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Figure 1: LayerBuilder takes an input image and automatically computes a set of colored layers whose linear combination
reconstructs the original image. Expressed in this form, it is straightforward to interactively recolor the image by choosing a
new set of colors for the layers. On the right, we show two recolorings of each input image. The layer colors are shown in the
upper-right of each image. Layer weights range from 0 (black) to 1 (white).

Abstract
Exploring and editing colors in images is a common task in graphic design and photography. However, allowing
for interactive recoloring while preserving smooth color blends in the image remains a challenging problem. We
present LayerBuilder, an algorithm that decomposes an image or video into a linear combination of colored layers
to facilitate color-editing applications. These layers provide an interactive and intuitive means for manipulating
individual colors. Our approach reduces color layer extraction to a fast iterative linear system. Layer Builder uses
locally linear embedding, which represents pixels as linear combinations of their neighbors, to reduce the number
of variables in the linear solve and extract layers that can better preserve color blending effects. We demonstrate
our algorithm on recoloring a variety of images and videos, and show its overall effectiveness in recoloring quality
and time complexity compared to previous approaches. We also show how this representation can benefit other
applications, such as automatic recoloring suggestion, texture synthesis, and color-based filtering.

Categories and Subject Descriptors (according to ACM CCS): Image Processing and Computer Vision [I.4.9]:
Applications—;

1. Introduction

Representing an image by separating different elements into
layers is an integral feature of digital image editing software
such as Adobe Photoshop or GIMP. Layers offer an intuitive
way to edit the color and geometry of independent compo-

nents and localize changes to the desired portion of the final
image. When creating a digital image, artists carefully main-
tain the set of layers to make it easy to perform edits that
will enable rapid iteration through the design space. In most
cases, combining the layers is computationally straightfor-
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ward, allowing an artist to interactively evaluate how layer
edits affect the final image.

A layer representation is a powerful editing tool, but it
is not always available. Once an image is rasterized, its de-
composition into layers is typically lost. Furthermore, pho-
tographs or videos captured by camera or produced by ren-
dering systems may not have an accessible decomposition
into meaningful layers. The problem of recovering a good set
of layers for an image or video is not easy to specify, as dif-
ferent users and applications will prefer different layerings.
Nevertheless, for flattened images and videos, we would still
like to recover some of the powerful interactive editing op-
erations enabled by a meaningful layer decomposition.

In this paper, we focus on the problem of extracting layers
for use in image and video color editing. Our system takes
an input image or video and computes a decomposition into
colored layers, whose combination reconstructs the original
input. Users can optionally specify additional constraints to
further refine the layers. Given this representation, it is easy
to perform edits and interactively recompose the final recol-
ored result. Figure 1 visualizes the process for both photo-
graphic and artistic images.

Our layers enable easy and interactive editing of im-
ages and videos, even in the presence of challenging color
blending effects such as semi-transparency, motion, and
unfocused pixel blur. LayerBuilder enables finer control
over each color range compared to color transfer tech-
niques [RAGS01, TJT05], which require a reference im-
age, and material or object matting techniques [CLT13],
which tend to extract larger patterned regions. Recolor-
ing methods using affinity-based edit propagation [AP08,
LJH10, CFL∗15] have similar control over colors but pro-
duce more halo artifacts in color blending regions because
they do not necessarily preserve color interpolation relation-
ships. Manifold-preserving edit propagation reduces these
artifacts but requires solving a linear system for each color
change [CZZT12]. Our method handles these regions as well
as manifold-preserving edit propagation, while making color
editing interactive after layer setup.

We show how to use the concept of locally linear em-
bedding to reduce the problem of extracting layers for color
editing to a simple iterative linear system. We adapt and ac-
celerate the edit propagation technique from Chen and col-
leages [CZZT12] to work for computing layers. Instead of
performing our solve directly over pixels, we demonstrate
that it is sufficient to solve for the layer decomposition on a
much smaller set of superpixels, then extrapolate the pixel
decomposition from the superpixel solution. For the images
shown, this results in a system with three orders of magni-
tude fewer free variables, permitting solves on large images
with many layers while remaining within reasonable mem-
ory and computational budgets. Finally, we compare our
method against previous recoloring approaches to demon-
strate its interactivity and robustness to color blending and

parameter choice. As shown in the supplemental video, once
the layer decomposition has been performed, all video and
image color edits are interactive, allowing artists to quickly
explore the potential coloring space.

We demonstrate the effectiveness of our system for re-
coloring a variety of artistic and natural images. We fur-
ther show that our layers can be used to augment existing
image processing or synthesis applications. We use Layer-
Builder to extend work on automatic pattern coloring sug-
gestion, which previously required pre-layered images and
operated on an unblended set of colors, to support any input
image and take advantage of our continuous layer decompo-
sition [LRFH13]. Texture synthesis algorithms which oper-
ate on a general feature space can easily use the layer decom-
position as a local feature vector for each pixel [LH06], al-
lowing synthesized textures to more faithfully respect long-
range effects in the exemplar. Finally, we show that like with
digital image editing tools, it is easy to produce significant
but localized modifications to the image by directly filtering
the layers and recombining them.

2. Related Work and Background

Related work for our method spans two main areas: image
recoloring via edit propagation and image layerization. We
also provide some background on locally linear embedding.

2.1. Image Recoloring via Edit Propagation

Affinity-based recoloring methods use pixel similarity to
propagate user color edits, in the form of strokes or palette
changes, to the rest of the image. Levin and colleagues con-
sider the similarity between neighboring pixels based on
luminance [LLW04]. To handle textured regions, An and
Pellacini consider the similarity between all pairs of pix-
els [AP08], a computation that can be sped up by cluster-
ing pixels beforehand [XLJ∗09]. Some methods compute
an alpha influence matte for each stroke [LAA08, FFL10],
allowing quick subsequent color tweaks. Li and colleagues
achieve interactive recoloring time by formulating edit prop-
agation as a radial basis function (RBF) interpolation prob-
lem where function coefficients depend on user-edited pix-
els [LJH10]. Chang and colleagues focus on recoloring via
extracting and editing the image’s color palette [CFL∗15].
They introduce a faster recoloring method by using RBF
functions where the coefficients depend only on the input
palette colors, and spatial information is not considered.
However, recoloring by shifting pixel colors based on their
similarity to other pixels (or palette colors) does not neces-
sarily preserve the color interpolation relationships between
pixels along color transitions (e.g. edges and gradients). As
a result, these methods tend to produce halo artifacts in these
color blending regions [CZZT12].

To reduce halo effects, Chen and colleagues propose a
smoothness term that preserves the pixel manifold structure
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of the image [CZZT12]. Each pixel’s color is represented
by a weighted combination of its K-nearest pixels in ap-
pearance and space. Recoloring an image should then both
respect user input as well as maintain these color relation-
ships in the result. This method can be accelerated by solv-
ing edit propagation for a smaller set of representative sam-
ples and then interpolating samples to get the final pixel col-
ors [CZL∗14]. Our work takes this idea of preserving the
pixel manifold up one level of indirection when decompos-
ing an image into layers. The layer decomposition of a pixel
should be a weighted combination of its K neighbors’ layer
decomposition, and the weights should be determined by
the color relationships of the pixels. Once we compute the
layers, image recolorization is very fast, and only requires
adding layers together.

2.2. Image Layers

A similar notion of layers is used in image matting [CCSS01,
LLW08, SV11], which separates objects from the back-
ground, and material matting [LL11, CLT13], which sepa-
rates different textures. A stroke-based or trimap input is
used to estimate alpha mattes for each layer as well as layer
colors. These techniques focus on facilitating object or mate-
rial manipulation, and their layers tend to capture objects or
textures that may have multiple colors. Our layers represent
a single color, allowing for cleaner and more fine-grained
color changes as we demonstrate in Section 4. Both types of
layers have orthogonal goals and may be combined to better
localize color edits to similarly-colored objects or materials.

Carroll and colleagues aim to recolor objects in pho-
tographs while updating their interreflections with other ob-
jects consistently [CRA11]. Their approach involves first
breaking the photo down into its material reflectance and
illumination intrinsic images [BPD09]. Assuming the ma-
terial reflectance image is piecewise constant and thus easily
recolorable, the authors focus on decomposing the illumi-
nation image into color-based layers given a user-specified
set of main colors. This method works best for recoloring
objects that are in focus where color blending is explained
mainly by illumination. We use a similar, but simpler, en-
ergy function for computing color-based layers. Rather than
specializing on interreflections, our color-based layers tar-
get a more general class of color blending effects, such as
ones due to depth-of-field, motion blur, and including more
pronounced interreflections. Our color-based layers can cre-
ate plausible results for a wide range of color edits without
requiring a decomposition into reflectance and illumination
images. In Section 4, we compare our method to the one by
Carroll and colleages for the case of interreflections.

Concurrently, Tan and colleagues developed a method
for extracting ordered single-color layers that use the
more traditional over operator to reconstruct the original
image [TLG16]. In contrast, our method extracts order-
agnostic additive layers that, although do not support

occlusion-related edits, involve minimizing a simpler energy
function and still enable a variety of color edits.

2.3. Locally Linear Embedding

Locally linear embedding (LLE) is a non-linear dimension-
ality reduction technique for data that lie on a manifold em-
bedded in a higher-dimensional space. LLE is based on the
intuition that each point and its neighbors form a locally lin-
ear patch of the manifold [RS00]. Then for a set of data
points x1, ...,xn, we can approximate each xi as a linear com-
bination of its K nearest neighbors. Specifically, we compute
the weights wi j that minimize the residual sum of squares
from reconstructing each xi,

n

∑
i=1

∥∥xi−∑
j 6=i

wi jx j
∥∥2

where for each i, ∑ j wi j = 1. These weights characterize the
manifold structure and can be computed efficiently [RS00].
This idea has been used to propagate scribble edits through
images and video, noting that in natural images, the color
at a pixel is often a blend of the colors of neighboring pix-
els [CZZT12].

3. Layer Decomposition

Our goal is to take an input image or video representing a
set of P pixels, a target number of layers N, and compute the
following:

• A set of N layer colors
• For each of the N layers, a P×1 column vector X j whose

entries denote the contribution of layer j to each pixel. X
is the PN× 1 column vector formed by concatenating all
X j.

Our algorithm is summarized in Figure 2 and consists of
four main steps. First, compute the layer colors from the in-
put pixels or obtain them from the user (Figure 2a). Second,
compute a superpixel segmentation of the image (Figure 2b).
Third, solve for the layer weights for each superpixel. This
problem reduces to solving a linear system (Figure 2c). Fi-
nally, for each layer, compute a per-pixel weight by linearly
combining the set of per-superpixel weights (Figure 2d).

3.1. Layer Colors

Because people may have different goals when recoloring an
image, we allow the user to either specify a palette or use an
automatic one. Automatic palettes provide a useful starting
point and also enable automatic recolorings (Section 5.2). In
all results, we specify when an automatic palette is used.

To provide intuitive controls over the space of possible
colorings, our algorithm should choose the N colors that a
person would likely choose as well as choose colors that
can linearly reconstruct the original image in RGB (or LAB)



S. Lin et al. / LayerBuilder: Layer Decomposition for Interactive Image and Video Color Editing

(a) Input image (b) Superpixel segmentation

(c) Per-superpixel layer weights (d) Per-pixel layer weights

Figure 2: Algorithm overview. (a) the input image and the
extracted palette. (b) the superpixel segmentation using 250
superpixels. (c) the red layer weights for each superpixel,
computed using Equation 8. (d) the result shown in (c) is
used to compute per-pixel weights for the red layer using
Equation 10. Figure 1 visualizes the complete layer decom-
position for this image using 2000 superpixels.

space. To this end, we adapt the color palette model intro-
duced by Lin and Hanrahan, which has been trained to match
palettes people would extract from images [LH13]. We add a
penalty term to this model based on the average color recon-
struction error, where error per pixel is measured by the dis-
tance from the pixel color to the convex hull of the palette. In
our experiments, we weight the term by −0.01λ where λ is
the sum of absolute weights in the Lin and Hanrahan model.

3.2. Superpixel Segmentation

Computing the per-layer weights directly on pixel values re-
sults in a system with a free variable for each pixel and each
layer weight. This rapidly becomes intractable to solve di-
rectly: for large images this may result in millions of free
variables, growing to billions of free variables for video se-
quences. To combat this problem, we take advantage of the
high correlation between nearby pixels. We solve for the
layer weights on a much smaller number of superpixels (or
supervoxels), and then compute the layer solution for each
pixel using a linear combination of nearby superpixels. The
image and video results in this paper use at most 4000 su-
perpixels, resulting in systems with multiple orders of mag-
nitude fewer free variables.

To compute superpixels, we use a variation of the seeded
region growing algorithm (SRG) [AB94] with iterative k-
means re-centering. We manually specify the number of su-
perpixels S and initialize each to a random seed location.
Superpixels are then computed by SRG, and their centroids
and colors are used as seeds for the next iteration of SRG, re-
peating for a total of 5 k-means iterations. For supervoxels,
we define pixel neighbors through 6-connectivity: 4 spatial
and 2 temporal neighbors.

From each superpixel we compute a 6-dimensional fea-
ture vector (r,g,b,x,y,t) formed by concatenating the average
pixel color with the superpixel’s spatiotemporal centroid.
The color, spatial, and temporal coordinates are normalized
between 0 and 1 and re-weighted according to importance.
In our experiments, we weight the spatial coordinates (x,y)
by 0.5, to bias distance calculations towards color and tem-
poral similarity. Figure 2b shows an example superpixel seg-
mentation with superpixel boundaries outlined in black.

3.3. Energy Function

In this section we will compute a set of per-superpixel layer
contributions L j ∈ L, where L j is a S×1 column vector de-
noting the contribution of layer j to each superpixel, and L is
the (SN)×1 column vector formed by concatenating all L j.
To quantitatively define what constitutes a good layering, we
minimize an energy function Θ(L) over the superpixel-layer
contributions L. Θ(L) is a weighted sum of four terms: man-
ifold consistency M(L), image reconstruction R(L), unity
U(L), and explicit constraints E(L).

Θ(L) = λmM(L)+λrR(L)+λuU(L)+λeE(L) (1)

Manifold consistency. Layer contributions should be
locally consistent, in that nearby and similar superpixels
should have similar layer decompositions. We implement
this term using the superpixel manifold determined by lo-
cally linear embedding, similar to the per-pixel constraints
used for edit propogation [CZZT12].

Following the approach used in Section 2.3, we express
the color of each superpixel si as a linear combination of the
color of the Ks-nearest superpixels si j:∥∥∥∥Color(si)−

Ks

∑
j=1

wi jColor(si j)

∥∥∥∥2

We solve for the weights wi j and represent them in an S×
S superpixel-manifold matrix W . The manifold consistency
term is then:

M(L) =
N
∑

j=1
||(IS−W )L j||2

= ||(ISN−M)L||2
(2)

where In is the n× n identity matrix and M is a block di-
agonal matrix with overall dimension SN×SN of the form:

M =


W 0 . . . 0
0 W . . . 0
...

...
. . .

...
0 0 . . . W

 (3)

Image reconstruction. The layers should reconstruct the
original image when multiplied by their colors and added
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together. We enforce this by measuring the squared image
reconstruction error:

R(L) = ∑
d∈(r,g,b)

||
N
∑

j=1
(cd jL j)−Bd ||2

= ||RL−B||2
(4)

where Bd is the S× 1 vector of channel d superpixel colors
and cd j is channel d of the color of layer j. R is a block
matrix with overall dimension 3S× (SN):

R =

 cr1IS cr2IS . . . crNIS
cg1IS cg2IS . . . cgNIS
cb1IS cb2IS . . . cbNIS

 (5)

and B is the concatenation of all Bd .

Unity. We encourage layer contributions for each super-
pixel to sum up to one, to help normalize the total contribu-
tion that can affect a single superpixel. Formally:

U(L) = ||UL− 1̂||2 (6)

where 1̂ is a S×1 column vector of ones and U is a S×(SN)
indicator matrix whose rows correspond to superpixels, with
ones in each column index corresponding to that superpixel’s
layer contributions:

ui j =

{
1 if j− i≡ 0 (mod S)

0 if j− i 6≡ 0 (mod S)

Explicit constraints. In some cases, hints from the user
indicating that a given layer should contribute to a given im-
age region can help create a better layering. For example,
these hints can separate similarly-colored but semantically
different regions. Given C user constraints, we penalize layer
contributions when they deviate from user constraints:

E(L) = ||EL−T ||2 (7)

where E is a C× (SN) indicator matrix that selects the user-
specified superpixel-layer contributions from L, and T is a
length C vector containing the user-specified target values.

When the user does not specify layer contribution con-
straints, our algorithm automatically adds constraints to pix-
els with very similar colors for each layer. This can encour-
age better separation between layers in many images. For
trickier images with independent regions sharing similar col-
ors, user-specified constraints are needed to better separate
these regions. Figure 3 shows a case where letting the user
assign superpixels to a particular layer results in better sepa-
ration between the cat’s white fur and the background.

Θ(L) is a quadratic function in L which can be minimized
by solving a linear system:(

λm(I−M)T (I−M)+λrRT R+λuUTU +λeET E
)

L =

λrRT B+λuUT 1̂+λeET T (8)

Figure 2c visualizes L j for one layer of the input image.

3.4. Computing Per-pixel Weights

We use the concept of locally linear embedding described in
Section 2.3 to extrapolate the per-pixel layer contributions X
from the per-superpixel contributions L. We start by comput-
ing for each pixel a set of Kp nearest superpixel neighbors.
The distance between a pixel and a superpixel is computed
using the Euclidean distance between the 6-dimensional su-
perpixel feature vector and the corresponding values for each
pixel. Next, we express the color of each pixel as a linear
combination of the colors of its Kp superpixel neighbors.
Specifically, for pixel pi we compute the weights qi j by min-
imizing ∥∥∥∥Color(pi)−

Kp

∑
j=1

qi jColor(si j)

∥∥∥∥2

(9)

subject to the constraint ∑
Kp
j=1 qi j = 1. We represent the set

of all qi j with a P×S matrix Q. Finally, for each layer j we
independently compute the per-pixel layer values X j from
the per-superpixel layer values L j by simple matrix multipli-
cation:

X j = QL j (10)

Figure 2d shows the result of multiplying the L j visual-
ized in Figure 2c by Q. Observe that high-frequency details
such as the small slivers of red in the lower-left of the im-
age are faithfully preserved, even though these slivers are
not contained in isolated superpixels.

3.5. Bounding Layer Contributions

Equation 8 does not constrain the range of layer contribu-
tions. Negative or large positive values can be unintuitive,
causing small edits to a layer’s color to have a disproportion-
ate impact on a pixel color. One approach to solve this prob-
lem is to formulate the optimization of L as a least-squares
problem with hard box constraints [0,1]. Although problems
of this form have known solutions, for large systems they can
still be prohibitively slow to solve when compared against an
unconstrained least-squares solve [Adl88].

Another approach is to first solve the unconstrained lin-
ear problem, then add in boundary conditions that have been
violated as soft constraints in future iterations of the solve.
Although it requires multiple iterations, this approach can ef-
ficiently solve some types of convex problems [BV04]. We
first perform the unconstrained solve and check which values
are negative. In the next iteration, we add a soft constraint for
these values to be 0 with weight λn, adding to the explicit
constraints in Equation 7. Combined with the unity term in
Equation 6, this encourages contributions to fall within the
range [0,1]. We refer to this approach as iterative negative
suppression.

We find that strictly enforcing the box constraints often
makes image reconstruction from the layers very sensitive
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Auto

User

Figure 3: Automatically determined constraints vs. user-specified constraints. Using user-specified constraints allows the layers
to better separate the cat’s white fur from the background.

Hard bounds

Neg. Suppr.

Figure 4: Layer and reconstruction results using 2000 superpixels. Palette colors were chosen automatically. Green indicates
layer values greater than 1 while red indicates values less than 0. Using hard bounding constraints fades the orange in this
image, and is more sensitive to the gamut of the palette chosen. Using soft constraints with negative suppression gives more
flexibility and can better reconstruct the image.

to the initial color palette. This is because the image can-
not reconstruct colors outside the convex hull of the palette.
Figure 4 shows a comparison between hard box constraints
(using CVX and the SDPT3 solver) and iterative negative
suppression. In this example, using hard box constraints re-
sults in layers that cannot reconstruct the orange in the orig-
inal image, while iterative negative suppression reconstructs
the image correctly and results in an otherwise similar lay-
ering. For 4000 superpixels, the convex solver took over an
hour to compute a layering, while the unconstrained linear
solve took only a few seconds. All the results shown in this
paper use four iterations of iterative negative suppression to
bound the magnitude of layer contributions.

3.6. Parameters

In our experiments, we find that the weights λm = 1, λr =
0.5, λu = 0.1, and λe = 0.1, and the number of superpixel-
to-superpixel and pixel-to-superpixel neighbors Ks = 30 and
Kp = 10 work well. We have not found our algorithm to be
very sensitive to the choice of these parameters, although
it is important that λm (which preserves color blending re-
lationships) and λr (which ensures the layers reconstruct the
original image) be sufficiently larger than λu and λe. Solving
for layers in RGB and LAB space also yields similar results.
For the results shown, we use RGB space.

4. Evaluation

We evaluate our algorithm by comparing recoloring results
with previous work, analyzing performance time, and show-
ing robustness under different number of superpixels. For
more comparisons, please see the supplementary materials.

4.1. Comparisons With Edit Propagation

We first compare our image recoloring results with those
of three previous algorithms: RBF interpolation [LJH10],
palette-based RBF interpolation [CFL∗15], and manifold-
preserving edit propagation [CZZT12]. RBF interpolation
uses the common scribble-based paradigm for edit propa-
gation, where a sparse set of colored strokes are propagated
throughout the input. Palette-based RBF interpolation uses
the same palette editing input as our method, and manifold-
preserving edit propagation has been demonstrated on both
types of inputs. Because of the difference in inputs, it is dif-
ficult to make direct comparisons. We instead attempt to per-
form equivalent edits across the three methods; scribble in-
put is provided to RBF interpolation while color palette ed-
its are provided to LayerBuilder, manifold-preserving edit
propagation, and palette-based RBF interpolation.

We ran each method on a variety of paintings and pho-
tographs. Figure 5 shows recoloring results from different
methods on five images from this set. For more examples,
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Input [LJH10] [CZZT12] [CFL∗15] LayerBuilder

Figure 5: Image recoloring comparison. The first column shows the input strokes to [LJH10] and the palette change for
LayerBuilder, [CZZT12], and [CFL∗15]. Colored strokes indicate a change in color on the selected pixels, while black strokes
constrain the pixels to stay the same color. Our method produces natural results even in the presence of challenging color
blending scenarios. RBF interpolation [LJH10] and palette-based RBF interpolation [CFL∗15] produces significant artifacts
at color boundaries and blended regions.

please see the supplementary materials. We used the same
parameters for all LayerBuilder results, except for the input
palette. For the previous methods, we show the best result
that does not overshoot the target region for recoloring, after
varying parameters (such as the number of nearest neigh-
bors K for manifold-preserving edit propagation [CZZT12]
and color weight σc for RBF interpolation [LJH10]). We use
the default grid dimension of 12 for palette-based RBF in-
terpolation [CFL∗15].

Our method preserves color transitions and blends as well
as manifold-preserving edit propagation and is much faster.
After layer computation, any color change only requires
computing a weighted sum of layer colors for each pixel,
while manifold-preserving edit propagation requires solving
a large linear system. In addition, because LayerBuilder pe-
nalizes negative layer weights, layers can often be recolored
to a dramatic degree, as seen in the soccer image. Manifold-
preserving edit propagation does not prevent propagation of
negative changes, so changing one color is more likely to
lead to unintuitive changes elsewhere, like the greener grass
in the soccer image. RBF interpolation and palette-based
RBF interpolation work well on sharp regions and with small

hue changes in blended regions. However, they are more
prone to halo artifacts at color blending boundaries as seen
in Figure 5. Palette-based RBF interpolation does not con-
sider spatial distance when shifting pixel colors, which re-
sults in a faster setup time than LayerBuilder, but can also
lead to more cross-contamination when editing similarly col-
ored objects (e.g. the red car and the maroon soccer jerseys
in the soccer image).

4.2. Comparisons with Matting and Illumination-Based
Layers

A similar idea of layering is used in image matting to sep-
arate objects or materials in an image. Although these lay-
ers can be used for recoloring, they contain many different
colors. We believe color-based layers are more often suited
to recoloring tasks as they offer finer control over individ-
ual colors. In Figure 6, we compare recoloring using layers
from LayerBuilder and KNN matting [CLT13]. The KNN
pink layer mixes colors with the white flower, resulting in a
more overblown recoloring. Our color-based layers can bet-
ter separate the pink pigment from the rest of the flower and
from the defocused areas.
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Input KNN Matting LayerBuilder

Pink Layer

Other Layers

Figure 6: Image recoloring comparison between KNN mat-
ting [CLT13] and LayerBuilder. The seed points used for
KNN matting are shown along with our layer colors and
color edits. Our layers better separate the pink pigment from
the white, resulting in a more natural coloring.

Input [CRA11] LayerBuilder

Figure 7: Image recoloring comparison between [CRA11]
and LayerBuilder. We show the original image and the
palette edits used for our method in the first column. Our
method can achieve plausible recolorings for pronounced in-
terreflection effects while having a simpler editing pipeline.

Finally, we compare our method to the method by Car-
roll and colleagues [CRA11], which focuses on the prob-
lem of recoloring indirect reflection colors to be consistent
with edited object colors and involves first decomposing the
image into reflectance and illumination components. Fig-
ure 7 shows recoloring comparisons on two or their images,
which feature color blending due to interreflections. Carroll
and colleagues’ method can better handle more subtle inter-
reflections in the baby photo due to their separate handling
of reflectance and illumination. However, we believe our
method still achieves plausible results for more pronounced
interreflection effects, such as in the clothes photo, as well
as for other types of color blending without requiring a de-
composition into reflectance and illumination images.

Stage Time
Superpixel computation 14.9s
Per-pixel LLE weighting 7.2s
Linear solve (all iterations) 8.4s

Table 1: Timings for different stages of our layer extraction
algorithm.

4.3. Timing and Complexity

We evaluate our layer extraction algorithm on a PC with an
Intel Core i7 3.7GHz processor and 8GB of RAM. We did
not optimize or parallelize our layer extraction implementa-
tion. Timings for computing a five-layer decomposition of
a 720x405, 70 frame video (20M pixels) are given in Ta-
ble 1. We use a single-threaded version of Eigen for our lin-
ear solve†. Because our solve is performed on superpixels,
the size of the linear system remains manageable (20000
free variables). Although the time required to compute the
per-pixel linear-embedding weights is significant, it’s worth
noting that these are computed independently for each pixel
and could easily be parallelized. Our peak memory usage
was less than 700MB, much of which is needed to store the
layers for each video frame without compression. Once the
layers are computed, color edits can be computed at interac-
tive rates (less than 5ms per frame).

4.4. Varying Superpixel Count

In Figure 8, we investigate the effect of superpixel count on
the extracted layers and the quality of the recolored image.
With 50 superpixels, the white and blue layers are not cor-
rectly separated and overlap significantly. Recoloring with
these layers results in undesirable color blending and does
not produce the expected saturated shade of red requested
in the recolored palette. As the number of superpixels in-
creases, the layers separate more cleanly and this improve-
ment is reflected in the recolored image. For images shown
in the paper, the extracted layers do not change significantly
when more than 2000 superpixels are used.

5. Applications

We demonstrate our layer decomposition algorithm on more
complex recoloring of images and video, and give examples
for three other applications - automated pattern coloring, tex-
ture synthesis, and layer filtering.

5.1. Interactive Recoloring with Layers

It is straightforward to apply our layer decomposition algo-
rithm to interactively recolor images and videos. Once the
layering is known, recoloring an image or video frame with

† eigen.tuxfamily.org/
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Original Image 50 Superpixels 250 Superpixels 2000 Superpixels

Figure 8: Changing the number of superpixels. Top: recoloring result with each superpixel count. Bottom: two of the extracted
layers, corresponding to the blue and white colors in the original image. Using too few superpixels can result in layers that are
not well separated.
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Figure 9: Video recoloring. Left Columns: frames from the original video. Middle and Right Columns: frames from edited
videos. Changes in the color palettes of the videos, visualized below, propagate through the entire video in real-time using the
layer decomposition.

a new palette is as simple as performing a linear combination
of N images. Figure 1 shows two image recoloring examples
for natural and digital images. The palette and layers were
automatically computed with no additional user constraints.
The algorithm produces pleasing results, even when under-
going significant color variation such as changing the season
in a photograph from summer to fall.

In Figure 9, we show two examples of video recoloring.
Our method supports significant edits on large palettes, such
as modifying the grass from green to blue and adapting the
other colors in a pleasing fashion. As demonstrated in the ac-
companying video, the real-time feedback to changes made
to the palette helps users generate visually appealing results
when editing both images and video. Even though we use
only 4000 superpixels in all these images and videos, the re-
sulting images do not exhibit significant spatial or temporal
artifacts from this superpixel representation.

5.2. Pattern Recoloring

In addition to allowing users to interactively recolor an im-
age, we can also automatically generate coloring sugges-
tions for that image to help users better explore the coloring

state space. Lin and colleagues propose a graphical model
for scoring pattern colorings, where images are represented
as non-overlapping regions of solid color [LRFH13]. The
model scores colorings by learning color distributions over
individual and adjacent regions from a training dataset of
images, where each region is represented as a set of shape
features. However, it can only recolor images that are ac-
companied by a layer decomposition which is not available
for most images. We adapt this model to support arbitrary
images by adding features that take into account overlapping
image layers from LayerBuilder. See the supplemental mate-
rials for the list of features considered. Figure 10 shows col-
oring suggestions for four images sampled from the adapted
model which was trained on 907 COLOURLovers patterns.
By using our layer decomposition algorithm, we can auto-
matically recolor a much wider variety of images.

5.3. Texture Synthesis

Texture synthesis algorithms traditionally synthesize an im-
age by comparing incomplete pixel neighborhoods in the
result with existing neighborhoods in an exemplar. These
neighborhoods are often computed in RGB space, but can
easily be extended to incorporate image layer features to
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Figure 10: Recoloring suggestions from model trained on 907 COLOURLovers patterns, using layer properties as features.
Except for the first example, luminance was constrained to be close to the original. We use an automatic palette.

provide a more informative representation of texture fea-
tures. We adapt the approach proposed by Lefebvre and
Hoppe [LH06] to compute feature vectors for each neigh-
borhood, including both the RGB values at each pixel and
the layer weights corresponding to each palette color. Since
small spatial neighborhoods cannot encode large texture fea-
tures or semantic structure, appearance-space texture synthe-
sis and other approaches use the notion of a user-provided
feature mask to guide synthesis. Our layer decompositions
automatically generate layers that encode the same types
of detail represented by these feature masks. Figure 11
shows appearance-space texture synthesis results using only
RGB features and using both RGB and layer features. Al-
though synthesis remains challenging for images with non-
stationary features, for images such as the ground pattern
(Figure 11 second row) incorporating the layers into the lo-
cal feature vector better captures the distribution implied by
the exemplar.

5.4. Layer Filtering

Various image editing operations can be performed in a lo-
calized manner by editing individual layers, and then recom-
posing them. In Figure 12, we show the effects of several fil-
tering operations on individual layers: a Gaussian filter em-
phasizes the light in the sky, the star is embossed, and the
blue fire is motion blurred, respectively. Although the edited
layers are tightly blended into the image, our layers correctly
separate the different color sources in the image and these
high-level operations produce few unintended artifacts.

Exemplar RGB RGB & Layers

Figure 11: Texture synthesis augmented with layers. Left:
exemplar textures and their layer decompositions. An auto-
matic palette was used. Middle: results of texture synthesis
using pixel RGB values. Right: synthesis using RGB and the
layer contribution vector from each pixel.
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| | |
Gaussian Filter Emboss Filter Motion Blur

↓ ↓ ↓

Figure 12: Filtering layers. Individual layers can be filtered,
and the image reconstructed with the filtered layers. In this
case, a single layer from each image is filtered (rows 2 to 3),
and the resulting reconstruction is shown in row 4.

6. Limitations

Although the manifold-preserving constraint we use is effec-
tive at handling color blending and object motion scenarios,
our algorithm can have difficulty automatically decompos-
ing and recoloring several types of photographs or digital
images. In Figure 13, we show two recoloring failures where
no user constraints were used to separate the layers. When
the layers represent complex lighting such as specular re-
flections on fur, attempting to recolor the layers can fail to
produce a pleasing image. When the colors represent seman-
tically distinct but similarly colored regions, such as a brown
dragon on a brown background, it can be difficult to change
the background without significant effects on the foreground
without using user constraints, as shown in Figure 3.

User constraints can be used to help separate similarly
colored regions, and they work best when the regions are rel-
atively large and spatially distant. Due to the granularity of
the superpixel manifold, our approach can have trouble sep-
arating similarly colored regions that small (e.g. only com-
posed of a few superpixels) and are close together. In these
cases, a user-provided mask can be used to separate regions.
Object-based layers from image matting can also be com-
bined with our layers to better localize edits.

Figure 13: Limitations of our method. The top row shows
the original images. Left column: an attempt to recolor a
black Labrador to a chocolate Labrador. Right column: two
attempts to turn the sky and water from brown to blue.

7. Discussion and Future Work

In this paper, we present a method for interactive color edit-
ing of images and videos by using locally linear embed-
ding to decompose the input into colored layers. By pre-
serving the overall pixel manifold structure instead of local
pixel affinities, we produce layers that can handle signifi-
cant color blending. We demonstrate the usefulness of these
layers for interactive recoloring, suggesting automatic recol-
orings, texture synthesis, and filter-based editing.

We compute a set of additive colored layers whose linear
combination reconstructs the original image. While physical
lighting is well-modeled by an additive process, many dig-
ital layers are composited using non-linear effects. Instead
of recovering an order-independent set of linearly combined
layers, in future work we look to explore ways to simultane-
ously extract both the layers and their order-dependent com-
positing function. We believe that such a formulation has the
potential to significantly improve the process of editing im-
ages and videos.
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