discontinuity.

3.2 Learning Discontinuous 2D Neural Field
3.2.1 Mesh initialization. We initialize the triangle mesh 𝑀 =

(𝑉 ,𝑇 ) to be roughly aligned with target discontinuities (Fig. 6).
Note that our method does not require exact edges as it is able to
refine edge locations in the next optimization step (Section 3.2.2).
But rough alignments are still necessary to obtain discontinuous
edges in the early iterations so we can apply differentiable rendering
techniques to modify discontinuous edge locations (Fig. 7).

We first roughly detect discontinuities with a Canny edge detector
[Canny 1986]. We then connect positive pixels to their correspond-
ing 8-neighbors and apply TriWild [Hu et al. 2019] to generate a
triangle mesh𝑀0. Since the results from the Canny edge detector
are inaccurate and limited to the pixel grid, it is only for ensuring
the desired triangle density around potential discontinuities.

We use a field 𝑓0 (x;𝑀) with per-face constant colors as a proxy for
our initialization. We approximate the target with 𝑓0 by optimizing

min
𝑀

∫
Ω
∥ 𝑓0 (x;𝑀) − 𝐼 (x)∥2 𝑑x + 𝜆boundary

1
|𝜕𝑀 |

∑︁
v∈𝜕𝑀



v − v0

2
,

(11)

where the second term is a MSE loss for softly fixing the boundary
(𝜕𝑀) to their initial positions v0s (𝜆boundary = 10−2). We discretize
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30 iterations 100 iterations 400 iterations

D = 0.5

D = 0

discontinuities
accumulate

discontinuities
align

Fig. 7. We jointly optimize our field and its underlying mesh. (a) In the early
epochs, our indicated discontinuities begin to accumulate around the target
discontinuities. (b) As optimization progresses, our method produces close
interior color approximation and simultaneously aligns discontinuities.

the first term by stratified sampling triangles and compute gradi-
ents using SoftRasterizer [Liu et al. 2019], which can be replaced
by other differentiable renderers. We interleave the deformation
with optional remeshing steps. See our supplemental document for
details.

3.2.2 Field optimization. Given a roughly aligned triangle mesh𝑀 ,
we optimize our neural field to approximate the input (Fig. 7). Our
loss function is defined as

𝐿 =

∫
Ω
∥ 𝑓 (x;𝑉 ,Θ) − 𝐼 (x)∥2 𝑑x + 𝜆discont

∫
𝐸

∥𝑤 (l − r)∥1 𝑑x, (12)

where the first term is a regular 𝐿2 fitting loss with varying vertex
positions𝑉 and neural field parameters Θ (MLP parameters, feature
functions F, and biases b); the second term is a sparsity inducing
term (𝜆discont = 5 × 10−3) penalizing feature space value jumps
across edges. We discretize the second term into

∑
𝑒𝑖,𝑗 ∈𝐻



𝑒𝑖, 𝑗 

 ·

𝑤𝑖, 𝑗 (l𝑖, 𝑗 − r𝑖, 𝑗 )




1, where 𝑒𝑖, 𝑗 ∈ 𝐻 is a half-edge with length


𝑒𝑖, 𝑗 

,

and𝑤𝑖, 𝑗 , l𝑖, 𝑗 , r𝑖, 𝑗 are corresponding feature variables.
Note that our loss is similar to that of the MS functional, which

contains a fitting term (corresponding to our first term), a smooth-
ness term and a discontinuity sparsifying term (corresponding to
our second term). We do not include an explicit smoothness term
and rely on MLP’s smoothness bias.

The first term depends on our field function 𝑓 with discontinuities
defined by vertices 𝑉 and feature functions F. To correctly estimate
the gradient of this integral, we apply edge-sampling Monte Carlo
estimation [Li et al. 2018]. We observe that discontinuity indicator
𝐷 = max(𝑤 (l − r)) gives a reasonable estimation about discontinu-
ous edges. As continuous edges do not contribute to this gradient, we
importance sample the discontinuous edges for efficiency. Although
the initial mesh contains edges close to the exact discontinuity loca-
tions, the imperfection can result in low discontinuity indication in
areas adjacent to true discontinuities. Because of this, we extend the
important edge set to edges with 𝐷 > 𝛽 and their adjacent edges.

Fig. 8. Example log histogram of discontinuity indicator 𝐷 . The majority of
edges are identified as continuous, allowing for efficient optimization and
storage of our neural field. We apply an adaptive greedily rounding strategy
to flexibly determine the final discontinuous edges.

We sample these important edges with 5× probabilities than other
edges. For detailed gradient formulas, see our supplemental.

3.2.3 Rounding. Once our neural field sufficiently approximates the
input, we discard features on almost-continuous edges. We refer to
this step as “rounding”, a term borrowed from integer programming
[Conforti et al. 2014]. We only round in one direction—setting𝑤 = 0
on almost-continuous edges while leaving the remaining𝑤s free.

We employ an adaptive rounding strategy (Fig. 8). First, we round
by simply thresholding the discontinuity indicator 𝐷 , labeling all
edges with 𝐷 < 𝛽 as continuous. Then, we greedily discard edges
using a priority queue of 𝐷 . We discard an edge if the accumulated
MSE increase is less than 𝜎 and keep it otherwise. To discard an edge,
we push its contribution 0.5 ·𝑤 (l − r) +𝑤r to the center vertex bias.
Thanks to the locality of our features, this greedily rounding can be
done efficiently. After the rounding step, we continue refining this
new rounded neural field and the mesh with more iterations.

4 IMPLEMENTATION
We implemented our method in PyTorch [Paszke et al. 2019]. To
avoid flipped triangles caused by sparse gradients, we apply the
large-step precondition [Nicolet et al. 2021] for mesh initializa-
tion and field optimization , with weight of 1, 0.5 respectively. We
use ADAM [Kingma and Ba 2015] for both steps with (𝛽1, 𝛽2) =
(0.9, 0.999) and learning rates of 1 and 2 × 10−2 respectively.
To ensure our 𝑤s serving as a control over discontinuities, we

assign𝑤 = sigmoid(10𝑤̃) where 𝑤̃ is the actual feature parameter.
During the optimization, we use subpixel stratified sampling of
spp = 22, a key to seamlessly accounting for input anti-aliasing;
we set the edge sample number to 42 ×𝑊 × 𝐻 . We accumulate
gradients from all interior and edge samples per epoch, scheduling
our optimization with 70 epochs of interior fitting and 130 epochs of
interior and edge optimization. After the rounding step, we continue
optimization with both sampling for additional 200 epochs.

We demonstrate a typical distribution of 𝐷 (Fig. 8). The threshold
𝛽 defines the hard cutoff of continuous edges and mostly affect the



2D Neural Fields with Learned Discontinuities • 7

Table 1. Quantitative measures.

Methods
Denoising Denoising +

Super-resolution (2×)
PSNR ↑ LPIPS ↓ Median

Chamfer ↓ PSNR ↑ LPIPS ↓

Per-Vertex 30.758 0.0593 - 30.344 0.0747
InstantNGP 39.016 0.0431 - 32.715 0.0261
MS Pixel 35.563 0.0319 - - -
MS Mesh 36.159 0.0321 0.580 36.118 0.0466
Ours 44.486 0.0261 0.165 43.913 0.0423

computational cost. The MSE change threshold 𝜎 directly affects the
result. We set 𝛽 = 0.02, 𝜎 = 5 × 10−6 when not explicitly specified.

5 EVALUATION
We evaluate our method with various applications: denoising, super-
resolution, segmentation and vectorization. We approximate dif-
ferent types of target functions: constant functions, gradients in
vector graphics, harmonic functions in diffusion curves, more com-
plicated functions in synthetic 3D renderings (Fig. 2), human-drawn
artistic images, natural images, and spatial data (depth maps). We
compare to continuous neural fields, represented by a simple refer-
ence feature field with per-vertex features and InstantNGP [Müller
et al. 2022], and demonstrate that discontinuity representation is
necessary for these tasks. We evaluate the accuracy of our detected
discontinuities by comparing against pixel-based MS functional and
a recent triangle-mesh-based MS method [Wang et al. 2022]. See
our supplemental document for setup details.

Denoising. Noise in images come from many sources. We test on
diffusion curves with noisy Monte Carlo samples rendered using
walk-on-spheres (WoS) method [Muller 1956; Sawhney and Crane
2020]. We randomly generate 40 diffusion curves in the shapes of
line segments, rectangles, and circles. Half of these only contains
integer-coordinate rectangles and thus has no anti-aliasing. These
random diffusion curves are rendered with a low number of samples
per pixel (spp = 200) in 5122 resolution and the ground truth (GT)
denoised images are generated with spp = 2000. As demonstrated in
Fig. 3,9, our field simultaneously approximates the target harmonic
functions and denoises thanks to the smoothness bias of MLP, while
the comparison methods either struggles to approximate or over-fits
to noise. We conduct quantitative comparisons (Table 1), in which
our method achieves a significant improvement (> 5dB) over the
second best method, InstantNGP. Moreover, we verify our method’s
capability of recovering discontinuities. We quantify the perfor-
mance by measuring Chamfer distance between the ground truth
diffusion curve geometries and the discontinuous edges detected by
mesh-based MS [Wang et al. 2022] and our method. Mesh-based MS
produces discontinuous edges that are 3.5× Chamfer distance away
from the GT compared to our results. See Fig. 9 for visuals.

Additionally, we qualitatively evaluate our method with the task
of denoising JPEG-compressed vector images (constant color fills
and human-created gradients). Our method not only approximates
these two types of functions but also reduces JPEG compression
artifacts without prior knowledge about the task.

Super-Resolution. We qualitatively show zoom-ins (1.5×, 2×, 4×,
30×) of the approximation results across this paper (Fig. 1,2,3,9). As
presented by the previous work Belhe et al. [2023], although contin-
uous neural fields like InstantNGP closely approximate the input in
the original scale, once zoomed in, especially at high zoom levels,
they start to exhibit blurs due to lack of discontinuity representation.
We combine the super-resolution quantitative evaluation with the
denoising evaluation by measuring the same resulting approxima-
tions with 2× zooms. We measure against the clean diffusion curve
images with spp = 2000 and 10242 canvas size. We remark that
while the two discontinuity-aware methods, mesh-based MS and
ours, output results with similar PSNR as the denoising evaluation,
InstantNGP’s results experience a drop of PSNR due to the blur
artifacts, widening the gap with our method. LPIPS attempts to
measure semantic similarity and is less sensitive than PSNR to the
absolute function values in the vicinity of discontinuities.

Segmentation. Beyond RGB(A) images, 2D image functions also in-
clude general 2D functions, spatial data, such as depth, normal maps,
optical flows, and even CLIP feature maps [Radford et al. 2021]. We
evaluate on diffusion-generated depth maps [Ke et al. 2023] (Fig. 11).
Unlike typical scanned depth data, they contain noise originated
from neural network, especially around depth discontinuities. We
demonstrate that our method can conduct edge-based segmentation
using clean cuts separating depth discontinuities.

Vectorization. Apart from the synthetic images, we approximate
artistic drawings and natural images. This approximation process
can be considered as vectorization since the resulting discontinuous
neural fields are resolution-independent, an important property of
vector images. In Fig. 10a, we compare our approximation of artistic
inputs to the vectorization of Adobe Illustrator Image Trace, a typical
tool using solid fills. Contrasted with the limited expressiveness
of solid fills, our neural field is able to preciously represent the
targets and support clear zoom-in views. As solid-fill vectorization
tools, e.g., Adobe Illustrator, Potrace, dominate for this task, we
also demonstrate a blending application. By adjusting the rounding
parameters, our neural field can blend solid-fill regions, creating
smooth color gradients (Fig.12).We stress test our method on natural
images. We show in Fig. 10b two successful approximations with
mild denoising effects, similar to the edge-preserving bilateral filter.

6 LIMITATIONS AND FUTURE WORK
Our method only supports regular triangle meshes instead of the
curved triangle meshes as Belhe et al.’s, which remains future work.
We expect this extension to further improve the ability of our neural
field to approximate natural images (Fig. 10). Additionally, our fit-
ting procedure replies on the initial mesh to be reasonably aligned
with the target discontinuities. This may not hold when the target
visual feature is small and close to the size of noise or when the
colors across the discontinuities are close. Applying subdivision or
remeshing to our neural fields as well as exploring more flexible
underlying structures and adapting our proposed feature functions
to these structures could be interesting future directions.

Our field is single-level compared to neural fields with multi-level
feature grids, such as InstantNGP [Müller et al. 2022]. This design
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provides denoising power and compressed field size—sizes of our
fields commonly match those of InstantNGPs with 214 hash table
size (compared to their default 224). Despite these benefits, efficient
representation of high-frequency details, which can stay homoge-
neous within a continuous region, is a relevant open question.

7 CONCLUSION
We introduce a mesh-based discontinuous 2D neural field that learns
unknown discontinuities, advancing the discontinuity-aware neural
fields proposed by Belhe et al. [2023]. By treating all mesh edges
as potential discontinuities, our method solves for the magnitude
of discontinuities through continuous optimization. Our approach
outperforms continuous neural fields, such as InstantNGP [Müller
et al. 2022], in denoising and super-resolution tasks, maintaining
sharp boundaries even at high zoom levels. Our improvement of
Belhe et al.’s initial framework provides immediate benefits for
applications,including the vectorization of artistic drawings and
photos, and the cleanup of diffusion-generated depth data.
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Fig. 9. Denoising. (a) We evaluate our model on randomly generated diffusion curves and assess the results for denoising effects and image quality under
zoom, compared against continuous neural fields, e.g., InstantNGP [Müller et al. 2022], and MS functional based methods [Wang et al. 2022]. (b) We verify
that our neural field can approximate simple constant color fills and gradients under JPEG compression.

Fig. 10. Vectorization of artistic and natural images. (a) Our method qualitatively outperforms common vectorization methods in terms of approximation and
representation. (b) Our algorithm can vectorize natural images into resolution-independent images with sharp region boundaries when zoomed in.
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Fig. 11. Segmentation of diffusion-generated depth data. (a) Depth map generated by diffusion model [Ke et al. 2023] is corrupted by model-induced noises,
particularly around discontinuities. (b) Our neural fields closely approximate input data while yielding clean cuts between depth discontinuities. See (c) for
point cloud zoom-ins.

Fig. 12. Blending posterized vector images. Vectorization using only solid color
fills generates posterized vector images. Our method can be applied to blend
solid fills and create a resolution-independent image with color gradients.
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A IMPLEMENTATION DETAILS
Mesh initialization. During our mesh initialization, we interleave

the deformation with optional remeshing steps. In a remeshing step,
we apply in order

(1) Edge collapses: We remove a face with area smaller than
2 × 10−5 of the canvas area or with an angle greater than
120◦ by collapsing its shortest edge.

(2) Edge splits: We split a face with 𝐿2 fitting loss greater than
𝐿split = 2 by splitting its longest edge at the mid point.

(3) Edge flips:We first flip edges so the triangulation is Delaunay
then apply flips to minimize a hybrid loss of 𝐿2 fitting loss
and Delaunay loss.

The hybrid loss is defined as∑︁
𝑒∈𝐹𝑖 ,𝐹 𝑗



𝑓0 (𝑥 ; 𝐹𝑖 , 𝐹 𝑗 ∈ 𝑀) − 𝐼 (𝑥)


2 + 𝜆Delaunaytrace(L), (13)

where 𝐹𝑖 , 𝐹 𝑗 are the two faces defined by an edge; L is the positive
semi-definite cotan Laplacian operator defined by the four vertices
in 𝐹𝑖 , 𝐹 𝑗 ; 𝜆Delaunay is set to 0.5. It is shown that the trace of cotan
Laplacian is decreased by Delaunay flips and reaches a global mini-
mum when the 2D triangulation is Delaunay [Alexa 2019].

Field optimization. To jointly optimize our neural field in triangle
interiors and the triangle mesh, we compute gradient of the render-
ing integral with respect to moving triangle area. This is achieved
via common differentiable rendering technique of edge-sampling
Monte Carlo estimation [Li et al. 2018]

∇
∫
Ω
∥ 𝑓 (x;𝑉 ,Θ) − 𝐼 (𝑥)∥2 𝑑x (14)

=

(
∇𝑇

∫
Ω
𝑓 (x;𝑉 ,Θ)𝑑x

)
·
∫
Ω
(𝑓 (x;𝑉 ,Θ) − 𝐼 (x))𝑑x. (15)

This gradient can be estimated as

∇
∫
Ω
𝑓 𝑑𝑥 (16)

=

∫
Ω\𝐸

𝜕

𝜕Θ
𝑓 𝑑x +

∑︁
𝑒𝑖 ∈𝐸

∫
𝛼𝑖 (x)=0

∇𝑉 𝛼𝑖 (x)
∥∇𝑉 𝛼𝑖 (x)∥

𝑓 (x) 𝑑𝑝 (x), (17)

where the first term is the regular gradient of the field with respect
to the field parameter in the face interiors; the second term is the
gradient with respect to the vertices along discontinuous edges. The
edges in the second term is defined by implicit functions 𝛼 (𝑥).

B PARAMETER CONFIGURATIONS
Mesh Initialization. We detect Canny edges with low and high

thresholds of 100 and 200. To reduce the salt-and-pepper noises in
the 3D renderings, we smooth the image with Gaussian kernel of
size 3 before Canny edge detection. We call TriWild with target
edge length ratio of 10−2. We deform the mesh with SoftRasterizer
(sharpness kernel size of 10−1) for 200 epochs and remesh every
50 epochs. The per-face colors are set to be the face mean color
in every iteration rather than kept as variables. Our remeshing
implementation is based on the continuous remeshing PyTorch im-
plementation [Palfinger 2022]. We employ per-triangle stratified
sampling to avoid flipping very small triangles during mesh initial-
ization. For the artistic drawing inputs where noise is minimal and
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Fig. 13. Different designs of mesh-based feature fields.

faithful approximation is the goal, the TriWild target edge length
ratio is adjusted to 3 × 10−3 and the mesh deformation is run for
100 epochs without remeshing.

Field Optimization. We initialize all our neural field weights using
standard Xavier normal distribution and all biases as zeros.

C COMPARISON SETUP
Rendering. We render the resolution-independent results of mesh-

based MS, InstantNGP, and our method using subpixel grid samples
(spp = 42) for better visual effects given the target resolution.

JPEG compressed vector images. We generate input raster image
by normalizing a vector image such that its longer axis occupies
90% of the 512 × 512 white canvas, then rasterizing the image with
Inkscape and compressing it into a JPEG image with quality of 50
via ImageMagick.

InstantNGP. We use the tiny-cuda-nn [Müller 2021] based imple-
mentation for subpixel inference. We match the size of InstantNGP
and our neural field by adjusting InstantNGP’s hash table size. We
ensure InstantNGP’s convergence by running for 10𝑘 iterations.

Mumford-Shah functional. We reimplement a mesh-based MS de-
noising algorithm [Wang et al. 2022] and run it on the resulting
aligned mesh from our method. The pixel-based MS denoising algo-
rithm is implemented by replacing Wang et al.’s discretization with
the one on pixel grids. We conduct experiments with parameters:
𝛼 = 1, 𝛽 = 0.01, 𝛾 = 100, 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 0.01 and 10 iterations of alternat-
ing optimization. For comparison fairness, we grid search the discon-
tinuity threshold of mesh-based MS in the range of 𝑣 = [0.01, 0.09]
(step size of 0.01) and [0.1, 0.5] (step size of 0.1) given the Chamfer
distance.

Field of Junctions. We use the official implementation of FofJ
[Verbin and Zickler 2021]. We manually tune the parameters for
the most accurate approximation. Our experiment uses 𝜂 = 0.01,
𝛿 = 0.1, patch size 𝑅 = 17, stride 𝑠 = 5 for a 512 × 512 image,
consistency weights 𝜆𝐵 = 0.5, 𝜆𝐶 = 0.1, 𝑁𝑖𝑛𝑖𝑡 = 30 iterations,
𝑁𝑖𝑡𝑒𝑟 = 1000 iterations, the number of values to query 𝑁 = 10 in
Algorithm 2, learning rate of 0.03 for the vertex positions and 0.003
for the junction angles in the refinement step to generate the global
boundaries and smoothed image.

D ABLATIONS
Feature design. We compare to two simpler versions of our neural

field: per-vertex field and per-edge field (Fig. 13). The per-vertex
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Table 2. Ablation of feature design.

Methods
Denoising Denoising +

Super-resolution (2×)
PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓

Per-Vertex 30.758 0.0593 30.344 0.0747
Per-Edge 36.682 0.0178 35.518 0.0361
Ours 44.486 0.0261 43.913 0.0423

(a) input (spp = 200) (b) tanh (c) ReLU

2x

Fig. 14. ReLU activations generate redundant discontinuities.

field is a hybrid feature field with features stored at vertex. We
show and report the results of this per-vertex field as a reference
in the main text. We ablate our design of discontinuous edges by
introducing a per-edge field. This field interpolates the features
stored on the two consecutive half-edges of the query face (purple
arrows in Fig. 13). This interpolation is similar to our method but
the feature of this configuration is continuous across any edges.
Both versions are significantly worse than our model as reported in
Table 2 and shown in our supplementary materials. Similar to the
InstantNGP results, we observe that LPIPS is less sensitive to the
absolute function values in the vicinity of discontinuities.

Activation. We choose tanh for activations since we observe that
ReLU compete with discontinuous edges. As utilized by ReLU fields
[Karnewar et al. 2022], ReLU activations tend to create steep slopes,
serving an overlapping role as our discontinuous features. In Fig. 14,
our neural field with ReLU activations is less smooth compared to
the version with tanh activations. As we reply on the smoothness
of MLP, we decide on tanh for activations.
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