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Figure 1: We present a method to explore variations among a given set of input shapes (denoted by black Voronoi centers on
the left) using a two-dimensional exploration space. This exploration space smoothly and naturally interpolates between the
input shapes by constructing a mapping to a sub-space of a pre-trained generator’s latent space that optimizes the smoothness
of interpolations along any trajectory. Additionally, we transfer the variation over these interpolation trajectories onto the
original high-quality meshes, avoiding loss of detail from the unstructured generator output.

ABSTRACT
Exploring variations of 3D shapes is a time-consuming process
in traditional 3D modeling tools. Deep generative models of 3D
shapes often feature continuous latent spaces that can, in principle,
be used to explore potential variations starting from a set of input
shapes; in practice, doing so can be problematic—latent spaces are
high dimensional and hard to visualize, contain shapes that are
not relevant to the input shapes, and linear paths through them
often lead to sub-optimal shape transitions. Furthermore, one would
ideally be able to explore variations in the original high-quality
meshes used to train the generative model, not its lower-quality
output geometry. In this paper, we present a method to explore
variations among a given set of landmark shapes by constructing
a mapping from an easily-navigable 2D exploration space to a
subspace of a pre-trained generative model. We first describe how
to find a mapping that spans the set of input landmark shapes

and exhibits smooth variations between them. We then show how
to turn the variations in this subspace into deformation fields, to
transfer those variations to high-quality meshes for the landmark
shapes. Our results show that our method can produce visually-
pleasing and easily-navigable 2D exploration spaces for several
different shape categories, especially as compared to prior work on
learning deformation spaces for 3D shapes.
https://github.com/ArmanMaesumi/generative-mesh-subspaces
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1 INTRODUCTION
When designing a 3D shape, artists, designers, or engineers may
want to explore variations of initial designs, to find shapes with bet-
ter aesthetics or functional properties. In traditional 3D modelling
tools, this exploration is time-consuming, as each variation needs to
created manually. Data-driven generative models have introduced
revolutionary new capabilities to the practice of 3D shape design
and exploration. This trend began over a decade ago with meth-
ods for generating 3D shapes by recombining parts from existing
shapes [Chaudhuri et al. 2013, 2011; Kalogerakis et al. 2012]. With
the emergence of deep learning, the movement has shifted to deep
generative models [Achlioptas et al. 2017; Chen and Zhang 2019a;
Li et al. 2021; Wu et al. 2016; Yang et al. 2019; Zheng et al. 2022].
These latter methods are particularly transformative: in addition to
synthesizing new shapes, these models often feature latent spaces
that allow navigation through a continuous manifold of shapes.

In principle, these latent spaces are useful to explore variations
of initial designs. However, latent spaces have some limitations
when used for this purpose: First, latent spaces contain the full
distribution of shapes that the generative model was trained on, but
we want to focus on variations among a small set of initial shapes of
interest. Second, while individual points in the latent space typically
correspond to plausible shapes, following a linear path between
two such points typically does not produce the most natural transi-
tion between the shapes they represent—often, extraneous shape
variations and/or noise occur along the way. Third, these latent
spaces are typically high dimensional (e.g.R128 or higher), making
them hard to visualize and interact with. Such spaces may be ac-
ceptable for goal-directed interpolation between two shapes, but
they remain difficult to use for open-ended, interactive exploration.
Finally, the best state-of-the-art generative models output point
clouds or implicit fields [Li et al. 2021; Zheng et al. 2022] to han-
dle the challenge of modeling shape distributions with varying
topologies, yet many downstream graphics applications demand
mesh representations. While point clouds and implicit fields can
be meshed, the resulting meshes are not as high-quality as those
designed by expert artists.

In this paper, we propose a new method for exploring continu-
ous variations among a set of given landmark meshes, along with
discrete transitions between them. Rather than trying to explore the
full latent space of a pre-trained generative model, or finding an em-
bedding that preserves latent space distances, we extract a smaller
shape space that smoothly spans the landmark. This reduced space
is used as a prior for downstream tasks (i.e. shape deformation).

Our method consists of two main components. First, we develop
a technique to construct a mapping from an easily-navigable explo-
ration space to a subspace of a pre-trained shape generative model.
Given a set of landmark shapes (which may be from the generative
model’s training set, or another set of shapes of the same category),
we embed these shapes in two dimensions to facilitate interaction.
We then learn a map from this 2D exploration space to the genera-
tive model’s latent space, such that (a) the embedded points map
to latent space points that produce their corresponding landmark
shapes when put through the pre-trained generator, and impor-
tantly (b) navigating between landmark points produces smooth
shape variations, rather than preserving latent space distances.

Source shape Target shape

Linear interp.

Geodesic interp.

Figure 2: Linearly interpolating between shapes in latent
space may produce poor intermediate samples. Here we see
the difference between linear and non-linear (geodesic) in-
terpolation at 𝑡 = 0.5 in SP-GAN’s latent space. The linear
interpolation is noisy and is beginning to grow armrests, de-
spite the source and target shapes lacking such features.

Second, we show how to use this exploration space to explore
variations within and between the high-quality original meshes for
the landmark shapes. Specifically, we develop a technique for com-
puting continuous deformation fields from small steps within the
exploration space, allowing its rich semantic variations to be trans-
ferred to meshes at real-time interactive rates. We also consider how
and when to switch between deformed landmark meshes as the user
navigates the 2D space to minimize jarring visual discontinuities.

We evaluate our method by producing easily-navigable and
visually-pleasing exploration spaces for several different shape
categories. We compare the paths through latent space that our
method produces to those produced by alternative approaches, in-
cluding a method for directly learning a deformation space from a
large collection of shapes [Jiang et al. 2020]. We also present a set
of ablations and analyses of our method’s components.

In summary, our contributions are:
• A technique for building a 2D exploration space that natu-

rally interpolates between a set of landmark shapes while
staying on the shape manifold induced by a pre-trained
generative model.

• A method for transferring latent space variations into con-
tinuous deformations of high-quality landmark meshes and
discrete transitions between them in real-time (accompa-
nied by a graphical user interface).

2 RELATEDWORK
Deep generative models of 3D shapes There has been an explosion
of work in recent years on applying deep generative models to
the problem of synthesizing 3D shapes. In this paper, we are con-
cerned with latent variable deep generative models, i.e. generative
models that map points in a latent space Z to the output shape
domain via some map 𝑓 . A variety of such models exist, including
variational autoencoders (VAEs) [Jones et al. 2020; Li et al. 2017],
generative adversarial networks (GANs) [Achlioptas et al. 2017;
Chen and Zhang 2019b; Wu et al. 2016; Zheng et al. 2022], normal-
izing flows [Yang et al. 2019], and denoising diffusion probabilistic
models (DDPMs) [Hui et al. 2022b; Zeng et al. 2022]. Our method is
designed to work well with such generative models in which 𝑓 is a
single forward pass through a neural network (e.g. VAEs, GANs).
We discuss challenges with, and potential ideas for, applying it to
multi-step 𝑓 models (e.g. flows, DDPMs) in Section 8. Our method is
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not designed to work with autoregressive models, which generate
outputs through a sequence of sampling steps [Mittal et al. 2022].

There have also been attempts at learning generative models
that output meshes directly. Thus far, these have suffered from
various limitations: restriction to genus zero topology [Wang et al.
2018], requiring part-segmented data [Gao et al. 2019; Yang et al.
2020], or unpredictable output quality [Nash et al. 2020]. Rather
than generate meshes directly, our approach allows exploration of
variations between existing high-quality meshes by borrowing the
shape variations exhibited by a pre-trained non-mesh generator.

Exploring collections of 3D shapes Several prior techniques have
been proposed for exploring collections of 3D shapes by deforming
a template [Ovsjanikov et al. 2011], highlighting regions on some
reference shapes [Kim et al. 2012], or varying manually annotated
language-based attributes [Chaudhuri et al. 2013]. These interfaces
typically focus on modifying a single reference shape, and thus
are more suitable for local search, exploring immediate neighbors
of the reference model. A global analysis has been proposed to
identify main modes of variations of shapes in a collection [Kim
et al. 2013], and 2D layouts are commonly used to jointly explore
shape collections or generative shape spaces [Averkiou et al. 2014;
Rowaida 2021], as well as other visual domains in general [Kleiman
et al. 2015; Marks et al. 1997; Talton et al. 2009]. These type of
2D layouts give a holistic view of the entire space, while still pro-
viding intuitive interfaces in 2D. Various techniques have been
developed in mapping high-dimensional similarity data to 2D (e.g.,
PCA, MDS, [Fried et al. 2015], [Dym et al. 2017]) for exploration
and visualization. In this work we propose a novel technique for
constructing 2D exploration space from arbitrary high-dimensional
latent spaces learned with some shape generation techniques.

Learning to deform 3D shapes Classical methods typically de-
fine shape deformation in terms of optimizing a physical or quasi-
physical energy, e.g. see the survey by Botsch and Sorkine [2008].
These methods, while mathematically well-founded and tied to
actual physical behavior, can be difficult to control, do not capture
non-physical effects (e.g. interpolating in a heterogeneous shape
space as studied in this paper) and frequently involve numerically
challenging optimization (sometimes bypassable with “forward”
models like skinning, e.g. [Jacobson et al. 2011]). To address these
issues, a number of papers have tried to apply neural networks to
learn deformation models in a data-driven way. Here, we discuss
a few representative ones. To address the challenge of smoothly
deforming complex geometry, several papers use machine learning
to infer classical low-dimensional controls. Yifan et al. [2020] train
a network to fit and deform low-dimensional cages for 3D shapes.
Liu et al. [2021] take a different approach, learning combinations
of shape control points that factorize the deformation space into
intuitive “meta-handles”. Xu et al. [2022] learn to infer animation
rigs for meshes from motion-captured point cloud sequences. In
contrast, Aigerman et al. [2022] learn an implicit Jacobian field that
deforms meshes to targets without an intermediate classical proxy.
While all of these methods provide interesting ways to deform or
interpolate between meshes, they are not well suited for shape
space exploration, which is the problem we study in this paper.

A work more directly related to ours is the ShapeFlow system of
Jiang et al. [2020]. This system learns, in parallel, neural flow fields
that deform one shape to another, as well as an embedding of all

training shapes to a latent space. In principle, ShapeFlow can be
applied to our problem, and we show in the evaluation section that
our method produces qualitatively better deformations, see Figure
8. However, beyond that, ShapeFlow does not optimize the latent
space for interactive two-dimensional exploration – thus, much
of the machinery we develop for extracting a human-friendly 2D
re-embedding of the original latent space would be necessary in any
case. Secondly, our method can leverage any arbitrary pre-trained
generative 3Dmodel as a backbone, including ones trained on much
larger 3D (or 2D) datasets than the collection being explored.

A method that does use latent-space generative models for shape
space exploration is the GLASS system ofMuralikrishnan et al. [2022].
However, the problem addressed by this paper is very different
from ours – they focus on discovering new deformations of a sin-
gle template mesh by alternately training a generative model, and
incrementally exploring its latent space guided by a pre-defined
physical energy. This method does not apply to heterogeneous
shape collections, nor does it address interactive exploration.

3 OVERVIEW
Given a pre-trained, unstructured shape generative model G (e.g. a
point cloud generator) and a set of landmarkmeshesM = {𝑀1, ..., 𝑀𝑁 }
from the same shape category of which G was trained, our goal
is to create a two-dimensional exploration space, E, that can be
used to navigate a deformation subspace over the landmark meshes
induced by G. Walking through exploration space should produce
smoothly varying and sensible deformations of the meshes, and
the space’s layout should be such that similar meshes in M are
embedded closer together, while dissimilar meshes are farther apart.

We define the exploration space via a function Φ that maps from
E to the generator’s latent space Z. The mapping is designed to
give the exploration space several desirable properties that the
generator lacks; for instance, interpolating between shapes in E
produces intermediate outputs that vary smoothly, whereas naive
linear interpolation through most generative models may produce
samples that contain excessive variation, as illustrated in Figure 2.
At a high level, Φ reparametrizesZ in a way that minimizes energy
in the primal space of the generator (its geometric output space),
thus avoiding such issues. Additionally, Φ allows the region ofZ
spanned by our given meshes to be visualized in two dimensions,
making the high-dimensional latent space easily navigable.

Armed with Φ, there is one undesirable property remaining:
E only permits exploration over the unstructured outputs of G
(e.g. point clouds), rather than variations of the high-quality input
meshes. To solve this problem, we introduce a deformation module
that interprets an interpolation through the latent space of G as a
flow on amesh’s vertices, producing detail-preserving deformations
of awide variety of shapes.We showhow to advect the inputmeshes
through this flow, as well as how to switch between which mesh is
being advected based on a partitioning of the 2D space.

In the following two sections of the paper, we first outline the
construction of the energy-minimizing map Φ into the generator’s
latent space. Then, we introduce our routine that transforms the
unstructured shape manifold into a mesh deformation space.
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Figure 3: We illustrate the effect of our energy-minimizing submanifold in a simple case with four landmarks in exploration
space. The region inscribed by the landmarks is mapped to G’s latent space via Φ, as shown by the four interior points 𝑎, 𝑏, 𝑐, 𝑑 .
These points are decoded by the generator, producing point clouds of a particular shape category. The energy over these point
clouds is said to be minimized by Φ through the optimization outlined in Section 4.2.

4 CONSTRUCTING THE 2D EXPLORATION
SPACE E

We now detail the inner workings of our exploration space. We
assume to be given a shape manifold, i.e., a continuous space in
which each point represents a shape — this space can be thought of
as a submanifold of primal space (the space of all possible shapes).
We consider a shape manifold defined by a pretrained generative
neural network, G. Concretely, such generators indeed define a
𝑘-manifold, if one considers it as a function taking us from latent
(Euclidean) space,Z ∈ R𝑘 , onto points in primal space G(z) ⊂ X.

Our goal is to extract a submanifold from the shape manifold
that 1) includes all of the given landmark shapes; 2) naturally in-
terpolates between the landmarks along the shape manifold 3) is
a 2-manifold, i.e., is parameterized via a map Φ, which maps the
two-dimensional space into the shape manifold, Φ : E ⊂ R2 ↦→ Z.

Say we have a two-dimensional embedding of our landmark
meshes (detailed in Section 4.4) that will act as our parametrization
of the aforementioned map, i.e. for each mesh we associate with it
a point in exploration space (2D) and its corresponding projection
into latent space: L = {(x1, z1), ..., (x𝑁 , z𝑁 )}. As illustrated in Fig-
ure 3 we seek a map that “naturally” lifts this exploration space into
the shape manifold, i.e., in a manner that does not exhibit excessive
variation or rapid changes in the features of the shapes.

We can formalize this requirement: the shape manifold may be
defined in the Euclidean space Z, however the shapes themselves
are generated by a non-linear mapping (the generator), thus small,
linear steps in Z may result in arbitrarily large changes in the
resulting shape. In other words, we need to account for the metric
of the shape manifold and the curvature it induces. We will require
that the map Φ is smooth w.r.t the metric of the shape manifold.

By casting this as an embedding problem, we formulate a con-
strained optimization objective that ensures the landmark shapes
are always mapped correctly and the embedding minimizes an
energy accounting for the metric of the shape manifold – the

Dirichlet energy [Karcher 1977]. We first discuss this energy in
the context of one-dimensional interpolation problems. Then, the
two-dimensional problem is laid out for a simple case where just
three landmarks are specified in Section 4.2. Finally, we generalize
our method for collections of scattered landmarks in Section 4.3.

4.1 Geodesic paths between landmarks
Linear interpolation in high-dimensional latent spaces is known to
produce samples that exhibit undesirable properties [Karras et al.
2018; Laine 2018]. Intermediate samples may contain features that
do not exist at either the source or target; similarly, G may contain
regions with excessive variation, resulting in a “jittery” output.

In order to avoid such interpolants, we optimize for paths in
latent space that are geodesics with respect to primal space, X. This
is done by finding paths, 𝑝 (𝑡), 𝑡 ∈ [0, 1], where 𝑝 (0) = z0, 𝑝 (1) = z1,
that minimize the Dirichlet energy in primal space

J1-D (𝑝) = 1
2
∫ 1
0 ∥∇G(𝑝 (𝑡))∥2𝑑𝑡 . (1)

As geodesics are (locally) shortest paths, the shapes along them
vary as gradually as possible, and thus do not contain superflu-
ous movement in the generated samples. Figure 2 illustrates the
difference between linear and geodesic interpolation throughZ.

These geodesics are useful for smoothly interpolating between
samples along a one dimensional path, but they provide no informa-
tion about smoothly interpolating through a solid region in latent
space. In the simplest case, imagine three shapes connected by ge-
odesic paths; we have a well-defined way to walk directly from
shape to shape, but this formulation does not tell us how to walk
to an arbitrary point in the interior of the region.

4.2 Energy-minimizing submanifolds of G
We now formulate the constrained optimization problem in a case
where three landmarks z1, z2, and z3 are specified. Then, our solu-
tion is generalized in Section 4.3. Since geodesic paths between any
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pair of landmarks map to straight lines in exploration space E, the
three landmarks and the geodesic paths connecting them, 𝑝12 (𝑡),
𝑝23 (𝑡), 𝑝31 (𝑡) form the vertices x1, x2, x3 and edges ®x12, ®x23, ®x31 of a
triangle in E. We then define the solution surface S(𝑥) = G(Φ(x))
with x ∈ E inside the triangle as the minimizer of the Dirichlet
energy w.r.t to the Jacobian J of G ◦ Φ over exploration space:

argmin
Φ

1
2

∫
E
∥ J(x)∥2𝐹 𝑑𝐴,

subject to a Dirichlet boundary condition on 𝜕E given by ®x𝑖 𝑗
Φ(x) = 𝑏 (x) if x ∈ ®x𝑖 𝑗

with 𝑏 (x) = 𝑝𝑖 𝑗

( ∥x − x𝑖 ∥
∥x𝑗 − x𝑖 ∥

)

Submanifold objective

In order to optimize for Φ, we start by discretizing the function
G(Φ(x)) on a dense finite-element triangulation (V, F) over the
exploration space, with vertices V and faces F. Details of this dis-
cretization can be found in Section 6. Assuming the discretized
function is piecewise linear on each triangle, the Jacobian J is piece-
wise constant, and we denote the Jacobian for each triangle 𝑓𝑖 ∈ F
as J𝑖 . The discretized objective function for our optimization is then

J2-D =
∑︁
𝑓𝑖 ∈F

∥ J𝑖 ∥2𝐹 · Area(𝑓𝑖 ). (2)

In order to enforce our boundary condition, we could add a point-
matching regularizer in similar spirit to the thin plate spline energy;
thus making the energy

Jreg =
∑︁
𝑓𝑖 ∈F

∥ J𝑖 ∥2𝐹 · Area(𝑓𝑖 ) + 𝜆

∫
𝜕E

∥𝑏 (x) − Φ(x)∥2𝑑𝐴︸                          ︷︷                          ︸
unstable soft constraint

.

This energy, however, is unstable in practice due to the regularizer
acting as a soft constraint. The choice of 𝜆 may catastrophically
cause the solution surface to collapse to a point, or cause the surface
to have regions with large gradients. Instead, we treat Φ(x) as a
semi-parametric function, where its functional value is replaced
with the corresponding boundary value 𝑏 (x) if x ∈ 𝜕E, thereby
“pinning” the boundary points in place, turning them into a hard
constraint. The remaining regions of the surface are represented
by a multi-layer perceptron parametrized by 𝜃 :

Φ(x) =
{
𝑏 (x) if x ∈ 𝜕E
MLP𝜃 (x) otherwise.

(3)

In summary, we resolve the optimal mapping by minimizing the
energy given by Equation 2 w.r.t. the semi-parametric MLP above.

4.3 Generalizing to scattered landmarks in E
Rather than operating on just three landmarks, our method facili-
tates exploration across an entire collection of shapes by defining Φ
as a map from a convex region in E populated by a set of scattered
landmarks L. However, Laplace’s equation (which is implicitly be-
ing solved by our energy) and similar PDEs are ill-defined with
scattered boundary conditions1.

1See anonymous StackExchange answer [2014] for further details.

t = 0 t = 1 Deformation

Interpolation

Figure 4: We exploit G’s unstructured shape manifold to
produce plausible deformations of meshes. Our deformation
module is driven by interpolations through ourmap G(Φ(x)),
which offers smoother variation through exploration space.

For instance, if we take our boundary condi-
tion to be, say, a set of values along the con-
vex hull of E along with the points in L, then
the solution surface S will exhibit a “tent-
pole” effect—areas with large gradients will
protrude from the surface, like poles poking
through a circus tent (see inset figure).

Instead, we partition E into triangular facets via a Delaunay
triangulation of the landmarks. This creates disjoint regions, which
can be thought of as separate interpolation problems; that is, we
can imagine S as being defined by a collection of neighboring
surface patches that are “stiched” together. So long as each patch
shares identical boundary conditions with its neighbors, then S
will be continuous. We map each edge (x𝑖 , x𝑗 ) in the triangulation
to a corresponding geodesic connecting z𝑖 to z𝑗 . Hence our full
boundary condition becomes lerp(x𝑖 , x𝑗 ) ↩→ geodesic(z𝑖 , z𝑗 ) for
all edges in the triangulation, where lerp is linear interpolation.

4.4 Embedding meshes into E
To initially embed ourmeshes into E, we create a k-nearest neighbor
graph of the meshes based on a suitable distance metric (specified in
Section 6). This graph is embedded into E using a triplet margin loss
[Schroff et al. 2015], where triplets of meshes (a tuple comprised of
an anchor, positive neighboring mesh, and negative non-neighbor)
are used to minimize distances between the anchors and their neigh-
bors, while maximizing their distance to the remaining shapes. The
triplet loss over all such tuples is given as

Ltriplet (𝑎, 𝑝, 𝑛) =
𝑘 ·𝑁∑︁
𝑖

max(∥𝑎𝑖 − 𝑝𝑖 ∥22 − ∥𝑎𝑖 − 𝑛𝑖 ∥22 + 𝛼, 0)

where 𝛼 is the margin parameter that controls the separation be-
tween positive and negative pairs. We note that the choice of triplet
loss is arbitrary (methods such as t-SNE or UMAP may be used as
well [McInnes et al. 2020; van der Maaten and Hinton 2008]); how-
ever, in our experiments we found the embeddings produced by the
triplet loss contained sufficient local similarity between landmarks.

We include additional regularizer terms that maintain uniformity
in spacing between the embedded points. In particular, we penalize
areas and interior angles of triangles induced by a Delaunay tri-
angulation of the embedded points via ℓ2 norms of the areas and
minimum interior angles of each triangle. Avoiding a poor trian-
gulation of these points is pertinent to the boundary conditions
established in Section 4.2.
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5 EXPLORABLE MESH DEFORMATION
SUBSPACES

We now have an explorable subspace—parametrized by our two-
dimensional energy-minimizing map Φ—in Z that spans a set
of landmark shapes. Instead of simply synthesizing unstructured
shapes from G (i.e. point clouds), we would like to produce high
qualitymeshes that vary smoothly as we walk through the subspace.
In the following sections, we introduce a novel method for trans-
forming E into a mesh deformation subspace. Then, we generalize
this method to accommodate meshes with varying topology.

5.1 Transforming E into a mesh deformation
subspace

Given a landmark point in exploration space, xsrc ∈ E, and its
corresponding meshM(V, F) ∈ M, how can we deform the mesh to
match an arbitrary point xtar whose structure is given by S(xtar)?
The key to our deformation module is to interpret an interpolation
through exploration space as a flow on the mesh’s vertices, V.

More concretely, say we have a continuous path on our subman-
ifold, S = (S(x0), ...,S(x𝑡 ) | ∀𝑡 ∈ [0, 1]) where x0 = xsrc, x1 = xtar.
At time 𝑡 , an instantaneous discrete flow field is induced by

𝑓𝑡 : S𝑡 → S𝑡+𝜖 − S𝑡 ,

assuming we have a dense correspondence between the samples
on S. This formulation is similar to prior flow-based deformation
techniques [Xu et al. 2022]; however, due to our choice of G, we do
not need to explicitly compute point correspondences (see Section
6 for details). We deform our mesh by integrating the flow vectors
on each mesh vertex. Since the flow field 𝑓 is spatially discrete, it
must be interpolated to be defined at all vertex locations v ∈ V. One
such method for doing this is by means of a radial basis function
(RBF) interpolator [Anjyo et al. 2014]. This method is particularly
well-suited for our task because RBF interpolation is grid-free (𝑓
does not lie on a regular grid), and it exhibits smooth and stable
interpolation for large numbers of points. Flowing eachmesh vertex,
v𝑖 , can now be done by integrating the flow field through time

v𝑖𝑡+𝜖 = v𝑖𝑡 + RBF𝑓𝑡 (v
𝑖
𝑡 ) (4)

We employ a smoothing RBF interpolator that takes as input a
parameter 𝜆, which controls how well the interpolant fits the dis-
placement vectors 𝑓𝑡 . An example of our mesh deformations is
shown in Figure 4, wherewe see that interpolations over our energy-
minimizing submanifold provide smooth flows on the mesh vertices.

5.2 Topology-aware deformation subspaces
Ultimately, we define a smooth space of mesh deformations over
a collection of meshesM, akin to the latent space of a generative
model. This goal comes with an added challenge: the meshes in M
have varying topology, necessitating a need to discretely switch
between topologies while walking through our space. At a high
level, we establish a Voronoi partitioning of E, such that the mesh
topology at any point x ∈ E is decided by the nearest landmark’s
corresponding mesh. In the one dimensional case (i.e. with two land-
marks and a line connecting them), this is equivalent to switching
mesh topologies at the midpoint 𝑡 = 0.5.

Interactive exploration space

Figure 5: Our interface for real-time shape exploration and
deformation, which facilitates interactive exploration of con-
tinuous deformations of the landmark meshes. Source and
target points are marked by blue and red.

It is apparent, both qualitatively and quantitatively, that naively
switching topologies at 𝑡 = 0.5 is suboptimal. We instead compute
the optimal switch point, 𝑡∗, as the time at which the switch incurs
minimal change in the deforming mesh. In order to preserve the
Voronoi partioning as-is, we transform the boundary conditions
on each Delaunay edge to remap 𝑡∗ to 𝑡 = 0.5. Hence, in the final
exploration space, the optimal switch points are demarcated simply
along Voronoi cells. Quantitative comparisons can be found in
Section 7.

6 IMPLEMENTATION
All experiments were conducted on a single NVIDIA RTX 3090.
We use PyTorch and Adam for all optimization routines [Kingma
and Ba 2014; Paszke et al. 2019]. Details regarding the computa-
tion of boundary conditions, discretization of exploration space,
training for Φ, and embedding of landmark meshes can be found
in the supplemental material. We additionally implement a graphi-
cal user interface that allows one to interact with our explorable
deformation space in real time, as seen in Figure 5 and included
videos.

Shape generator. For our generator G, we employ SP-GAN [Li
et al. 2021], a state-of-the-art point cloud GAN. SP-GAN is particu-
larly well-suited for our goals because it is capable of representing
detailed shapes while implicitly providing a dense correspondence
between them, which we utilize in our shape deformation mod-
ule. SP-GAN takes as input a latent matrix which contains a 128-d
Gaussian i.i.d vector for each of the 2048 points in the resulting
point cloud, thus the generative mapping is G : Z ∈ R2048×128 ↦→
X ∈ R2048×3.

7 RESULTS AND EVALUATION
We test our method using SP-GAN trained on ShapeNet as our
shape generator G [Chang et al. 2015]. In particular, we construct
three exploration spaces containing chairs, tables, and airplanes—
these spaces contain 100, 50, and 25 shapes respectively and are
denoted as chairs-100, tables-50, airplanes-25. We demonstrate the
flexibility of our exploration space by showing applications such



Explorable Mesh Deformation Subspaces from Unstructured 3D Generative Models

101 

100 

10-1 
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Figure 6: Visualization of the log-energy, as per Equation 2.
Naively lifting exploration spaces into the primal domain (e.g.
by barycentrically interpolating landmark latents) results in
noisy interpolants. Ourmethod incurs far less energy overall,
which primarily occurs on the facet boundaries.

as shape-to-shape deformation (i.e. matching the structure of a
target shape with the geometry of a source shape), and free-form
exploration of the exploration space (i.e. interpolating in E freely
without a particular target shape). Our results are compared with
ShapeFlow quantitatively and qualitatively; and we similarly use
the ShapeNet Manifold dataset [Huang et al. 2018; Jiang et al. 2020].

Shape-to-shape deformation. Our results on shape-to-shape de-
formation are presented in Figure 8, whereby source and target
landmarks are connected via linear paths in exploration space. We
additionally apply our deformationmethod to an out-of-distribution
shape, as seen in Figure 7. We compare our results qualitatively and
quantitatively with ShapeFlow. The landmark pairs were chosen
randomly. We only show comparisons for shapes that are in Shape-
Flow’s training data (out-of-distribution shapes are not selected).
We specifically compare against ShapeFlow’s chair model, as other
models were unavailable.

We evaluate our deformations quantitatively by measuring their
distributional similarity to the ShapeNet dataset under the Frechet
Distance (FD) of a pre-trained PointNet++ classifier’s feature space
[Heusel et al. 2017; Qi et al. 2017]. Table 1 presents our FD scores
alongside ShapeFlow and SP-GAN’s meshed outputs (using SAP
[Peng et al. 2021]). Meshing the point clouds directly leads to
geometry that lacks detail and contains artifacts (i.e. holes). We
also measure similarity of deformed shapes to their targets under
earth mover’s distance (EMD). Our deformations are more nat-
ural: they preserve the original structure and match the target
shapes more closely without significant distortion. ShapeFlow fits
the target slightly better under EMD, but this is due to overfitting
to a Chamfer distance loss, leading to unnatural surface bowing.
Free-form shape deformation. We demonstrate the advantage of our
two-dimensional exploration space by showing free-form shape
deformations, whereby a trajectory starting from a landmark shape
can be specifiedwithout a particular landmark target. Visualizations
of these trajectories can be found in Figure 10.

Local smoothness of Φ. We measure the effect of our mapping
on local 1-d trajectories through the exploration space. Specifically,
we sample random paths through E with lengths proportional to
Delaunay facets bounding box dimensions. We compare the energy
of our paths to linear paths and optimized geodesics in Table 2.
Additionally, the Dirichlet energy of our mapping over the entire
exploration space is visualized in Figure 6 alongside a baseline.

Table 1: FD and EMD scores of our chair deformations com-
pared with Shapeflow and SP-GAN’s meshed outputs. For FD
we sample at times 𝑡 = 0.5, 1.0. We measure EMD between the
terminal shape and the target.

Method FD {𝑡 = 0.5, 1.0} ↓ EMD {𝑡 = 1.0} ↓
Ours 31.6 0.082

ShapeFlow 78.4 0.069
SP-GAN (meshed) 79.2 -

Table 2: Energy of paths from our chairs-100 exploration
space, versus linear interpolations in Z, and optimized
geodesics. Our mean energy is smaller than the optimized
geodesics, suggesting that the local support provided by our
2-d method gives smoother results than 1-d interpolation in
general.

Metric Ours Z-linear Z-opt
Mean Energy ↓ 1.071 1.267 1.144
Max Energy ↓ 3.741 2.796 2.415

Table 3: The amount of change incurred by the meshes
in tables-50 exploration space at random switch points is
computed. We compare using remapping of optimal switch
points, 𝑡∗, versus no remapping.

Metric Remapping 𝑡∗ w/o Remapping
Mean CD ↓ 262 285
Max CD ↓ 493 488

Boundary remapping. We measure the effect of our boundary
remapping (Section 5.2). The average Chamfer distance of shapes
immediately before and after switching topology are in Table 3. We
see that remapping boundary conditions moderately reduces the
geometric distance between shapes at the switch points on average.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we presented a new technique for extracting an easily-
navigable space for exploring deformations within and between
high-quality meshes using a pre-trained 3D shape generative model.
We described an algorithm for computing a smooth 2D parametriza-
tion of the generative model’s latent space that interpolates a set
of given landmark shapes, and we showed how to turn paths along
the manifold induced by our parametrization into continuous defor-
mation fields for transferring shape variations from the latent space
to high-quality landmark meshes. We demonstrated our technique
by constructing exploration spaces for several shape categories and
showed that it produces better interpolations between shapes than
an alternative approach, including a recently proposed method for
directly learning a deformation space from a large shape collection.

Limitations. Our method is not without limitations. For instance,
switching between meshes can result in visual discontinuities, espe-
cially if the landmarks are tightly packed. One way to alleviate this
issue would be to produce more gradual topology changes between
the two meshes, rather than a single discrete switch: for example,
by gradually replacing parts of the source mesh [Hui et al. 2022a;
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Figure 7: An out-of-distribution airplane2 (left), unseen by
the pre-trained generator, and a resulting mesh from our
deformation pipeline (right).

Jain et al. 2012]. Additionally, like other flow-based deformation
methods, our method may produce warped geometry, particularly
when ‘rigid’ parts are deformed non-rigidly (e.g. column 3 in Figure
8). Imposing regularization energies (e.g. an ARAP energy [Huang
et al. 2021; Sorkine and Alexa 2007]) on the induced flow field is a
potential avenue for improvement. Finally, while our method sup-
ports real-time interaction, the training remains time consuming.
Amortizing the training of Φ by learning to predict an exploration
space given a set of landmarks is of much interest. Such a system
could facilitate powerful forms of interaction: e.g., ‘coarse-to-fine’
exploration, in which a user starts with an exploration space over
a large set of shapes, then iteratively drills down into spaces of
smaller subsets of shapes. Currently our method cannot easily ac-
commodate this interaction paradigm.

Future work. One immediate direction for future work is to apply
our method to other latent variable generative models. The chal-
lenge here is in producing deformation fields when there does not
exist a dense correspondence in G’s output space (as in SP-GAN).
Also, given their recent popularity, it would be interesting to apply
our method to diffusion models. The challenge here is the expensive
computation of Jacobians that are necessary for training the map
Φ. One possibility is to train a surrogate forward-pass model that
approximates multiple diffusion steps [Xiao et al. 2022].

It would also be interesting to apply the subcomponents of our
method to different applications or domains. For instance, our pro-
cedure for building E is not specific to 3D shape latent spaces; one
could imagine using it to construct easily-navigable exploration
spaces for other visual data domains, such as image collections.
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Source

Target

Ours

ShapeFlow

Figure 8: We demonstrate our shape-to-shape deformation results against ShapeFlow, whereby we take random source and
target meshes, and deform between them continuously. We visualize the final deformed shapes (at 𝑡 = 1) as well as the source
and target meshes. We can see that our method exhibits deformations that better preserve the fine details of the original shapes,
while matching the structure of the target shapes more closely compared to ShapeFlow.

Source

Target

Ours

Figure 9: Additional shape-to-shape deformation results from our airplanes-25 and tables-50 exploration spaces. Our method is
able to capture complex deformations; for instance, in column four we see the airliner’s wings bending forward to match the
straight wing’s of the propeller plane. Additionally, in the last column we see that our method is able to locally deform the
table top while maintaining the geometry elsewhere.
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Chairs-100 Exploration Space Tables-50 Exploration Space

Airplanes-25 Exploration Space

Deformed Mesh Closest Landmark

Figure 10: Our method also facilitates free-form exploration of the deformation spaces. Here we show example deformations
(in green) in our chairs-100, tables-50, and airplanes-25 exploration spaces respectively, where times 𝑡 = 0, 0.25, 0.5, 0.75, 1 are
shown, 𝑡 = 0 corresponds to the source mesh. The closest landmark shapes (in yellow) located at the end of the deformation
trajectories are shown, along with an example trajectories for the first rows of each category.
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