
Z. Gu et al. / How to Train Your Dragon 1 of 11

How to Train Your Dragon: Automatic Diffusion-Based Rigging for
Characters with Diverse Topologies

Zeqi Gu1,3 Difan Liu2 Timothy Langlois2 Matthew Fisher2 Abe Davis3

1Cornell Tech, USA
2Adobe Research, USA

3 Cornell University, USA

Canonical
Atlas Texture

Skeleton Drawn Over
Atlas Texture

[Optional] One or more additional
example frames can be provided for

generated motion.

Creating a New Rig Using a Rig
User only needs to draw new skeletal poses

Network generates animation frames for each pose

Diverse Shapes & Topologies

Pi
nw

he
el

input
output

example
frame

Appearance Reference

D
ra

go
n

input
output

example
frames

Appearance Reference
(In this example, one additional frame is provided.)

Figure 1: Workflow. We propose AniDiffusion, a diffusion-based automatic rigging method that helps cartoon creators re-pose a character
without going through the traditional arduous rigging procedure. Our method first provides an annotation user interface and asks the user
to provide several keyframes of the character with desired control points annotated. Then we invite the user to input the coordinates of
those keypoints to indicate how they want to re-pose the character per-frame. After a simple fine-tuning, our model is able to synthesize the
character in the new motion. Unlike most existing works, our method does not assume the topology nor the texture of the character belonging
to a certain category such as humanoids, and thus works on a much wider range of objects, such as a fox (blue and green box), a pinwheel
(orange box, top row), and a dragon (orange box, bottom row). Image credits: fox ©Edina Gecse and pinwheel ©Ekaterine Kantaria; the
dragon is self-created.

Abstract
Recent diffusion-based methods have achieved impressive results on animating images of human subjects. However, most of
that success has built on human-specific body pose representations and extensive training with labeled real videos. In this work,
we extend the ability of such models to animate images of characters with more diverse skeletal topologies. Given a small
number (3–5) of example frames showing the character in different poses with corresponding skeletal information, our model
quickly infers a rig for that character that can generate images corresponding to new skeleton poses. We propose a procedural
data generation pipeline that efficiently samples training data with diverse topologies on the fly. We use it, along with a novel
skeleton representation, to train our model on articulated shapes spanning a large space of textures and topologies. Then during
fine-tuning, our model rapidly adapts to unseen target characters and generalizes well to rendering new poses, both for realistic
and more stylized cartoon appearances. To better evaluate performance on this novel and challenging task, we create the first
2D video dataset that contains both humanoid and non-humanoid subjects with per-frame keypoint annotations. With extensive
experiments, we demonstrate the superior quality of our results.

CCS Concepts
• Computing methodologies → Animation; Image manipulation;

ar
X

iv
:2

50
3.

15
58

6v
1

 [
cs

.G
R

]
 1

9
M

ar
 2

02
5

https://orcid.org/0009-0002-5777-4560
https://orcid.org/0000-0001-5971-2748
https://orcid.org/0000-0002-5043-8698
https://orcid.org/0000-0002-8908-3417
https://orcid.org/0000-0003-1469-2696

2 of 11 Z. Gu et al. / How to Train Your Dragon

1. Introduction

Animation has always been a labor-intensive process. Before the
introduction of digital tools, animation was done by drawing each
individual frame by hand, which meant an enormous amount of re-
dundant work went into creating long sequences. Modern software
helps reduce this redundant work by representing characters with
a hierarchy of parts and corresponding transformations, which are
collectively called a rig. Each part in the rig represents geometry
that can appear in multiple frames, and each transformation repre-
sents an interpolatable way that the character can move. These rigs
let artists animate a character by specifying the configuration of a
corresponding skeletal representation at a sparse set of keyframes.
This representation can greatly accelerate the animation workflow.
However, the process of creating an animation rig, called rigging,
can be complicated and tedious. It involves factoring the charac-
ter’s geometry into parts and specifying how each part is affected
by transformations in the skeletal hierarchy, including the relative
rigidity and bending of different parts in response to motion. To fur-
ther complicate the process, much of a rig’s information typically
resides in metadata that the artist must define using specialized in-
terfaces (e.g., layer decompositions and labels). In this work, we
show how image diffusion networks can be trained to infer rigging
behavior from a small set of example images and their correspond-
ing skeletal structures. Based on this, we present a tool that greatly
simplifies the 2D rigging process. To create a 2D rig, the artist only
needs to trace the skeletal structure of one or more example frames
showing the character. Then, the artist can draw new unseen skele-
tal poses, and our tool will generate corresponding images that are
consistent with the degrees of freedom and style of deformations
observed in the provided examples.

Ours is not the first work to create video by conditioning the gen-
eration of frames on a reference image and target poses. However,
most work in this space has been limited to subjects with standard
humanoid topologies–typically, the topology of human pose detec-
tors (e.g., OpenPose [CHS∗19] and DensePose [GNK18]), which
can be used to automatically label abundant training data. A distinct
goal of our work is to build a solution that generalizes to more ar-
bitrary and abstract characters, including humanoid characters with
more diverse shapes, as well as animals and articulated objects with
unseen topologies. In order to support such diversity, we need to
adapt a new training strategy and pose representation that is less
reliant on automatically-labeled video of humans.

Our work makes the following contributions:

• We adapt a new pose conditioning strategy that generalizes to
more diverse character appearance and skeletal topologies. Here
we draw inspiration from the use of texture atlases and texture
coordinates.

• We present a training strategy that learns to generalize by train-
ing on procedurally generated synthetic data, and show that this
strategy leads to generalization across real and cartoon images
with little fine-tuning (approx. 25 minutes on an NVIDIA A100
GPU).

• To foster research and better evaluation in this challenging task,
we build the first 2D video dataset spanning both humanoids and
non-humanoids with per-frame keypoint annotations to evaluate
performance in this generalized problem setting.

• We demonstrate that our approach is able to effectively infer the
parameters of classical non-neural rigging methods such as As-
Rigid-As-Possible (ARAP) [SA07], and Bounded Biharmonic
Weights (BBW) [JBPS11] from the provided examples. This lets
us understand our approach as a way to infer and use such rig-
ging behavior from more general image inputs, including hand-
drawn example frames.

2. Related Works

2.1. Diffusion-Based Video Synthesis

Diffusion models [SME20,SSDK∗20] were first developed to gen-
erate images [RDN∗22, NDR∗21]. As these image-based models
demonstrate increasingly impressive power and are more compu-
tationally efficient than their video-based counterparts [HSG∗22,
HCS∗22, SCS∗22], how to adapt them for video generation has
become an active research topic. AnimateDiff [GYR∗23] expands
the dimension on which the model operates from two to three by
adding trainable weights for temporal attention between frames.
After pre-training, this plug-in module can then be used with most
image models to render consecutive dynamic frames. Our model is
also image-based, and we include AnimateDiff as an optional ele-
ment, though we find even without it our model is able to generate
outputs stable across time. A popular sub-topic of video generation
is video editing, and the most common way to control the editing is
via text prompts. Tune-A-Video [WGW∗23] allows changing video
content while preserving motions by finetuning a text-to-image dif-
fusion model with a single text-video pair. FateZero [QCZ∗23] pro-
poses a training-free method by injecting the cross-attention map
of the source video and modifying attention layers. Customize-a-
Video [RZY∗24] and Lamp [WCY∗23] learn the motion directly
with example video(s). These approaches could be viewed as trans-
ferring the motion from an original appearance to a new appear-
ance, and differ from pose-conditioned method like ours in two cru-
cial ways. First, the target appearance images are translated from
the source image and the target motion is ideally the same as the
input motion. Our method does not involve any image translation
and the target motion is assumed to be different from the one in
the input video. Second, such methods usually condition on a text
prompt describing the goal of scene translation, and have no ex-
plicit modeling for the pose and geometry. Our work condition on
the target appearance and a skeleton image instead of text, thus
controlling the appearance and pose more directly.

2.1.1. Pose-Conditioned Animation

Harnessing the generation power of diffusion models has been an
active research direction. Many formats of conditioning have been
proposed: Animate Anything [DZY∗23] uses a mask to indicate
which part of the image needs to be animated. The motion is de-
scribed by a text prompt, and the “strength” could roughly control
the intensity of the motion. Other methods [YWL∗23, WLG∗25,
MWS∗23, SXL∗24] condition on a mouse drag that indicates the
movement trajectory. Although these methods could animate ob-
jects other than humanoids, their controls are less precise as a
trade-off for convenience. On the other hand, methods that enable
more accurate pose controls have been focusing on humans, par-
tially due to the lack of annotated data in other domains. These

Z. Gu et al. / How to Train Your Dragon 3 of 11

works usually acquire the skeleton annotations with an off-the-
shelf human pose estimation method, such as DensePose [GNK18]
and OpenPose [CSWS17, WRKS16, SJMS17, CHS∗19]. Dream-
Pose [KHWKS23] proposes an adapter to fuse the CLIP text em-
bedding with the CLIP image embedding of the appearance image,
and feed a projected version of the fused feature into the diffu-
sion model for cross-attention. As their method was only trained on
fashion datasets, the variation of appearances and poses is very lim-
ited. Later on, more generalizable approaches [XZL∗23, ZZY∗24,
MHC∗24] emerged and could bu used zero-shot. DisCo [WLL∗23]
focuses on disentangled control of the foreground, background and
pose, which enables human video generation with changeable fore-
ground, background and motion. Animate Anyone [HGZ∗23] de-
signs a ReferenceNet to extract detail appearance features from
reference images to serve as extra cross-attention values for the
denoising UNet. The skeleton image is combined with the noisy
latents to be the input. MagicPose [CSG∗23] is another state-of-
the-art that shares similar design ideas and produces better facial
expressions. We find the architecture of Animate Anyone achieves
a balance between fine-tuning efficiency and performance, and thus
adopt it for our method. As will be articulated in the following
sections, our major differences from Animate Anyone are: (1) our
skeleton representation is generalizable to diverse topologies and
encodes depth ordering. (2) Our method is trained entirely on syn-
thetic videos (before character-specific fine-tuning, which is re-
quired also for all compared methods once test characters are not
confined to humanoids).

2.2. Classical Rigging and Skinning

Speeding up and improving the quality of rigging and skinning has
been a long-standing topic in computer graphics. Some of the most
fundamental algorithms include linear blend skinning, dual quater-
nions, and rigid skinning. After placing handles during the bind
time, most methods that are fast at pose time compute the transfor-
mation at each object point by using a weighted blend of handle
transformations. The specific optimization and weights vary across
methods. Among methods that work on 2D and have code avail-
able, As-Rigid-As-Possible (ARAP) [SA07] and Bounded Bihar-
monic Weights (BBW) [JBPS11] are exemplary methods that have
been widely adopted into animation engines. In Sec. 5, we will
show that our model could infer a plausible interpolation between
provided poses regardless of the underlying rendering engine that
was used to generate the fine-tuning examples. Therefore, the user
no longer needs to figure out the entire rig through trial and error –
they only need to annotate the keypoints on few frames, and let the
diffusion model to implicitly do the reverse inference. This is one of
our key strengths over non-neural methods, and with our ordering-
aware skeleton bone representation, the user further avoids the need
to manually separate the image frame into parts. Our model is able
to infer the layer ordering and generate correct occlusions.

3. Method

Our method involves two stages: (1) Stage 1 involves training on
a large synthetic dataset to learn rigid rigging of diverse shapes,
and (2) Stage 2 is fine-tuning on the given unseen test character (in
Sec 5, we will show that even only trained on rigid deformations,

our model can adapt to arbitrary non-rigid deformations after this
quick fine-tuning). We will first introduce our model architecture
in Sec. 3.1. Then we describe the procedural generation of stage
1 training data: the appearance synthesis is in Sec. 3.2, and pose
representation is in Sec. 3.3. Training implementations of the two
stages will be in the next section.

3.1. Preliminaries on Diffusion Models

Diffusion models [HJA20] have demonstrated impressive image
generation capabilities through an iterative denoising process. Dif-
fusion models consist of two Markov chains: a forward chain that
perturbs data to noise, and a reverse chain that converts noise back
to data. For an input image x0, the Gaussian noise is gradually
added to x0 through the forward Markov Chain:

q(xt |xt−1) =N (xt ;
√

1−βtxt−1,βtI) (1)

where t = 1, ...,T denotes the timesteps, βt is a predefined vari-
ance schedule. At inference time, Gaussian noise is sampled from
N (0,I) and gradually denoised into the data distribution:

pθ(xt−1|xt) =N (xt−1;µθ(xt , t),σ2
t I) (2)

where σ
2
t is a predefined variance schedule and the denoiser µθ is

parameterized by a neural network.

Denoising in pixel space is inefficient and cannot scale up to
high resolution. To address this issue, Latent Diffusion [RBL∗22]
proposes to denoise in the latent space. More specifically, a VAE is
first trained to compress images into latent space, and then the dif-
fusion denoiser is trained to denoise in the latent space. The result
of the denoising process is decoded back to pixel space by the VAE
decoder.

3.1.1. Architecture

Our model builds upon the architecture of Animate Anyone, as em-
pirically we find it achieves a better balance between performance
and efficiency than other concurrent methods. The inputs are an im-
age of the target character for appearance reference, and an image
showing the skeleton in the target new pose (Fig. 2.a). The skeleton
image is encoded using a Pose Guider and fused with noisy latents
as inputs to the Denoising UNet. The appearance reference image
is fed through CLIP image encoder to produce semantic features
for the cross attention layers. It is also fed through a ReferenceNet
to produce spatial features, replacing the self-attention in the UNet.

Our model defaults to working on a white background, and we
trained a useful variation that works on other backgrounds. Ani-
mate Anyone and most other existing methods assume the back-
ground of the reference appearance image is the same as what is
desired for the output. However, in many real-life videos, the back-
ground is also moving. To reduce this constraint, we use Grounded-
SAM [RLZ∗24] to segment the foreground object and place it onto
a white background following our default input format of appear-
ance reference. Then we use Remove Anything [YFF∗23] to in-
paint the background. To add the condition of background, we find
it effective to extract features with the same ReferenceNet and add
them to the spatial attention module. In this way, the user could use
a background for the target new pose that is different from the one

4 of 11 Z. Gu et al. / How to Train Your Dragon

Trace of Skeleton
Structure on Example Image

Skeletal Structure Boundary
 in Coordinate Image

Skeleton Image
R and G channel for
spatial information

Atlas Image

Layer Ordering
of Each Bone

Input Conditions

Skeleton

Appearance Reference

Training Data
Generation

B channel for
part ordering information Synthesized Appearance

Reference

Random Layer Ordering 1

Skeleton at
Target Pose A

Random Layer Ordering 2

Skeleton at
Target Pose B

Output Appearance
at Target Pose B

Output Appearance
at Target Pose A

Skeleton at
Target Pose A

Skeleton at
Target Pose B

Output Appearance
at Target Pose B

Output Appearance
at Target Pose A

(a) Skeleton Representation (b) Procedural Synthetic Data

Figure 2: Training Pipeline. (a) Our model takes in an appearance reference image and a skeleton image as inputs. (b) For the first training
stage, these are randomly generated through our data pipeline. With almost infinite possible combinations of texture, shape, and topology,
our synthetic dataset is more challenging than any real-life datasets, which forces our model to learn the correct binding and deformations.
Our skeleton representation for this wide range of topologies is also unique: in the Red and Green channel of this RGB image, we color pixels
according to their x and y coordinates. When a user specifies a new target pose, this skeleton is transformed accordingly, which means that
the value of pixels in the target skeleton image now refer to source coordinates in the starting rest pose. We use the Blue channel to embed
layer ordering of each part of the body, which is crucial for characters that contain parts of different depths. For each appearance we train
the model multiple target poses and layer orderings, as shown in the two dashed boxes in (b). When the new pose causes occlusions as in the
two left columns, the supervising ground truth appearance is different when the order changes. Thus, our model is forced to understand the
influence of layer ordering to appearance. For more data examples please refer to Fig. 3.

in the reference image. Fig. 5 shows results with different back-
grounds.

3.2. Training Data Synthesis

Appearance Reference Skeleton Representation New Pose Ground Truth New Pose Model Output

Layer Order 1

Layer Order 1

Layer Order 2

Layer Order 2

Figure 3: More Training Data Visualizations. For each canonical
appearance, we show one target pose and two layer ordering exam-
ples. The red boxes highlight how ordering affects the bone colors
in skeleton representations and target appearance.

What distinguishes us from other works is the data generation
and model training pipeline. Acquiring enough annotated data for

the ambitious goal of animating arbitrary topology is very expen-
sive, so we develop a synthetic dataset that generalizes well to real
cases during test time. Our pipeline generates a pair of appearance
image and its corresponding skeleton image at a time. For each
training iteration, we generate two pairs of (appearance, skeleton)
image. We first generate a character at a rest pose, and the appear-
ance image of this pair will be used as the reference image for the
network. Then we randomly deform it to a new pose. For this sec-
ond pair, the skeleton image of this pair will be used as the skeleton
input to the network, and the appearance image would be the de-
sired output, so it would be used as the ground truth to compute the
training loss. We now detail the generation process of such paired
data.

3.2.1. Topology

We first generate a random tree structure to be the topology of our
abstract character: we generate nodes of a random quantity within a
predefined maximum, and for each node randomly assign a parent
node. Then we plot the tree graph with random edge length. As the
appearance reference should ideally provide as much texture infor-
mation as possible, it is beneficial to avoid occlusions of body parts,
and thus we define the “rest” pose of an arbitrary topology charac-
ter as the force-directed layout. In fact, for humanoid topologies,
this layout is close to the commonly-used T-shape rest pose, which
supports the validity of our design choice.

3.2.2. Texture

Given a tree structure, we connect each node and its parent to form
an enclosed shape. As there is only one root node, we associate
each shape to the child node, and the root node has no association.
Suppose one axis of the shape is the line connecting the node and

Z. Gu et al. / How to Train Your Dragon 5 of 11

its parent, then we sample several points within a random aspect
ratio in the direction orthogonal to the axis, and on both sides of
it. With these control points, we draw Bezier curves to form a ran-
dom shape. Parameters for the Bezier curves, such as the radius and
the maximal number of random control points, are predefined. The
back-to-front ordering of these shapes are randomly generated, and
the complete character is acquired using alpha composition follow-
ing that order. We use the enclosed shape as a mask over a ran-
dom image from our texture image dataset to produce the final tex-
tured blob. To let our model handle both real-life textures and more
artistic or cartoon styles, our texture dataset includes at least 10000
random image samples from Cartoon Classification [car], LAION
Art [SBV∗22] and MSCOCO [LMB∗14] (only raw images from
these datasets are needed).

In summary, rather than validating sampled characters, our gen-
eration procedure guarantees desired properties by construction: (1)
each part is a closed shape that spans the length of its correspond-
ing bone, and its oriented bounding box has a bounded aspect ratio.
(2) The topology is a tree. (3) There can be overlapping parts, but
using force-directed layout as the canonical pose minimizes this in
practice for the appearance reference.

3.2.3. New Pose

To form the second pair of data in a target new pose, we ran-
domly transform the first rest-posed pair. We randomly select sev-
eral branches of the graph, and rotate each shape in that branch by
a random degree. Then the entire character is rotated by a random
degree and translated by a random vector.

3.3. Skeleton Representation

Previous works focusing on a specific category of characters, such
as humanoids or quadruple animals [XCH∗24] assume the number
of keypoints is fixed, and use a predefined color to draw each joint
and bone. Therefore, the model may exploit the association be-
tween a specific color and the corresponding body part. For exam-
ple, in skeleton images drawn by OpenPose [CSWS17, WRKS16,
SJMS17, CHS∗19], the red color always corresponds to the right
shoulder of a person. However, as we are not targeting at any spe-
cific topology, we discourage the binding of color with semantic
meaning. On the other hand, we hope the color provides informa-
tion about the spatial transformations from the rest post to the target
new pose. Therefore, we represent the position of each pixel with
a linear mapping from its coordinate to a color value. Given an im-
age of resolution (A,B), and a point of coordinate (x,y), our design
is to color the bone at that pixel with RGB value (c ∗ x

A ,c ∗
y
B),

where c is some scaling constant. For example, for an image of size
255× 255 (Fig. 2), we can set c = 255 and color a skeletal bone
passing through a pixel at (x,y) directly by setting the Red channel
color value to x, and Green channel to y, in uint8 RGB space.

For the Blue channel, we encode the layer ordering into it. We
evenly divide the color space, and assign a value to each bone of the
skeleton based on its layer index. For example, if there are five parts
at most, then the back-most bone would have blue value 255/5 =
51, and the foremost bone 255. The background is set to all zeros
such that its value never overlaps with a potential bone color. The
final RGB skeleton representation can be seen in Fig. 2.a.

For the second pair at a new pose, instead of re-drawing the
skeleton image with the updated position, we transform the bones
in the rest pose to build the spatial correspondence that could be
informed now by the RGB values: the current position of the bone
is the desired new pose, yet its color implies where it comes from.

4. Training and Implementation

As there are 3× 10000 = 30000 texture image candidates, and we
set the maximum number of bones in a topology to be 10, the
combination of texture, topology and blob shapes is far beyond
30000× 10! = 3.6288e10, while we only train for 30000 steps for
our experiments. The high diversity of training data prevents model
memorization. The model must learn to correctly decode the infor-
mation in our skeleton representation, bind each bone to the cor-
responding textured shapes, and transform the shapes based on the
conditioning images.

For each abstract character, we generate multiple target poses
and multiple layer orderings to facilitate model understanding. As
in Fig. 2.b, when there is occlusion for the same new pose, the
desired appearance is different when the layer ordering changes.
The model has to figure out the cause of this difference to further
reduce training loss.

Our training involves two stages. In Stage 1, we train for 30000
steps on 2 A100 GPUs. The learning rate is 1e-5 and the image
resolution is 512× 512. Both ReferenceNet and Denoising UNet
are initialized from Stable Diffusion v1–5 [RBL∗22], and only the
Pose Guider, the Denoising UNet and the ReferenceNet are tuned.

After Stage 1, our model can already re-pose unseen test char-
acter zero-shot, even though real-life characters look very different
from the training abstract shapes to human eyes. To improve its
performance, we fine-tune it on a few frames in Stage 2. Note that
some of the top-performing works focusing on humanoids is able
to get rid of this step, yet it is necessary in our case due to the much
more relaxed assumption of the character appearance and topology.
As shown in Fig. 2.a, we require the user to provide a few frames
with annotated keypoint coordinates (i.e. joints), the connections
of these joints (i.e. bones), and the layer ordering of the bones. We
have built a front-end for this annotation process, for which please
refer to the supplemental. These are the only extra inputs we need
from the user, as our pipeline will then automatically plot the skele-
ton image for each annotated frame, and start the fine-tuning with
Stage 1 model weights. Stage 2 training procedure is the same as
Stage 1 but with different hyper-parameters: we use 2000 training
steps here.

5. Evaluation

For better evaluation of this novel task, we establish a dataset of
2D characters with keypoint annotations, which is composed two
types of contents. The first component is our AniDiffusion Dataset,
which contains 135 characters with various poses, and, to the best
of our knowledge, is the first cartoon dataset that provides per-
frame accurate keypoint annotations and alpha mattes for the char-
acter. The data generation software is Adobe Character Animator
(Ch), which comes with rich character and motion libraries. The

6 of 11 Z. Gu et al. / How to Train Your Dragon

(a) Parts & Annotations

(b) Motion Samples

(c) Character Samples

Figure 4: AniDiffusion Dataset. We establish the first 2D animation dataset with accurate keypoint annotations, part segmentations and
alpha masks (See (a), where keypoints are labeled in green). We use Adobe Character Animator to create more than 120 characters (c) with
approx. 100 types of motion for each (b).

topologies of many characters resemble humans, but the appear-
ances are much more varied, as shown in Fig. 4.a. There is a Mo-
tion Library that defines more than 140 motions for each charac-
ter, ranging from walking to fighting (Fig. 4.c), and the human
joint definitions correspond to other widely-used packages such as
OpenPose [CSWS17] (Fig. 4.a). For other characters that do not
have motions programmed, we script the software to pose each joint
at multiple evenly spaced angles with respect to its parent joint,
and permute over all angle combinations of available joints. We
also render each primitive body part of the character in separate for
each frame, to clarify the occluded regions, and enable more flexi-
ble compositions, such as adding a tail from an elephant character
to a cartoon human. Finally, we provide 48 background images that
could be composed with the character RGBA image.

As Character Animator focuses on animating humanoid char-
acters, the second component of our evaluation dataset are videos
containing objects of more diverse topologies and appearance from
the Internet, ranging from insects and marine creatures, to machines
and toys. We use a mixture of Co-tracker [KRG∗23] and manual
annotation to label keypoints. The keypoint locations are selected
such that the major motion could be described concisely by the re-
sulting skeleton, and are verified by the authors. We use the first
frame as the appearance reference image, and two frames, the mid-
dle and the ending one of the sequence, as the fine-tuning frames.
The video length spans from 5 to 67 frames. As the selected clips
contain non-repetitive motions that span over the entire sequence,
usually these three frames have distinguished poses and the test
poses are smooth interpolations of them (a small portion would be
mild extrapolations). This fixed selection strategy lets us use infor-
mative fine-tuning samples without much cherry-picking.

5.1. Qualitative Evaluation

We start by showing sequential results of a wide range of topolo-
gies, styles, and motions in Fig. 5. Then we compare with two
state-of-the-art pose-conditioned diffusion methods, Animate Any-
one [KHWKS23] and MagicDance [CSG∗23]. As there are no ex-
isting methods that target for arbitrary topologies, we need to mod-
ify the skeleton representation and fine-tune these methods. To re-

veal the fundamental ability of the re-posing components, we keep
the comparison fair by omitting training of the temporal compo-
nent, and use the same seeding for all. As Animate Anyone and
MagicDance use OpenPose skeleton images targeted at humans,
we modify the plotting function such that it could map each key-
point in a video to a fixed color for all frames.

Fig. 6.a shows a robot arm catching a fly. The fly is detached
from the arm and is not yet into the picture in the first frame, which
we used as the reference image. The longest line in our pose im-
age points from the arm base to the fly, and therefore extends to
the edge of the canvas when the fly is absent. The deformations of
the robot is mostly rigid. The texture mapping from the reference
to the skeleton for Animate Anyone is poor, whereas MagicDance
overfits to the 3 training poses and could not smoothly interpolate
to generate new poses, and could not synthesize small objects like
the fly consistently.

Fig. 6.b is a sketch example of finger walking. This is a very
challenging task as the two moving fingers have similar appear-
ances, and accurate texture-skeleton binding becomes necessary.
As Animate Anyone lacks this ability, it gets the order wrong for
the middle row, and omits the separating line that should tell the
order for the first and the third row. MagicDance is better at this
example, yet its generation quality is not as high, as in the first row.

In the rightmost column of Robot Arm, we show our best efforts
to deform the reference image to the target poses using the Pup-
pet Pin Tool in After Effects, which is powered by a collection of
widely-used classical deformation methods. The yellow circles are
the placed pins. It always needs more control points than neural
methods, and the set of necessary points are different for differ-
ent poses, which means the user needs to “overfit” to each pose
through lots of trial and error. There are also many distortion ar-
tifacts caused by the fact that there is no easy way for classical
methods to separate out multiple layers from an image input. For
Finger Walk, we instead tried to use the same set of keypoints that
were used for neural methods. Severe distortions occur near the fin-
ger tips. As there are no longer enough pins to fix certain parts, the
displacement of one point incorrectly influences too many of its
neighboring pixels.

Z. Gu et al. / How to Train Your Dragon 7 of 11

Figure 5: Result Visualizations. In the left most column, we show the reference image, the only two fine-tuned frames (in thumbnails). On the
right we show equal-spaced consecutive frames from our model outputs. After a 25-minute fine-tuning on only these three frames, our results
show impressive identity preservation, motion interpolation quality, and temporal coherency. From cartoons (row 1–4; row 3–4 are results
on AniDiffusion dataset), to real life clips (row 5–6), our model works on a wide range of contents and styles. Please see our supplemental
materials for more examples. Image credits (row 1,2,5,6): Fisherfield Childcare, Edina Gecse, DAVIS-2017 [PTPC∗17], Arianna1 @ Tenor.

5.2. Smooth Interpolation for Non-Rigid Deformations

The Stage 1 synthetic data only contains rigid transformations but
not character-specific details. In the second fine-tuning stage, we
let the model adapt to the specific, complex skinning effects of the
target test character. One of the key observations is that diffusion
models possesses the surprising power to interpolate reasonably
no matter what underlying algorithm was used to create the input
images. In Fig. 7 we provide an essential demonstration by bend-
ing the same grid rectangle with different classical algorithms: (a)
ARAP [SA07], (b) rigid rotation and (c) Puppet Pin Tool. We fix
the control points, and therefore our model takes in identical skele-
ton images, and must reversely infer the deformation mechanism
from the three fine-tune examples (one is the rest-pose appearance
image, and two in other poses as shown in the first two rows). For
BBW [JBPS11], due to difficulties in Python re-implementation,
we use the demo example, an alligator image, in the original Mat-
lab code. We deformed the tail with a control point defined in the
paper. Our model adapts to a reasonable deformation pattern for all
methods. Although the generation might not be strictly following
that particular algorithm, the visual quality is already reasonable,

Method MSE↓ PSNR↑ FID↓ LPIPS↓

MagicDance 15.51 1.64 294.44 9.03
Animate Anyone 12.44 1.88 3.35 4.73

Ours 8.61 2.04 2.87 3.77

Table 1: Quantitative Comparison. The scale of MSE, PSNR, FID
and LPIPS is 1e-3, 1e+1, 1e-2, 1e-2. The best results in the com-
parison with other methods are highlighted.

and we leave more thorough quantification of this ability as an in-
teresting future investigation.

5.3. Quantitative Evaluation

We run quantitative evaluation on a subset of our data with white
backgrounds. As shown in Table 1, we use common metrics in-
cluding Mean Squared Error (MSE), Peak Signal-to-Noise Ratio
(PSNR), Fréchet Inception Distance (FID) [HRU∗17] and Learned
Perceptual Image Patch Similarity (LPIPS) [ZIE∗18]. While MSE
and PSNR measure the absolute difference between the predicted

8 of 11 Z. Gu et al. / How to Train Your Dragon

Reference
Image

Fine-tune
Example 1

Fine-tune
Example 2

Reference
Image

Fine-tune
Example 1

Fine-tune
Example 2

Ground
Truth

Our
Representation Our Result OpenPose Modified

Representation
Animate
Anyone MagicDance After Effects

Puppet Pin Tool

(a) Robot Arm

(b) Finger Walk

Figure 6: Qualitative Comparisons. We compare with two top-performing pose-conditioned diffusion methods, Animate Anyone and Mag-
icDance, and one standard editing tool powered by multiple classical deformation algorithms, Puppet Pin Tool in Adobe After Effects. The
bone representations are shown on the left to the matching results, and are the same for Animate Anyone and MagicDance. Image credits
(top to bottom): George Girgis, NobleDame @ Tenor.

frames and ground truths, FID and LPIPS offer a complementary
view by using trained networks to measure perceptual differences
and diversity. AniDiffusion beats other methods in all.

It is noteworthy that we fine-tune Animate Anyone using the
same setup as ours due to model similarity. However, for Magic-
Dance we need to train it for 10000 steps for each of its 2 stages.
The detailed comparison of computation cost is in Table 2, which
shows that AniDiffusion achieves impressive results while staying
lightweight.

5.4. Ablations

For ablations, we turn off one key component at a time. We first
omit the spatial information embeded in the Red and Green chan-
nel of our skeleton images. The Blue channel is still able to dif-
ferentiate bones based on layer ordering, but the correspondences

get poorer (see w/o SE in Table 3 and Fig. 8). Our results are all
generated by fine-tuning on three images: one reference and two
new poses. If we take one pose out, the performance decreases un-
surprisingly (Table 3 FT 1). If we still use two poses, but choose
sequential ones (equally spaced by 1 frame between each and from
the reference image pose) that cover much less of the pose space,
the performance decreases even more (Table 3 FT 2 Seq). The di-
versity of the fine-tuned poses is more important than pure quantity.
We also ablate on the amount of training data used. Before reach-
ing the 30k data that we used throughout the paper, the metrics
improve visibly with more training data. However, adding more
synthetic data beyond 30k is no longer very helpful, even though
ample synthetic data is available. These diminishing returns sug-
gest the model has already learned most of the underlying patterns.
Higher model capacity and image resolution may bring extra im-
provements, which we leave as future work.

Z. Gu et al. / How to Train Your Dragon 9 of 11

(a) ARAP (b) Rigid (c) Puppet
Pin Tool

(d) BBW

First Row:
Reference Image

Second Row:
Fine-tune Examples

Figure 7: Interpolation Results. Our model interpolates between
fine-tuned examples smoothly regardless of the underlying defor-
mation algorithms. Figure (a)–(c) are self-created, and (d) is from
the original BBW paper [JBPS11].

6. Discussion

Currently our model only works in 2D. Its relaxed assumption on
object appearance comes at the cost of the inability to predict con-
tents unseen in the fine-tuning examples. For example, if the refer-
ence appearance image shows the front of a person, we cannot sim-
ulate the person turning around. Another improvement that could
greatly expand our use case is to combine other forms of condi-
tioning, as we cannot control contents that are not captured by the
skeleton and the reference image (please see supplemental materi-
als for example). Our task is challenging and our results still contain
some artifacts. The method could be further optimized by incorpo-
rating helpful modules such as temporal attention [GYR∗23] and
faster sampling [HQLX23]. We believe these are interesting future
directions.

7. Conclusion

This work presents a pioneering step towards taming the power-
ful diffusion models for pose-controlled diverse cartoon generation.
We propose a rigging model with great generalizability to a wide

Reference Image Fine-tune Example 1 Fine-tune Example 2

(c) Full Method

(b) No Spatial Representation

(a) OpenPose Modified Representation

(a) Ground Truth

Figure 8: Ablation of Skeleton Representation. Correct results are
marked by green frames, and incorrect ones by red. Our full method
generates all three images correctly, the ablated version generates
one correctly, and Animate Anyone memorizes and repeats the fine-
tuned examples as the outputs, getting all three wrong. Image cred-
its: Ekaterine Kantaria.

Method FT T
(min)

FT M
(GB)

Infer T
(min)

Infer M
(GB)

MagicDance 356.93 32.25 9.59 47.41
Animate Anyone 23.29 24.25 3.73 12.96

Ours 28.50 24.23 2.94 12.98

Table 2: Runtime and Memory. T refers to total time, and M refers
to maximal memory. FT refers to Stage 2 fine-tuning on the target
test character, and Infer refers to generating the entire video based
on per-frame skeleton image inputs. For both fine-tuning and infer-
ence, MagicDance takes significantly more time and memory, while
Animate Anyone and our method are roughly on the same level.
This is expected because the major differences between our work
and Animate Anyone are in the procedural synthesis and skeletal
representation of pose. The measured fluctuations may be due to
nuances in the implementation, or other factors of the server where
our GPUs are hosted upon.

range of textures and topologies, and AniDiffusion Dataset, the first
cartoon dataset with accurate joints annotations to facilitate future
related research. With extensive experiments, we demonstrate why
adapting existing humanoid-focused methods to this task is non-
trivial, and how our method can fill this blank and has the ability to
synthesize high-quality re-posed cartoon characters.

10 of 11 Z. Gu et al. / How to Train Your Dragon

Method MSE↓ PSNR↑ FID↓ LPIPS↓

w/o SE 8.74 2.02 3.90 3.63
FT 1 10.55 1.95 3.47 4.41

FT 2 Seq 13.78 1.86 11.06 5.99

-80% 9.49 1.98 5.28 4.20
-60% 9.94 1.98 3.99 4.13
100% 8.16 2.04 2.87 3.77
+60% 7.55 2.98 3.21 3.40
+80% 7.90 2.07 3.74 3.78

Table 3: Ablations. In the top three rows, w/o SE refers to our
skeleton representation scheme without the Red and Green channel
spatial encoding, FT 1 refers to fine-tuning our complete method
on only one new pose example, and FT 2 Seq refers to fine-tuning
on two consecutive new poses. In the bottom rows, the first column
marks the amount of training data change compared to our default
setup (100%), which has been reported in Table 1.

References
[car] Cartoon classification. https://www.kaggle.com/
datasets/volkandl/cartoon-classification. 5

[CHS∗19] CAO Z., HIDALGO MARTINEZ G., SIMON T., WEI S.,
SHEIKH Y. A.: Openpose: Realtime multi-person 2d pose estimation
using part affinity fields. Trans. Pattern Anal. Mach. Intell. (2019). 2, 3,
5

[CSG∗23] CHANG D., SHI Y., GAO Q., FU J., XU H., SONG G., YAN
Q., YANG X., SOLEYMANI M.: Magicdance: Realistic human dance
video generation with motions & facial expressions transfer. arXiv
preprint arXiv:2311.12052 (2023). 3, 6

[CSWS17] CAO Z., SIMON T., WEI S.-E., SHEIKH Y.: Realtime multi-
person 2d pose estimation using part affinity fields. In Proc. Computer
Vision and Pattern Recognition (CVPR) (2017). 3, 5, 6

[DZY∗23] DAI Z., ZHANG Z., YAO Y., QIU B., ZHU S., QIN L., WANG
W.: Animateanything: Fine-grained open domain image animation with
motion guidance. arXiv e-prints (2023), arXiv–2311. 2

[GNK18] GÜLER R. A., NEVEROVA N., KOKKINOS I.: Densepose:
Dense human pose estimation in the wild. In Proc. Computer Vision
and Pattern Recognition (CVPR) (2018), pp. 7297–7306. 2, 3

[GYR∗23] GUO Y., YANG C., RAO A., WANG Y., QIAO Y., LIN D.,
DAI B.: Animatediff: Animate your personalized text-to-image diffusion
models without specific tuning. arXiv preprint arXiv:2307.04725 (2023).
2, 9

[HCS∗22] HO J., CHAN W., SAHARIA C., WHANG J., GAO R., GRIT-
SENKO A., KINGMA D. P., POOLE B., NOROUZI M., FLEET D. J.,
ET AL.: Imagen video: High definition video generation with diffusion
models. arXiv preprint arXiv:2210.02303 (2022). 2

[HGZ∗23] HU L., GAO X., ZHANG P., SUN K., ZHANG B., BO L.:
Animate anyone: Consistent and controllable image-to-video synthesis
for character animation. arXiv preprint arXiv:2311.17117 (2023). 3

[HJA20] HO J., JAIN A., ABBEEL P.: Denoising diffusion probabilistic
models. Advances in neural information processing systems 33 (2020),
6840–6851. 3

[HQLX23] HUANG Y., QIN Z., LIU X., XU K.: Decoupled dif-
fusion models with explicit transition probability. arXiv preprint
arXiv:2306.13720 (2023). 9

[HRU∗17] HEUSEL M., RAMSAUER H., UNTERTHINER T., NESSLER
B., HOCHREITER S.: Gans trained by a two time-scale update rule con-
verge to a local nash equilibrium. Adv. Neural Inform. Process. Syst. 30
(2017). 7

[HSG∗22] HO J., SALIMANS T., GRITSENKO A., CHAN W., NOROUZI
M., FLEET D. J.: Video diffusion models. Adv. Neural Inform. Process.
Syst. 35 (2022), 8633–8646. 2

[JBPS11] JACOBSON A., BARAN I., POPOVIC J., SORKINE O.:
Bounded biharmonic weights for real-time deformation. ACM Trans.
Graph. 30, 4 (2011), 78. 2, 3, 7, 9

[KHWKS23] KARRAS J., HOLYNSKI A., WANG T.-C.,
KEMELMACHER-SHLIZERMAN I.: Dreampose: Fashion image-
to-video synthesis via stable diffusion. In 2023 IEEE/CVF International
Conference on Computer Vision (ICCV) (2023), IEEE, pp. 22623–
22633. 3, 6

[KRG∗23] KARAEV N., ROCCO I., GRAHAM B., NEVEROVA N.,
VEDALDI A., RUPPRECHT C.: Cotracker: It is better to track together.
arXiv preprint arXiv:2307.07635 (2023). 6

[LMB∗14] LIN T.-Y., MAIRE M., BELONGIE S., HAYS J., PERONA P.,
RAMANAN D., DOLLÁR P., ZITNICK C. L.: Microsoft coco: Common
objects in context. In Proc. European Conference on Computer Vision
(ECCV) (2014), Springer, pp. 740–755. 5

[MHC∗24] MA Y., HE Y., CUN X., WANG X., CHEN S., LI X., CHEN
Q.: Follow your pose: Pose-guided text-to-video generation using pose-
free videos. In Proceedings of the AAAI Conference on Artificial Intelli-
gence (2024), vol. 38, pp. 4117–4125. 3

[MWS∗23] MOU C., WANG X., SONG J., SHAN Y., ZHANG J.: Drag-
ondiffusion: Enabling drag-style manipulation on diffusion models.
arXiv preprint arXiv:2307.02421 (2023). 2

[NDR∗21] NICHOL A., DHARIWAL P., RAMESH A., SHYAM P.,
MISHKIN P., MCGREW B., SUTSKEVER I., CHEN M.: Glide: Towards
photorealistic image generation and editing with text-guided diffusion
models. arXiv preprint arXiv:2112.10741 (2021). 2

[PTPC∗17] PONT-TUSET J., PERAZZI F., CAELLES S., ARBELÁEZ P.,
SORKINE-HORNUNG A., VAN GOOL L.: The 2017 davis challenge on
video object segmentation. arXiv:1704.00675 (2017). 7

[QCZ∗23] QI C., CUN X., ZHANG Y., LEI C., WANG X., SHAN
Y., CHEN Q.: Fatezero: Fusing attentions for zero-shot text-based
video editing. In Proc. Int. Conf. on Computer Vision (ICCV) (2023),
pp. 15932–15942. 2

[RBL∗22] ROMBACH R., BLATTMANN A., LORENZ D., ESSER P.,
OMMER B.: High-resolution image synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (June 2022), pp. 10684–10695. 3, 5

[RDN∗22] RAMESH A., DHARIWAL P., NICHOL A., CHU C., CHEN
M.: Hierarchical text-conditional image generation with clip latents.
arXiv preprint arXiv:2204.06125 1, 2 (2022), 3. 2

[RLZ∗24] REN T., LIU S., ZENG A., LIN J., LI K., CAO H., CHEN
J., HUANG X., CHEN Y., YAN F., ET AL.: Grounded sam: As-
sembling open-world models for diverse visual tasks. arXiv preprint
arXiv:2401.14159 (2024). 3

[RZY∗24] REN Y., ZHOU Y., YANG J., SHI J., LIU D., LIU F., KWON
M., SHRIVASTAVA A.: Customize-a-video: One-shot motion customiza-
tion of text-to-video diffusion models. arXiv preprint arXiv:2402.14780
(2024). 2

[SA07] SORKINE O., ALEXA M.: As-rigid-as-possible surface model-
ing. In Symposium on Geometry processing (2007), vol. 4, Citeseer,
pp. 109–116. 2, 3, 7

[SBV∗22] SCHUHMANN C., BEAUMONT R., VENCU R., GORDON C.,
WIGHTMAN R., CHERTI M., COOMBES T., KATTA A., MULLIS C.,
WORTSMAN M., ET AL.: Laion-5b: An open large-scale dataset for
training next generation image-text models. Adv. Neural Inform. Process.
Syst. 35 (2022), 25278–25294. 5

[SCS∗22] SAHARIA C., CHAN W., SAXENA S., LI L., WHANG
J., DENTON E. L., GHASEMIPOUR K., GONTIJO LOPES R.,
KARAGOL AYAN B., SALIMANS T., ET AL.: Photorealistic text-to-
image diffusion models with deep language understanding. Adv. Neural
Inform. Process. Syst. 35 (2022), 36479–36494. 2

https://www.kaggle.com/datasets/volkandl/cartoon-classification
https://www.kaggle.com/datasets/volkandl/cartoon-classification

Z. Gu et al. / How to Train Your Dragon 11 of 11

[SJMS17] SIMON T., JOO H., MATTHEWS I., SHEIKH Y.: Hand key-
point detection in single images using multiview bootstrapping. In Proc.
Computer Vision and Pattern Recognition (CVPR) (2017). 3, 5

[SME20] SONG J., MENG C., ERMON S.: Denoising diffusion implicit
models. arXiv preprint arXiv:2010.02502 (2020). 2

[SSDK∗20] SONG Y., SOHL-DICKSTEIN J., KINGMA D. P., KUMAR
A., ERMON S., POOLE B.: Score-based generative modeling through
stochastic differential equations. arXiv preprint arXiv:2011.13456
(2020). 2

[SXL∗24] SHI Y., XUE C., LIEW J. H., PAN J., YAN H., ZHANG W.,
TAN V. Y., BAI S.: Dragdiffusion: Harnessing diffusion models for
interactive point-based image editing. In Proc. Computer Vision and
Pattern Recognition (CVPR) (2024), pp. 8839–8849. 2

[WCY∗23] WU R., CHEN L., YANG T., GUO C., LI C., ZHANG X.:
Lamp: Learn a motion pattern for few-shot-based video generation.
arXiv preprint arXiv:2310.10769 (2023). 2

[WGW∗23] WU J. Z., GE Y., WANG X., LEI S. W., GU Y., SHI Y.,
HSU W., SHAN Y., QIE X., SHOU M. Z.: Tune-a-video: One-shot tun-
ing of image diffusion models for text-to-video generation. In Proc. Int.
Conf. on Computer Vision (ICCV) (2023), pp. 7623–7633. 2

[WLG∗25] WU W., LI Z., GU Y., ZHAO R., HE Y., ZHANG D. J.,
SHOU M. Z., LI Y., GAO T., ZHANG D.: Draganything: Motion control
for anything using entity representation. In Proc. European Conference
on Computer Vision (ECCV) (2025), Springer, pp. 331–348. 2

[WLL∗23] WANG T., LI L., LIN K., LIN C.-C., YANG Z., ZHANG H.,
LIU Z., WANG L.: Disco: Disentangled control for referring human
dance generation in real world. arXiv e-prints (2023), arXiv–2307. 3

[WRKS16] WEI S.-E., RAMAKRISHNA V., KANADE T., SHEIKH Y.:
Convolutional pose machines. In Proc. Computer Vision and Pattern
Recognition (CVPR) (2016). 3, 5

[XCH∗24] XU Y., CHEN Y., HUANG Z., HE Z., WANG G., TORR P.,
LIN L.: Animatezoo: Zero-shot video generation of cross-species ani-
mation via subject alignment. arXiv preprint arXiv:2404.04946 (2024).
5

[XZL∗23] XU Z., ZHANG J., LIEW J. H., YAN H., LIU J.-W.,
ZHANG C., FENG J., SHOU M. Z.: Magicanimate: Temporally con-
sistent human image animation using diffusion model. arXiv preprint
arXiv:2311.16498 (2023). 3

[YFF∗23] YU T., FENG R., FENG R., LIU J., JIN X., ZENG W., CHEN
Z.: Inpaint anything: Segment anything meets image inpainting. arXiv
preprint arXiv:2304.06790 (2023). 3

[YWL∗23] YIN S., WU C., LIANG J., SHI J., LI H., MING G., DUAN
N.: Dragnuwa: Fine-grained control in video generation by integrating
text, image, and trajectory. arXiv preprint arXiv:2308.08089 (2023). 2

[ZIE∗18] ZHANG R., ISOLA P., EFROS A. A., SHECHTMAN E., WANG
O.: The unreasonable effectiveness of deep features as a perceptual met-
ric. In Proc. Computer Vision and Pattern Recognition (CVPR) (2018),
pp. 586–595. 7

[ZZY∗24] ZHONG Y., ZHAO M., YOU Z., YU X., ZHANG C., LI C.:
Posecrafter: One-shot personalized video synthesis following flexible
pose control. arXiv preprint arXiv:2405.14582 (2024). 3

