
EUROGRAPHICS 2025 / A. Bousseau and A. Dai
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 44 (2025), Number 2

Supplement: Image Vectorization via Gradient Reconstruction

Souymodip Chakraborty1 , Vineet Batra1, Ankit Phogat1, Vishwas Jain1, Jaswant Singh Ranawat1

Michal Lukáč1 , Matthew Fisher1 and Kevin Wampler1

1Adobe Systems

1. Color-Difference-Based Segmentation
We segment the pixels in D̄ based on color differences, computed
in the CIELAB color space to effectively capture perceptual vari-
ations. This process yields a segmentation S along with a corre-
sponding set of constant fill functions F ⊂ K0. The set F is repre-
sented as a mapping S→K0. For any segment s, the fill function
F(s) denotes the constant color of the segment.

The algorithm starts with an initial segmentation S, where each
pixel is treated as an individual segment. The corresponding fill
functions F for each segment are initialized as constant fill func-
tions, with values set to the color of the respective pixel, i.e.,

F(p) = lab(I(p)) for a pixel p.

The segmentation is refined iteratively by merging neighboring
segments if the color difference between their respective fill func-
tions is below a predefined threshold τs. This threshold τs serves as
the criterion for determining color equivalence between segments.

ALGORITHM 1: Color-Difference-Based Segmentation

Input: D̄: set of pixels, τs: merging threshold.
S←

⋃
p∈D̄
{{p}} ; // Initialize each pixel as a segment

F ←
⋃

p∈D̄
{lab(I(p))} ; // Initialize fill functions

while true do
S′← S ; // Create a copy of current segments

for s ∈ S do
s∗← argmin

s′∈nbh(s)
∥F(s)−F(s′)∥2 ; // Find closest

neighbor

if ∥F(s)−F(s∗)∥2 ≤ τs then
merge(S′,s,s∗) ; // Merge segments

F(s∪ s∗)←mean(F(s),F(s∗)) ; // Update fill

end
end
if S = S′ then

break ; // Stop if no changes

end
end
Output: S ; // Final segmentation

The output segmentation S consists of segments such that the

color difference between any two neighboring segments is greater
than the threshold τs.

2. Discontinuity Aware Segmentation
The multicut constraint optimization problem defined in Equa-
tion (1) is addressed by iteratively processing the discontinuity
pairs.

C∗ ≜ argmin
C⊆E

∑
e∈C

w(e)

s.t. ∀
(u,v)∈A

, u and v is disconnected in G(V,E \C,W)
(1)

The procedure begins with an ordered list of discontinuity pairs and
applies the min-cut algorithm to each pair, provided a valid path
exists that connects the corresponding segments in set A.

For each pair, the algorithm evaluates the weighted sum of dif-
ferences in size and color between the segments, which serves as
the metric to guide the segmentation process. This iterative refine-
ment ensures that segments are separated at points of significant
discontinuity, optimizing the multicut objective. Finally, the con-
nected components of the resulting graph are extracted to form the
final segments. The detailed steps are described in Algorithm 2.

ALGORITHM 2: Discontinuity-Aware Segmentation
Input: G = (V,E,W) ; // Input graph with vertices V, edges

E, and weights W

A= (a1, . . . ,an) ; // Ordered list of discontinuity pairs

G′←G ; // Initialize the working graph

for (u,v) ∈ A do
while BFS(G′,u,v) exists do
G′←mincut(G′,u,v) ; // Apply min-cut to separate

u and v

end
end
Output: S← connected-components(G′) ; // Extract the

final segments

This algorithm ensures that segments are iteratively refined by
separating pairs with significant discontinuities while maintaining
the overall consistency of the graph. The connected components of
the modified graph G′ represent the final segmentation.

© 2025 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://orcid.org/0009-0005-5111-2146
https://orcid.org/0000-0002-9664-7786
https://orcid.org/0000-0002-8908-3417
https://orcid.org/0009-0005-1780-6814

2 of 5 S. Chakraborty, et al. / Supplement: Image Vectorization via Gradient Reconstruction

3. Curve Fitting
Curve fitting simplifies region boundaries by converting pixel-
based edges into structured paths. The process involves construct-
ing an edge network, extending paths through junctions, and sim-
plifying paths using line segments and Bézier curves.

3.1. Edge network construction
Boundaries between pixels of different regions are detected and
connected in a counter-clockwise manner to form a poly-line trac-
ing of each region. At each boundary, we have two (directed) edges,
one for each adjacent region (see figure 1 left). Corresponding di-
rected edges are merged and organized into a planar network of
undirected paths between junction nodes, where a junction node
is defined as any vertex with valence not equal to 2. See figure 1
(middle). To our advantage, this representation is gap-free by con-
struction.

Figure 1: Poly-line tracing of few regions (left). Edge network
(middle), extended path edge network (right). Extended path across
junction have same colour.

3.2. Extend paths through junctions
We stitch together paths through each junction vertex by consid-
ering the tangent of incoming paths to each junction and greedily
matching off pairs of paths whose tangent angle difference is clos-
est to π, merging them into a single path extending through the
junction vertex (similar to the approached taken in [KL11]). See
figure 1 (right). This provides the opportunity (but not the require-
ment) that the curves be smooth across T- and other multi-way junc-
tions. Whether the curves are actually G1 or C0 continuous at the
junction will depend on the following path simplification step.

3.3. Path simplification
Each path in the vectorized image is up until now a polygon or poly-
line of pixel-sized segments. This is approximated using a more
user-friendly sequence of lines and Bézier curves using a parameter
ϵ limiting how far the simplified path is allowed to differ from the
input poly-line. In all examples in this paper we use ϵ= 1.5 pixels.
The path simplification algorithm consists of the following steps:

3.3.1. Select key vertices
To speed up later steps, a small subset of the vertices in the input
are selected to serve as key vertices, where each line or Bézier in the
simplified path must start and end at a key vertex. The key vertices
are chosen by running the Dougles-Peucker algorithm with an error
threshold of ϵ on the input and picking any vertex retained as a key
vertex.

3.3.2. Calculate tangents
To simplify smoothly joining curves together in the final path, a
tangent vector is computed at every key vertex. To compute a tan-
gent vector at a key vertex with index i, we fit lines to the points in

the input path within the subrange from i− k to i+ k for progres-
sively larger values of k until the root-mean-square error between
the best-fit line and the points in the subrange exceeds ϵ

2 . Any pair
of curves with G1 continuity will match this tangent at the key ver-
tex where they join.

3.3.3. Soft corner detection
To get a high-quality result, it’s important to get sharp corners in the
right places. This involves determining if each key vertex should
have C0 or G1 continuity. We have gotten the best results by per-
forming a heuristic soft corner detection which gives each key ver-
tex j a score c(j) where c(j) = −1 enforces G1 continuity at j,
c(j) = 1 enforces C0 continuity, and values in between represent
ambiguous cases.

We determine c(j) at each key vertex by fitting three shapes to
the region of the path near vertex j: a line, a circular arc, and a
“corner” shape consisting of a pair of lines meeting at a vertex.
Each of these shapes is fit to the points in the input path from j−
k to j + k for progressively larger values of k until the maximum
distance between any point in the subrange and the best-fit shape
exceeds ϵ. Let L, S, and C be the number of points used to fit the
line, circle, and corner shapes respectively.

Intuitively, if C is larger than either L or S, then the corner-shape
matches a larger portion of the curve near the junction vertex than
either a circle or a line, and thus the vertex is more likely to be a
corner. We express this with the following heuristic:
• If L≥ S: c(j) = −L

max(L,C)

• If L < S:

– If S≥C: c(j) =−1 · f
(

S+1
C+1

)
– If S <C: c(j) = f

(
C+1
S+1

)
Where the function f ensures that the result is always in the range
from −1 to 1. We define f as:

f (x) = 1− 1
1+5(x−1)

3.3.4. Path fitting with dynamic programming
We fit a path of connected lines and Bézier curves to the in-

put poly-line using a dynamic programming algorithm inspired by
[BLP10]. We begin by fitting an over-complete set of curves to the
path consisting of both lines and cubic Bézier curves. This includes
a line segment between each adjacent pair of key vertices, and four
cubic Bézier curves for each pair of key vertices (both adjacent and
not) for each of the four combinations of C0/G1 continuity at each
endpoint. These Béziers are fit using the algorithm described by
[Sch90], and any Bézier for which the maximum distance to one of
the original poly-line curves exceeds ϵ is discarded. The resulting
set of lines and Béziers is organized into a directed acyclic graph
of curves connected at key vertices, all of which are guaranteed to
lie within ϵ of the input path.

To pick a single path of connected curves, we assign a cost to
each curve and to each connection between two curves. A standard
dynamic programming algorithm is then used to solve for a sim-
plified path with minimal sum of curve- and connection-costs. Our
costs are heuristically defined as follows:
• At each connection j where two curves meet a cost of JC0(j) or

JG1(j) is assigned based on if the curves meet with C0 or G1

© 2025 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

S. Chakraborty, et al. / Supplement: Image Vectorization via Gradient Reconstruction 3 of 5

Name Size Time(ms) L1(CIELAB) SSIM
2 (a) 1024x1120 2085 0.01041 0.9577
2 (b) 1024x655 1357 0.05546 0.7147
2 (c) 1024x683 1400 0.03859 0.7977
2 (d) 1024x683 1355 0.07173 0.7926
2 (e) 1024x1024 1833 0.02036 0.8978
2 (f) 1024x1024 1883 0.02521 0.8757
2 (g) 1024x1024 2189 0.04887 0.6750
2 (h) 1024x1024 2234 0.05495 0.6756
2 (i) 1024x1024 2167 0.04483 0.7587
2 (j) 1024x1024 2026 0.04359 0.7520
2 (k) 1024x1120 2076 0.01751 0.9206
2 (l) 1024x1120 2124 0.01578 0.9379

2 (m) 1024x1583 3403 0.04045 0.7005
2 (n) 1024x1444 2441 0.00680 0.9772
2 (o) 2048x2048 9379 0.007421 0.9602
2 (p) 2048x2048 9970 0.01631 0.9387
2 (q) 2048x2048 9780 0.02949 0.8818

Table 1: Evaluation of our method across different image sizes, as-
sessed by execution time (milliseconds), color accuracy by average
L1 loss in CIELAB, and structural similarity (SSIM).

continuity respectively. This is calculated based on the corner-
ness score c(j):

– if c(j) > 1
4 the connection is assumed to be a likely-corner,

so JC0(j) = 10
1+g(c(j), 1

4)
and JG1(j) = 10g(c(j), 1

4).

– if c(j)< 0 the connection is assumed to be likely-smooth, so
JC0(j) = 10+10g(−c(j),0) and JG1(j) = 0.

– otherwise the connection is ambiguous, so bias toward G1

continuity since it tends to look better in ambiguous cases:
JC0(j) = 10 and JG1(j) = 0.

The function g above maps a cornerness score (always between
0 and 1 since we use g(−c(j)) when c(j) < 0) into a cost com-
patible with the line and Bezier costs described in the next two
subsections. Many functions are possible here, but the one we
use is: g(c,α) = 1

1−min(c−α

1−α
,0.99)2 −1.

• Each line segment incurs a cost of 3.9+ δ ·E. Where E is the
squared-error of the line’s distance to the points to which it is
fit and δ = 10−6ϵ. The δ · E term is included to disambiguate
between paths with otherwise equal costs.

• Each Bézier incurs a cost of 4 + δ · E + ∑ j JG1(j) where the
∑ j JG1(j) term accounts for the fact that a Bezier may pass over
one or more intermediate key vertices, and should incur a cost of
JG1(j) for each.
The end result of all this is a path of connected curves which

matches the input poly-line to within a distance of ϵ, uses a small
number of curves, and intelligently chooses where to place C0 cor-
ners based on global context of the input path.

4. Results
This section presents further evaluations of the proposed method,
including quantitative metrics such as execution time, color accu-
racy (L1 in CIELAB), and structural similarity (SSIM) in Table 1.
Additionally, visual results are provided, comparing input raster
images, their vector reconstructions, and the underlying geometry.

Paths: 57

Input Vectorization Geometry and Gradients
(Linear & Radial)

(a)

Paths: 2626

(b)

Paths: 2391

(c)

Paths: 1309

(d)

Paths: 397

(e)

Paths: 444

(f)

Paths: 2198

(g)

© 2025 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

4 of 5 S. Chakraborty, et al. / Supplement: Image Vectorization via Gradient Reconstruction

Paths: 2326

(h)

Paths: 1640

(i)

Paths: 3536

(j)

Paths: 221

(k)

Paths: 149

(l)

Paths: 3554

(m)

Paths: 487

(n)

Paths: 117

(o)

Paths: 361

(p)

Paths: 1674

(q)

Figure 2: Results demonstrating our vectorization method on vari-
ous input images. For each row: (left) original raster image, (mid-
dle) our vector reconstruction, and (right) the paths used in recon-
struction.

© 2025 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

S. Chakraborty, et al. / Supplement: Image Vectorization via Gradient Reconstruction 5 of 5

References
[BLP10] BARAN, ILYA, LEHTINEN, JAAKKO, and POPOVIC, JOVAN.

“Sketching Clothoid Splines Using Shortest Paths”. Computer Graph-
ics Forum (2010). ISSN: 1467-8659. DOI: 10.1111/j.1467-8659.
2009.01635.x 2.

[KL11] KOPF, JOHANNES and LISCHINSKI, DANI. “Depixelizing Pixel
Art”. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2011)
30.4 (2011), 99:1–99:8 2.

[Sch90] SCHNEIDER, PHILIP J. “An algorithm for automatically fitting
digitized curves”. Graphics Gems. USA: Academic Press Professional,
Inc., 1990, 612–626. ISBN: 0122861695 2.

© 2025 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

https://doi.org/10.1111/j.1467-8659.2009.01635.x
https://doi.org/10.1111/j.1467-8659.2009.01635.x

