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Figure 1: Illustration of our vectorization approach: (a) displays the original input image. Vectorization output (b) with our method using a
blend of solid fills, radial (c), and linear (d) gradients, achieving precise reconstructions with simple geometry. (e) and (g) depict vectorization
with our method and its corresponding geometry, juxtaposed with vectorization using a popular traditional method (f), (h), which relies
exclusively on solid fills, resulting in more complex vector paths and reduced accuracy.

Abstract
As complex color shading becomes increasingly prevalent in contemporary illustration, vectorization techniques must keep
up to facilitate vector processing of such images. This paper introduces a method that autonomously identifies regions with
smooth color variations, classifies and reconstructs them as linear gradients, radial gradients, or solid fills as appropriate
for vectorization, and then determines their geometry. We demonstrate the efficacy, accuracy, and robustness of this method,
particularly in managing images characterized by intricate color shading. The outcome is a vectorized representation of the
input image that preserves visual accuracy while minimising geometric complexity and improving editability.

CCS Concepts
• Computing methodologies → Image processing;

1. Introduction
Vectorization is a crucial process in graphic design and animation,
transforming raster images into vector graphics to provide preci-
sion, compactness, and scalability. Unlike raster images, which are
composed of a grid of pixels, vector graphics are defined by struc-

tured geometry and procedurally colored regions. This makes vec-
tor graphics resolution-independent and facilitates straightforward
manipulation.

Despite recent advancements in text-to-image technology, which
have revolutionized image creation and editing workflows, these

© 2025 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://orcid.org/0009-0005-5111-2146
https://orcid.org/0000-0002-9664-7786
https://orcid.org/0000-0002-8908-3417
https://orcid.org/0009-0005-1780-6814


2 of 11 S. Chakraborty, et al. / Image Vectorization via Gradient Reconstruction

developments primarily focus on raster images. For applications
requiring the advantages of vector graphics, vectorization remains
the practical bridge for approximating a raster image with a vector
graphic.

Effective vectorization requires a balance: the representation
must accurately reconstruct the input image while maintaining min-
imal geometric complexity. Traditional vectorization methods often
struggle with this balance, particularly when dealing with images
containing intricate shading and color gradients.

Addressing these challenges, we introduce a fully automated so-
lution capable of crafting compact, editable vector representation
from a raster image. Our approach stands in contrast to recent solu-
tions [DKT*23], [FLB17] that necessitate additional segmentation
maps or explicit user inputs. Our system autonomously segments
images into meaningful regions, each reconstructed using an ap-
propriate fill type (solid, linear, or radial gradients). It can handle
images of arbitrary size and complexity, and is uniquely equipped
to reconstruct gradients with any number of color stops, as well
as transformations applied to linear and radial gradient fills. Ad-
ditionally, our method generates results within a few seconds (see
Table 1).

Our method demonstrates robustness through its consistent per-
formance across a diverse range of input images, from simple illus-
trations to complex photographs (Figure 13, Table 2). It maintains
predictable processing times and accuracy regardless of the input
complexity, number of colors, or presence of intricate shading.
Moreover, our approach operates effectively with a single, fixed
set of parameters across all image types, eliminating the need for
manual adjustments or tuning based on the input’s characteristics.

In summary, our main contributions are:
• A method for automatically segmenting the pixels of a raster-

ized image into regions with associated fill colors, ensuring that
the resulting vectorization has both low reconstruction error and
minimal geometry.

• A procedure for efficiently fitting linear and radial gradients to a
region with an arbitrary number of gradient stops.

2. Related Work

Algorithmic Image Vectorization Traditional image vectoriza-
tion research predominantly focuses on representing images with
specific parametric primitives, such as cubic Bézier regions [Die08;
LL06; Sel03]. Typically, these methods initiate with an image seg-
mentation process to define regions of uniform color [GB05]. How-
ever, they often fall short of accurately representing smooth shad-
ings in reconstructions. Diffusion curves [OBW*08; ZDZ17] and
gradient meshes [SLWS07] have been used to model smooth shad-
ing, but can be difficult to manipulate and have not yet been widely
adopted in the graphics design community. Several other methods
specialize in vectorizing specific kinds of images such as line draw-
ings [BS19; FLB16; KWÖG18; PNCB21; SBBB20] (see [YVG20]
for a recent survey), clip arts [DSG*20], and textures [LPB*13;
SWWW16].

Machine-Learning Image Vectorization Recent advancements
have seen the development of machine-learning approaches
for vectorization, employing diverse models such as au-
toregressive SVG decoders [LHES19], transformer-based sys-

tems [RBCP20], and progressive patch optimization techniques
[MZX*22; XZW*23]. Hirschorn et al. [HJA24] propose a top-
down vectorization method that balances compactness, reconstruc-
tion quality, and runtime efficiency, addressing challenges of ed-
itability and optimization. Dziuba et al. [DJEF23] provides an ex-
tensive review of these methodologies. Despite being promising,
these machine-learning methods struggle with the highly variable
encoding rates of vector images, require additional information
such as the number of paths and the order of processing them and
are compute-intensive. As a result, current state-of-the-art methods
are limited to handling at most several hundred regions of uniform
color, and often prove too slow for practical applications. For raster-
ized images generated by diffusion models, which typically require
thousands of regions for high-quality reconstruction, these methods
fail to scale both in terms of capacity and quality.

Layer Decomposition Several techniques have been devised for
decomposing raster images into semi-transparent vector gradient
layers [RLB*14; FLB17]. These approaches often necessitate user
intervention or additional inputs to achieve effective layer segmen-
tation. More recently, a rule-based method was proposed to stream-
line the process of determining optimal layer orderings [DKT*23];
however, it also requires a pre-defined segmentation mask as input.
These layer decomposition methods focus on ideal images that can
be reconstructed with very low error with a small number of lay-
ers, such as clip art. In addition to requiring segmentation masks,
these methods do not work well on most raster images created by
recent text-to-image models because they are not sufficiently robust
to small deviations and imperfections in the raster image. Our ap-
proach addresses the challenge of segmenting the input image into
salient vector regions.

Mesh-Based Vectorization He et al. [HRK24] proposed a sparse
patch-based method using Coons patches for feature alignment,
while another framework [WCFC24] integrated cubic Bézier
curves into curved triangle meshes for feature reconstruction.
These approaches rely on mesh-based representations, which can
be challenging to edit due to structural complexity. In contrast, our
method directly vectorizes raster images into Bézier curves, offer-
ing a more intuitive and editable representation.

Segmentation in Sketch Processing Parakkat et al. [PMC22]
introduced a Delaunay-based segmentation method for raster
sketches requiring color hints, and Scrivener et al. [SCC24] used
winding number features for segmenting vector sketches based on
pre-existing stroke orientations. While these methods include seg-
mentation and region decomposition, our approach offers a fully
automated pipeline to convert raster images into Bézier curves with
gradient support, without additional inputs or manual intervention.

3. Method
To vectorize a raster image I, we segment its pixels into connected
regions, represented by a 2D segmentation map. We assign a fill
function to each segment. Our method consists of the following
key steps:
• Preprocessing: This step involves noise suppression, edge

sharpening, and initial partitioning of the image into smooth re-
gions and discontinuous (edge) regions.
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(a) Original image and
its segmentation.

(b) Smoothened image
and its segmentation.

(c) Discontinuity D of
the smoothened image.

Figure 2: Applying Mumford-Shah smoothing alleviates antialias-
ing and resampling artefacts in input images while preserving dis-
continuities: (a) original input image with its color-difference based
segmentation below (184 segments), (b) smoothened image pre-
serving key edges using parameters α = 1.0,λ = 1.5 and its corre-
sponding segmentation (106 segments), demonstrating how edge-
preserving smoothing reduces over-segmentation while maintain-
ing important boundaries, and (c) the resulting discontinuity map
D identifying significant color transitions.

• Discontinuity-Aware Segmentation: Creates a segmentation of
the smooth image regions which honors the discontinuity.

• Function Parameter Estimation: Assigns optimal parameter-
ized functions minimizing L1 error for each segment.

• Partition and Merge Discontinuous Pixels: Segments the pix-
els in the discontinuous region and merges them with existing
partitions for final segmentation.

• Curve Fitting: Converts the segmentation into a gapless set of
closed curves.

3.1. Preprocessing
The preprocessing step aims to sharpen edges and reduce noise
in the image to facilitate segmentation. We have observed that
smoothing based on the Mumford-Shah functional [MS89] pro-
vides excellent control over the smooth and discontinuous regions
of an image. For this purpose, we employ the discrete Mumford-
Shah functional as described in [SC14]. Given an image I, the func-
tional is defined as:

u∗ ≜ argmin
u

∑
x∈Ω

∥u(x)− I(x)∥2 +[∇u]αλ ,

where [g]αλ ≜ min(α∥g∥2,λ).

(1)

The optimal solution, u∗, not only smooths the image but also pro-
duces the discontinuity map D, defined as:

D ≜ {x | [∇u∗(x)]αλ = λ}. (2)

The parameters λ and α control the behavior of the functional. A
higher value of λ enforces greater smoothing but risks losing criti-
cal discontinuity information, whereas a higher value of α enforces
stronger quantization of color. In our experiments, we use conser-
vative values of α and λ (1.0 and 1.5, respectively) that work well

(a) A raster image with
color gradient

(b) Color based seg-
mentation.

(c) Merged segmenta-
tion result.

Figure 3: Challenges in greedy segment merging: (a) original raster
image with smooth color gradients, (b) initial color-based segmen-
tation, and (c) result after merging segments based on reconstruc-
tion error. Red dotted lines indicate original segment boundaries,
demonstrating how naive merging can incorrectly combine seg-
ments across important color discontinuities.

(a) Image (b) D (c) S0 (d) A crop of S0.

Figure 4: Color-difference-based segmentation process: (a) input
image, (b) discontinuity map D shown in black, (c) initial segmen-
tation S0 with distinct colors for each segment, and (d) a zoomed
region showing the graph structure where white lines indicate seg-
ment adjacency and red lines represent discontinuity segments
pairs.

across a wide range of images (Figure 2; for detailed analysis, refer
to [SC14]).

3.2. Discontinuity-Aware Segmentation
We perform color-difference-based segmentation on smooth re-
gions and merge segments. However, a purely greedy cluster-
ing approach can yield suboptimal results. As illustrated in Fig-
ure 3, merging segments solely by reconstruction error may group
regions across discontinuities due to the transitive nature of the
operation. To overcome this, we propose a graph-based method
called discontinuity-aware segmentation, consisting of the follow-
ing steps:
1. Color-Difference Segmentation of smooth image regions where

neighboring pixel color differences remain below a threshold
(τs).

2. Construction of the weighted graph G and the discontinuity re-
lation A.

3. Solve the multi-terminal min-cut problem to obtain the final seg-
mentation S.

Color-Difference-Based Segmentation For an image I with a dis-
continuity map D, let D̄ be the set of pixels not in D, i.e. the set of
smooth pixels. We divide the image into D and D̄ to aid in the seg-
mentation process. These regions correspond to areas of the image
with highly varying (D) and smoothly varying (D̄) colors, respec-
tively. We segment the pixels in D̄ based on color differences, com-
puted in the CIELAB color space to effectively capture perceptual
variations.

Starting from a segmentation where each pixel is a segment by
itself, the algorithm merges neighboring segments if the difference

© 2025 The Authors.
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in their color value is less than the specified threshold τs, which
yields S0. See figure 4c.

Weighted Undirected Graph Construction Let the final color-
difference-based segmentation be denoted by S0. Define ∂(u) as the
set of edges of pixels in segment u that are shared with pixels from
another distinct segment. We construct a graph G(V,E,W ), where
the set of vertices V corresponds to the segments in S0:

V := S0

(here, we use "segment" and "vertex" interchangeably). The edge
set E consists of unordered pairs of vertices such that two segments
u and v are connected if they share a boundary:

E = {(u,v) | ∂(u)∩∂(v) ̸= ∅}.

The weight function W : E → R is defined as:

W (u,v)≜ exp
(
−∥I(u)− I(v)∥2

2

)
,

where I(x) represents the mean color of segment x ⊆ S0 (with slight
abuse of notation).

We construct the discontinuity relation A ⊆ V ×V by defining a
function fA : V ×V → N. Consider any pixel p in the discontinuity
map D. Define three directions: right (r̂), down (d̂), and diagonal
right-down (r̂d). Additionally, let σ represent a small but fixed dis-
tance. For each direction t̂ ∈ {r̂, d̂, r̂d}, we check for the pairs of
segments u,v ∈ S0 whether:
1. There exists a pixel q ∈ u lying along the direction t̂ from p at a

distance less than σ.
2. There exists another pixel q′ ∈ v lying in the opposite direction

along −t̂ from p at a distance less than σ.
The function fA(u,v) is defined as the count of pixels p ∈ D for
which such a pair of pixels (q,q′) exists. The discontinuity relation
A is defined as:

A ≜ {(u,v) | fA(u,v)> τa · ∥∂(u)∩∂(v)∥0}, (3)

where τa is a parameter that quantifies the degree of discontinuity
between two segments, ∥.∥0 is counting norm. See Figure 4d for a
visual reference. As highlighted by the issue of arbitrarily merging
shown in Figure 3, our goal is to create clusters of segments such
that segments across discontinuities, as defined by the set A, are
assigned to different clusters. Additionally, we aim to minimize the
total number of such clusters.

Multicut Problem The constraint optimization problem is to find
the cut set C ⊆ E,

C∗ ≜ argmin
C⊆E

∑
e∈C

w(e)

s.t. ∀
(u,v)∈A

, u and v is disconnected in G(V,E \C,W )
(4)

The corresponding decision problem asks whether such a C with
w(C) ≤ k exists for a given k. This decision problem is NP-
hard, reducible to the Multi-Terminal Cut problem for planar
graphs [DJP*94].

The problem becomes a min-cut (max flow) problem when
the size of A is 1, solved using the augmentation graph tech-
nique [CLRS09]. Given the set A := {a1, . . . ,an}, we order the
pairs based on a heuristic. Then, for each pair in the ordered set

A, we progressively call the min-cut algorithm, at most n times,
where n is the size of A. The algorithm works in the parameterized
complexity O(nΦ), where Φ is the complexity of the min-cut sub-
routine, which has a lower bound of O(m log logm) [MNNW18],
where m is the size of the graph.

Using this approach, we derive a segmentation S for the pixels in
the smooth region D̄, where each segment exhibits regular geome-
try, and similar color regions spanning a discontinuity are assigned
to distinct segments. See figure 7a.

3.3. Function Parameter Estimation
An image can be represented as a discrete function mapping the
set of pixels Ω to a color space Rc, where c = 3 corresponds to
the three color channels (RGB). We utilize the following family of
parameterized functions:
• Constant Functions: These functions assign a constant color

value to all pixels within a segment:

K0 ≜ { fφ : Ω →{φ} | φ ∈ R3}.

• Linear Functions: These functions define a linear gradient
across a region:

K1 ≜ { fφ : Ω → R3 | φ := (d,S)}.

Here, d specifies the direction of the gradient, and S represents a
sequence of stops {(ri,ci)}i≥1. Each ri ∈ R represents positions
ordered linearly along direction d, with ri+1 > ri, and ci ∈ R3

is the corresponding color. For a pixel x, if the projection d⊤x ∈
[ri,ri+1), the function fφ(x) performs a linear interpolation of the
colors ci and ci+1.

• Radial Functions: These functions define radial gradients cen-
tered around a focal point:

K2 ≜ { fφ : Ω → R3 | φ := (S,ϕ,e,o,T )}.

In this case, S is a sequence of stops as previously defined, ϕ

represents the focal center, e is the eccentricity, o is the center,
and T is an affine transform. For a pixel x, if the radius rx of
the circle passing through x satisfies rx ∈ [ri,ri+1), the function
fφ(x) computes the color c by linear interpolation between ci and
ci+1. For further details, refer to [W3C21].
The objective is to approximate the image using a minimal num-

ber of parameterized functions from K0, K1, and K2, ensuring that
the reconstructed image closely resembles the original while mini-
mizing the reconstruction error.

For each segment s of the image segmentation S obtained thus
far, we determine the parameters for the three families of functions
(K0, K1, and K2).

3.3.1. Constant Functions
For parameterized constant functions fφ ∈K0, the color is the mean
of the pixels in the segment. However, due to anti-aliasing, the color
of the pixels near the boundary are influenced by neighboring seg-
ments. Hence, we use weighted mean, where the weights of the
pixels are normalized based on their distances from the boundary.

3.3.2. Linear Functions
To fit a parameterized linear function, we choose the direction d
that best aligns with the color gradient ∇I of pixels in segment
s. We first calculate the structure tensor T for each point p ∈ s,

© 2025 The Authors.
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defined as T (p)≜∇I(p) ·∇I(p)⊤. The direction d is obtained by
maximizing the quadratic form:

Es(d)≜ d⊤ · ∑
p∈s

T (p) ·d

which is the eigenvector corresponding to the largest eigenvalue of
∑p∈s T (p). Given a direction d, we create a function ρ : R → R3

to capture the color variations along d:

ρ(x) = mean{I(p) | p ∈ s and d⊤p = x}

The sequence of stops is modeled as a piecewise linear approxima-
tion of ρ(x), obtained from the optimal Mumford-Shah 1D func-
tional on the gradient of ρ (Figure 5):

u∗ ≜ argminu ∑
x∈Ω

∥u−∇ρ∥2 +[∇u]αλ (5)

Here, ∇ρ is the discrete gradient of ρ. The sequence of stop posi-
tions {ri} are the discontinuity points of u∗, i.e., {x | [∇u∗(x)]α

λ
=

λ}, and the color sequence is {ρ(ri)}.

(a) Original raster Image. (b) Vectorized with α =∞,λ = 1.0.

Figure 5: Visualization of gradient stop estimation: using parame-
ters α = ∞ (enforcing linear interpolation) and λ = 1.0 (balanc-
ing stop count and accuracy), resulting in 41 gradient stops while
achieving an average L1 error of 6.69 per pixel.

3.3.3. Radial Functions
To approximate the colors of a segment s using a radial function
fθ ∈ K2, where θ ≜ (S,ϕ,e,o,T ), we start with the case when the
transform T is the identity and o is the origin. The level sets of fθ
are circles (Figure 6), and the color gradient at a point p is towards
the center of that circle:

∇ fθ(p)≃ (p−ϕp)

Here, ϕp is the center of the level sets (circle) passing through p,
defined relative to the focus ϕ as:

ϕp ≜ ϕ+ rp · e

The radius rp is obtained from the root of the quadratic ∥p− (ϕ+
rp · e)∥2 = r2

p. We determine ϕ and e by minimizing the sum of
misalignment between the actual gradient direction and ∇ fθ, which
is a function of ϕ and e:

Es(ϕ,e)≜ ∑
p∈s

(∇I(p)×∇ fθ(p))2 (6)

Figure 6: Visualization of radial gradient level sets (K2 functions):
(a) concentric circles with focus at center (e = 0), (b) eccentric cir-
cles showing non-zero eccentricity e, and (c) transformed level sets
under an affine transformation T .

(a) Segmentation S (b) Rendering of Fill function of S

Figure 7: Visualization of our segmentation and fill function assign-
ment: (a) shows the segmentation S of smooth image regions, with
each color representing a distinct segment, and (b) displays the re-
construction using our computed fill functions (constant color, lin-
ear gradients). Black pixels indicate the discontinuity map D that
separates smooth regions.

where × denotes the cross product.† As with the functions in K1,
we construct the function ρ : R → R3 and use a piecewise linear
approximation to determine the color stops:

ρ(x)≜ mean{I(p) | p ∈ s and ∥p−ϕp∥2 = x}

We use a weighted mean, giving more weight to points in the di-
rection of e to compensate for the fact that the level sets (circles)
are closer to each other in the opposite direction of e (see figure 6
middle). When a linear transform T is applied, each gradient vector
(p−ϕp) is transformed by T . For computation, T can be adjusted
such that o is the origin, with inverse transformation applied to the
computed values.

3.4. Final Segmentation
Finally, for each segment, we estimate the loss for each function
from the three classes and choose the one with the minimum L1
error, provided the error is below a specified threshold. If none of
the function classes approximate the given segment well, we revert
to the prior color-based segmentation of this region from S0 and
assign K0 functions to each sub-part.

Using this approach, we obtain a segmentation SD̄ of the pixels
in the smooth region D̄, along with a fill function associated with
each segment (see figure 7b).

For the pixels in the discontinuity map D, we perform color-
difference-based segmentation. This yields a segmentation SD and
an estimated constant fill function K0 for each segment.

† We sum over all three channels, omitted from the equation to avoid clut-
ter.

© 2025 The Authors.
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The segments in SD primarily consist of anti-aliased pixels and
should be merged with adjacent segments. However, in such cases,
the color difference between these segments and their neighboring
segments often exceeds the color similarity threshold τs. Instead,
the colors of these segments are better approximated as a linear
combination of the fill functions of the neighboring segments.

To address this, consider a segment u ∈ SD and its constant fill
function cu, along with its neighbor segments {v1, . . .vk} in SD̄ and
{ f1, . . . , fk} be the neighbor’s respective fill functions. For every
pixel p ∈ u, let Fu = ⟨ f1(p), . . . , fk(p)⟩) be the evaluation of the fill
functions { f1, . . . , fk}. We calculate du(p), which is the minimum
distance of cu from the best linear approximation of Fu:

du(p)≜ min
∥W∥=1

∥cu −W⊤Fu∥2
2,

where W ∈ Rk
≥0. If the average projection for all pixels in u is

below the threshold τs, the pixels in u are merged with the nearest
neighboring segment (by spatial distance). The final segmentation
S f is the union of SD̄ and the updated SD:

S f ≜ SD̄ ∪SD.

3.5. Curve Fitting
To generate the output vector graphics, Bézier curves are fitted to
the region boundaries obtained from the final segmentation. Ini-
tially, each region boundary is represented as a path, consisting of
a polyline formed by pixel-sized line segments. These paths are
then approximated using a combination of line segments and Bézier
curves for a compact and accurate representation.

We employ a piecewise Bézier curve fitting algorithm, inspired
by the method described in [BLP10]. This algorithm achieves a
tight fit, balancing smoothness and fidelity to the original input.
The curve fitting process comprises of the following steps:
1. Trace the boundaries of segmented regions to construct a planar

straight line graph of pixel-sized line segments separating the
different regions in the segmentation.

2. Collect sequences of line segments connected by valence-2 ver-
tices into longer paths, forming a network of edge paths. Each
such path is either a loop or starts and ends at vertices with a
valence which is not 2, and contains only valence-2 vertices in
its interior. We call any vertex where two different edge paths
meet a junction node.

3. Connect pairs of different paths meeting at a junction node to
maximize continuity and smoothness of the new combined path
crossing though the node.

4. Simplify the resulting paths individually using a dynamic pro-
gramming algorithm, ensuring that the position of any junc-
tion nodes remain fixed in this process. This yields a simplified
Bézier path for each input polyline path.

5. Combine the simplified paths together into a network of inter-
connected Bézier curves.
Our method ensures smooth fitting across junctions and efficient

performance. For more details, refer to the supplementary material.

4. Implementation Details and Results
Discontinuity aware segmentation requires the initial color-based
segmentation and discontinuity pairs. The granularity of segmen-
tation is controlled by the merging threshold τs, figure 8 shows

Figure 8: Effect of color-difference based merging with threshold
τs: (a) τs = 5 preserves fine details but yields more segments, (b)
τs = 10 provides a balanced segmentation (our default value), and
(c) τs = 20 produces fewer segments but may lose important color
transitions. Lower thresholds maintain finer color distinctions while
higher values promote segment merging.

Figure 9: Trade-off between vectorization complexity and accu-
racy: relationship between the parameter λ (x-axis) and both the
average number of gradient stops (left y-axis) and reconstruction
error measured by L1 loss (right y-axis). Lower λ values achieve
better accuracy at the cost of more gradient stops, with λ = 1.0
providing an optimal balance.

the effect of S0 for different thresholds. Empirically, we find that
τs = 10.0 provides an effective balance for typical images. For con-
structing fA used in defining the discontinuity pair A, we search
for discontinuity pairs within a fixed distance σ, along the specified
directions. We set it to 5 pixels, which defines the maximum range
for searching discontinuity pairs.

From equation (3), A is determined by the parameter τa, which
controls how strictly we add pairs to A. A lower value of τa com-
mits more pairs to A, increasing the size of the resulting segmenta-
tion. See Figure 10 for reference. We use τa = 0.25.

The gradient stops are calculated using (5). We set α = ∞ to
enforce linear interpolation between stops. As shown in figure 9,
lower λ values reduce reconstruction error at the cost of increased
stop counts. λ = 1.0 offers a balanced trade-off between average L1
error and stop count.

Size Time (s) L1 (CIELAB) SSIM
512x512 0.51 0.03989 0.7247

1024x1024 2.05 0.03532 0.8166
2048x2048 9.71 0.01774 0.9269

Table 1: Average execution time, reconstruction quality using aver-
age L1 loss in CIELAB and SSIM, for varying image sizes.

© 2025 The Authors.
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(a) (b)

(c) (d)

Figure 10: Effect of discontinuity pair threshold τa on segmenta-
tion: (a) input image, (b-d) segmentations with τa = 0,0.25, and
0.5 respectively, yielding 363, 334, and 317 segments. Higher τa
values lead to fewer segments due to fewer discontinuity pairs.

(a) Designer-created vector files
with the outline and gradient stops.

(b) Our reconstruction with the out-
line and gradient stops.

Figure 11: Vectorization of designer-created art with 368 paths and
208 gradient fills. Our method generated 516 paths and 67 gradient
fills, achieving an L1 difference of 0.011 and an SSIM of 0.951.

4.1. Evaluation and Comparisons
We measure fidelity by average L1-loss and SSIM, performance by
evaluating runtime as a function of image size, and editability based
on the number of paths (which corresponds to the number of re-
gions) and gradients in the output vector. Table 1 shows a summary
of our experiments, and a more comprehensive table is provided in
the supplementary material.

4.1.1. Ground Truth Vectors
To evaluate the accuracy of our reconstruction technique, we con-
ducted tests on a collection of designer-created vector files, each
featuring a significant use of gradients. These vector graphics were
rasterized and then processed through our reconstruction method.
The results demonstrate high fidelity in reconstruction, with most
gradients from the original images accurately recovered, as shown
in Figure 11.

Figure 12: Comparison with layered gradient reconstruction
([DKT*23]): (a) input image, (b) our result, and (c) result us-
ing [DKT*23]. Our method achieves more accurate reconstruction
without requiring an additional segmentation map (average L1 loss
0.03209 vs 0.07286 and SSIM 0.886 vs 0.8029).

4.1.2. Generative Workflows
We evaluated our vectorization method on images generated by var-
ious generative AI workflows, including text-to-image generation,
demonstrating robustness against typical artifacts found in gener-
ated images. Furthermore, we applied our method to generative ex-
pand (outpainting) which extend the boundaries of existing images.
The results presented in Figure 14, demonstrate the consistency of
our method, as the expanded inputs produce identical outputs for
the unchanged regions.

4.1.3. Layered Gradient Reconstruction
The latest advancements in layered gradient reconstruction, notably
by [DKT*23], propose a solution for optimizing groupings and lay-
ers. However, the method needs a segmentation map, which is a
challenging problem in itself. We contrast our results with those
from [DKT*23] (see figure 12) and provide a direct comparison us-
ing a simplified example. Our comparison reveals that our method
achieves more faithful reconstructions without the need for an ad-
ditional segmentation map.

4.1.4. ARDECO: Automatic Region DEtection and
COnversion

[LL06] introduces an automatic segmentation method using an
efficient two-level numerical scheme to minimize Mumford and
Shah’s energy functional to effectively segment images into regions
with linear and higher-order gradients.

However, the representation of linear gradients through three
independent linear equations, totaling nine coefficients, contrasts
with standard vector file formats that use a single gradient direction
for all channels. This discrepancy can result in errors when trans-
lating the results to standard SVG format. Additionally, translating
quadratic gradients is even more challenging, as SVG support is
limited to only radial gradients.

The method proposed by [LL06] also leverages salient feature
maps to improve segmentation quality. We compared their results
that uses salient feature maps, with our method under default pa-
rameter settings. As shown in Table 2, our approach demonstrates
superior quality and better runtime performance.

4.1.5. Machine Learning Methods
With the advent of machine learning in vectorization, several
promising methods have emerged. However, these are still nascent
and often struggle with complex artworks requiring the number of

© 2025 The Authors.
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Image Ours ARDECO [LL06] LIVE [MZX*22] O&R [HJA24]

(a) L1: 0.031 SSIM: 0.768
Time: 0.525s Paths: 347

L1: 0.037 SSIM: 0.697
Time: 72-83s Path: 243

L1: 0.032 SSIM: 0.760
Time: 1820s Paths: 256

L1: 0.056 SSIM: 0.635
Time: 266s Paths: 256

(b) L1: 0.033 SSIM: 0.830
Time: 0.485s Paths: 309

L1: 0.050 SSIM: 0.730
Time: 72-83s Paths: 688

L1: 0.034 SSIM: 0.821
Time: 1853s Paths: 256

L1: 0.048 SSIM: 0.709
Time: 262s Paths: 256

(c) L1: 0.022 SSIM: 0.777
Time: 0.465s Paths: 254

L1: 0.023 SSIM: 0.749
Time: 72-83s Paths: 335

L1: 0.019 SSIM: 0.787
Time: 1853s Paths: 256

L1: 0.029 SSIM: 0.700
Time: 276s Paths: 256

(d) L1: 0.027 SSIM: 0.815
Time: 0.495s Paths: 209

L1: 0.029 SSIM: 0.800
Time: 72-83s Paths: 181

L1: 0.022 SSIM: 0.855
Time: 1914s Paths: 256

L1: 0.034 SSIM: 0.773
Time: 268s Paths: 256

(e) L1: 0.050 SSIM: 0.641
Time: 0.643s Paths: 426

L1: 0.066 SSIM: 0.483
Time: 72-83s Paths: 349

L1: 0.057 SSIM: 0.576
Time: 1855s Paths: 256

L1: 0.083 SSIM: 0.441
Time: 280s Paths: 256

(f) L1: 0.050 SSIM: 0.767
Time: 0.111s Paths: 1927

L1: 0.078 SSIM: 0.467
Time: 72-83s Paths: 2043

L1: 0.066 SSIM: 0.544
Time: 1861s Paths: 256

L1: 0.086 SSIM: 0.378
Time: 262s Paths: 256

Table 2: Quantitative comparison of different vectorization methods. We evaluate reconstruction quality using average L1 loss in CIELAB
colorspace and structural similarity (SSIM), while assessing computational efficiency through runtime measurement. For [LL06], results and
timings are sourced from the original publication. Results for [MZX*22] and [HJA24] are obtained using the authors’ original implementa-
tions. The number of paths in the output vector graphics serves as a measure of geometric complexity.

© 2025 The Authors.
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Paths: 2626

Paths: 3554

Paths: 2198

Paths: 397

Paths: 1674

Figure 13: Results demonstrating our method on various input im-
ages. For each row: (left) original raster image, (middle) our vector
reconstruction, and (right) the paths used in reconstruction.

paths a priori. Our comparison (Table 2) with [MZX*22; HJA24]
reveals that our method consistently produces better structured ge-
ometry with significantly faster runtime, highlighting its efficacy
over current machine learning approaches.

L1-Loss: 0.0218L1-Loss: 0.0207 L1-Loss: 0.0215

Paths: 254Paths: 135 Paths: 498

Figure 14: Vectorization for out-painted images (top row), using
our method (middle row), and the corresponding outlines (bottom
row). Note that expanded inputs produce identical outputs for the
unchanged regions.

5. Conclusion and Future Work
Our current approach focuses on vectorizing raster images to SVG-
compatible representation using primitives such as solid fills, linear
gradients, and radial gradients. While these primitives are effective
for many applications, they may be insufficient to capture complex
shadings with high accuracy and reasonable geometric complexity.
Consequently, our method may not perform satisfactorily for some
natural images with intricate shading details.

Additionally, SVG includes numerous primitives that could po-
tentially enhance the quality and usability of vector outputs, but
they are beyond the scope of this paper. For instance, incorpo-
rating stroked paths and other primitives could improve the user-
friendliness and versatility of vector representations. Furthermore,
layer-wise decomposition, which could yield better and more us-
able outputs, is not addressed in our current work.

Despite these limitations, our method efficiently and effectively
processes a wide range of images, highlighting its potential and
practicality. The rapid advancement and increasing accessibility of
image generation technologies underscore the need for vectoriza-
tion methods that not only preserve the fidelity of the original im-
ages but also produce clean, efficient geometric structures. In this
paper, we introduced a vectorization method employing both lin-
ear and radial gradients with multiple gradient stops, effectively
approximating intricate shadings and complex color transitions.

Looking ahead, we aim to expand our work to incorporate
higher-order fill functions, such as free-form gradients, which have
the potential to capture more intricate coloring nuances. By explor-
ing additional primitives and techniques, and continuously refining
our approach, we aspire to enhance the versatility and robustness of
vectorization methods, ultimately contributing to the ever-evolving
demands of digital art and design in the modern era.
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