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DiagSplit: Parallel, Crack-free, Adaptive Tessellation for Micropolygon Rendering

Matthew Fisher∗ Kayvon Fatahalian∗ Solomon Boulos∗ Kurt Akeley† William R. Mark‡ Pat Hanrahan∗

Abstract

We present DIAGSPLIT, a parallel algorithm for adaptively tessel-
lating displaced parametric surfaces into high-quality, crack-free
micropolygon meshes. DIAGSPLIT modifies the split-dice tessella-
tion algorithm to allow splits along non-isoparametric directions in
the surface’s parametric domain, and uses a dicing scheme that sup-
ports unique tessellation factors for each subpatch edge. Edge tes-
sellation factors are computed using only information local to sub-
patch edges. These modifications allow all subpatches generated
by DIAGSPLIT to be processed independently without introducing
T-junctions or mesh cracks and without incurring the tessellation
overhead of binary dicing. We demonstrate that DIAGSPLIT pro-
duces output that is better (in terms of image quality and num-
ber of micropolygons produced) than existing parallel tessellation
schemes, and as good as highly adaptive split-dice implementations
that are less amenable to parallelization.

Keywords: tessellation, micropolygons, real-time rendering

1 Introduction

The desire for high realism in computer graphics has led to very
complex geometric models. Detailed artistry and 3D data acquisi-
tion produce surfaces that contain millimeter-scale features. These
surfaces would require millions of polygons to be represented accu-
rately, but can be represented compactly by using analytic descrip-
tions (such as parametric or subdivision surfaces) in conjunction
with procedural or texture-mapped displacement to capture intri-
cate detail.

Many graphics systems require surfaces to be tessellated into poly-
gon meshes for rendering. Sampling surfaces at any fixed resolu-
tion produces a static tessellation that, depending on the view, may
contain either too few polygons (resulting in visual artifacts) or too
many polygons (yielding low performance). Adaptive tessellation
is required to produce a mesh that yields high visual quality, but
low rendering cost, regardless of variation in surface detail or cam-
era location.

Our work seeks to enable high-quality tessellation in future inter-
active systems. In this paper, we design an algorithm, DIAGSPLIT,
for generating view-dependent tessellations of displaced paramet-
ric surfaces that is suitable for high-throughput, parallel process-
ing. DIAGSPLIT creates meshes that do not contain cracks or T-
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Adaptive Parallel Crack-free
NOSPLIT (D3D11) [limited] X X
BINSPLIT (REYES) [overtess] X X
ISOSPLIT (REYES) X X
DIAGSPLIT (this paper) X X X

Table 1: Comparison of tessellation algorithms: popular schemes
choose different quality and efficiency trade-offs. The algorithm
presented in this paper, DIAGSPLIT, performs adaptive crack-free
tessellation while remaining parallel.

junctions, and it adapts well even when surface position depends
heavily on displacement.

DIAGSPLIT does not strive to generate the minimum number of
(potentially large) polygons required to accurately represent a sur-
face; instead, its output is a micropolygon mesh (a mesh containing
polygons of less than a pixel in area). Micropolygons are a common
rendering primitive in offline rendering because they faithfully rep-
resent high-complexity surfaces and support high-quality object-
space shading. We seek to evolve the real-time graphics pipeline to
support efficient micropolygon generation and have designed DI-
AGSPLIT specifically to integrate tightly with future pipeline im-
plementations.

2 Background

Adaptive tessellation in offline and real-time systems has been stud-
ied extensively. Many approaches to adaptive tessellation aim to
approximate the surface using as few polygons as possible. These
schemes produce large polygons for flat regions of surfaces [Moule
and McCool 2002; Eisenacher et al. 2009]. They do not seek to
produce micropolygons.

Unlike modern GPUs, micropolygon renderers compute surface ap-
pearance at mesh vertices, rather than fragments. This presents
unique challenges for tessellation because surface sampling must be
sufficiently fine to capture geometric and appearance detail. A tes-
sellation should sample the surface uniformly in screen space, pro-
ducing at least one micropolygon per pixel (this rate is adjustable
depending on need). Undersampling results in geometric artifacts
due to piecewise linear interpolation of surface x-y position (e.g.
silhouette errors) and depth (e.g. visibility errors). Interpolation of
vertex appearance creates shading artifacts (faceted shading) when
the surface is undersampled. The performance penalty of overtes-
sellation in a micropolygon pipeline is severe. In addition to in-
creasing surface evaluation and rasterization work, overtessellation
results in extra shading as well. Applications that perform expen-
sive shading computations will have performance that is strongly
correlated with the number of micropolygons in the resulting tes-
sellation.

Adaptive tessellation must also avoid frame-to-frame discontinu-
ities (“popping”) as tessellation changes in response to object or
camera movement, and must avoid producing mesh cracks. Mi-
cropolygons are sufficiently small that popping artifacts are rarely
visible, however, avoiding cracks is difficult in a parallel implemen-
tation. We wish to independently process many regions of the sur-
face simultaneously, yet the resulting tessellations must align prop-
erly at region boundaries to avoid cracks. As shown in Table 1, the
most widely used tessellation schemes achieve some, but not all, of
our algorithm goals (adaptive, crack-free, and parallel).
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Figure 1: Adaptive tessellation can produce cracks along patch
boundaries. Top: Tessellation of surface patches A and B into mi-
cropolygons. Cracks are visible along the A-B boundary. Middle:
Patch A is diced directly. Patch B is split into subpatches B1 and
B2. Bottom: Partitioning of A and B’s parametric domains by Split-
Dice. Tessellations of A and B sample the surface at different do-
main points (black dots) along the shared edge, resulting in cracks.

Figure 2: A tessellated surface with cracks. Left: Cracks in the
surface reveal the back side of the model, which shows up as orange
points (backfacing geometry is rendered in orange). Right: Zoomed
view of the tessellation. Patch boundaries are shown in blue; back-
facing geometry (seen through cracks) is green.

2.1 Split-Dice

Split-Dice is a powerful algorithm used by renderers such as Pixar’s
Reyes to tessellate surfaces based on the Lane-Carpenter algo-
rithm [Lane et al. 1980]. It serves as the framework for the algo-
rithms we will compare in this paper. The first phase, Split, recur-
sively subdivides patches to create smaller subpatches. Split allows
the tessellation to adapt to variations in the projection of the surface
to screen coordinates, as the final tessellations of subpatches are
permitted to have different densities of polygons across the surface.
Splitting terminates when adaptivity is no longer needed; that is,
when uniform parametric tessellation of each subpatch is estimated
to produce micropolygons that are all approximately a pre-specified
area in screen space. Then, the dice phase uniformly tessellates sub-
patches generated by Split into micropolygon meshes. The advan-
tage of using both Split and Dice is that Split provides reasonable
adaptivity to varying surface complexity, while Dice retains the ef-
ficiency of uniform tessellation at a subpatch granularity.

The decision to split or dice a patch is made by estimating the vari-
ation in the surface’s screen-space derivative with respect to each

uvDice
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Figure 3: Comparison of dicing methods: The Reyes dicer
(UVDICE) accepts tessellation factors for the patch’s u and v para-
metric directions. It produces a uniform mesh tessellation accord-
ing to these factors. Binary UV dice only tessellates each edge
using a power-of-two number of segments. The D3D11 tessellator
(EDGEDICE) can accommodate per edge factors. Each edge of the
patch is tessellated uniformly with a number of segments equal to
the provided factor. The EDGEDICE scheme “stitches” a uniformly
tessellated interior mesh to segments along the edges.

parametric direction. Surfaces whose derivative varies significantly
across the patch are not suitable for uniform tessellation and should
be split. Surfaces whose rate is approximately constant across the
patch can be diced using a number of micropolygons determined by
this constant. Computing these derivatives can be done analytically
for many surface types, such as Bezier patches [Blinn 1978; Cat-
mull 1974; Clark 1979], although this computation does not take
displacement mapping into account.

The split phase is important because uniform parametric tessella-
tion of base primitives does not always yield a good surface tes-
sellation. Patches with poorly distributed control points, varying
curvature, or which undergo perspective foreshortening suffer from
overtessellation, undertessellation, or poor distribution of polygon
size if the input patches are diced directly. To avoid these problems,
developers working in environments without Split are encouraged
to carefully author content that is suitable for uniform tessellation.
This incurs a human cost and likely does not scale to environments
relying heavily on user-generated content.

The execution of Dice lends itself to a data-parallel implementa-
tion because the position and attributes for each vertex in the out-
put mesh can be evaluated in parallel. In contrast, Split presents
two challenges to a high-performance implementation. First, it per-
forms unbounded data amplification, potentially generating a large
number (e.g., thousands) of subpatches from a single base primi-
tive. Second, it complicates crack avoidance by dynamically in-
troducing additional boundaries between subpatches, not just base
primitives. Care must be taken to make the final mesh crack-free
along these new edges.

To understand how cracks occur, consider adjacent surface patches
A and B in Figure 1 (top). For each patch, Split will either parti-
tion the patch or compute tessellation factors for dicing. Patch A
is not split, and is diced uniformly using six micropolygons along
each edge. Patch B is split at its midpoint in the v parametric di-
rection creating subpatches B1 and B2, which dice their span of the
A-B edge using two and four micropolygons respectively. Patch
A’s tessellation along this edge does not match that of Patch B (Fig-
ure 1-bottom). Since the sampling of the curved surface is differ-
ent, surface cracks appear in the micropolygon mesh shown in the
top-right of the figure. Figure 2 shows a tessellation that produces
cracks on a real surface.

DIAGSPLIT combines ideas from both the Reyes and D3D11 sys-
tems; we briefly describe the merits of these two approaches in the
context of the Split-Dice framework.
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Figure 4: Patch dependencies in ISOSPLIT: The tree of six split-
ting decisions (s1-s6) used to partition a base primitive into seven
subpatches (A→ G). The split tree structure encodes subpatch ad-
jacency information. For example, the state of patches A, C, D, and
E must be maintained in memory to stitch patch B to its neighbors.
Dependencies between subpatches are shown as gray dotted lines.

2.2 Reyes Tessellation

Reyes [Cook et al. 2008] is a direct implementation of the Split-
Dice algorithm. It divides each base primitive into subpatches by
partitioning along isoparametric directions. In this paper, we refer
to isoparametric splitting as ISOSPLIT. The dice phase tessellates
each subpatch emitted by Split into a grid of micropolygons by uni-
formly tessellating the subpatch in each parametric direction. We
refer to this implementation of dicing as UVDICE (Figure 3-left).
The decision to split or dice, and, if dicing, the number of segments
to tessellate in each direction, are determined by computing deriva-
tives across the subpatch interior.

Many approaches have been taken to produce a crack-free mesh
using Reyes. Some Reyes implementations (e.g., Apodaca and
Gritz [2000] and Foster [2009]) fix cracks by leveraging informa-
tion from adjacent subpatches to stitch together meshes once final
vertex positions are known. Adjacency information can be encoded
by explicit pointers or by maintaining structures representing split-
ting decisions as shown in Figure 4. Interior nodes of this tree cor-
respond to splitting decisions. Leaf nodes correspond to diced sub-
patches. In this example, fixing cracks along the edges of subpatch
B requires access to vertex information from four neighboring sub-
patches (A,C,D,E). Notice that this scheme introduces dependen-
cies between subpatches as indicated by the dotted lines. Subpatch
B cannot be completed until vertex positions of subpatches A,C,D,E
are known. Conversely, subpatches A,C,D,E must be maintained
by the system until subpatch B is complete. These dependencies
make it difficult to stream subpatch data through the graphics sys-
tem (subpatch edge information must be retained in memory until
the entire base primitive is complete), bloating working sets and
preventing large-scale parallelism. For this reason, we do not con-
sider crack fixing by maintaining adjacency information a viable
solution for real-time graphics systems.

Other Reyes implementations avoid cracks without mesh adja-
cency information. Instead, they constrain subpatch tessellations
to power-of-two rates (called binary dicing, see BINDICE, Fig-
ure 3) and constrain splitting to ensure adjacent subpatches agree
on the rate at which their shared edge is diced (Apodaca and
Gritz [2000] refers to this as pasting). We use BINSPLIT to refer
to a splitting scheme that relies on binary dicing (Table 1, second
row). While binary dicing is attractive due to its simplicity, it un-
fortunately results in poor tessellations. For example, if a patch
is optimally diced with 12 segments in one parametric direction,

it will have to either be diced with 8 segments (undertessellation)
or 16 segments (overtessellation). In our renderer, we observe an
approximately 2x increase in tessellation polygon count when en-
abling binary dicing and rounding tessellations up to the nearest
power of two to avoid undertessellation.

2.3 D3D11 Tessellation

Tessellation functionality featured in the D3D11 pipeline [Mi-
crosoft 2009] does not provide the ability to split base primitives
but provides three pipeline stages that together perform a flexible
implementation of Dice (we call this scheme NOSPLIT, Table 1,
first row). The D3D11 Hull stage emits a surface parameterized on
either a quadrilateral or triangular domain and surface tessellation
factors along each domain edge. Then, a fixed-function Tessellate
stage generates a mesh with vertices at domain points (u, v) deter-
mined by the tessellation factors [Moreton 2001]. Last, the Domain
shader stage evaluates the surface’s position and custom vertex at-
tributes at each point, yielding a renderable mesh.

In contrast to UVDICE, which utilizes only two independent tessel-
lation factors (one for each parametric direction), the D3D11 tessel-
lator generates a triangle mesh from four independent factors (one
for each domain edge). We call this more flexible dicing strategy
EDGEDICE (Figure 3-right). In EDGEDICE, both the edges and the
interior of the patch are uniformly tessellated in the parametric do-
main. The number of interior segments in a given parametric direc-
tion is taken to be the maximum of the two opposing edge factors,
scaled by an interior tessellation scale parameter S between 0 and
1 (although different scaling factors are allowed in each parametric
direction, we will make use of only isotropic scaling). Triangles
along the edge of the tessellation stitch the uniform interior to edge
segments.

D3D11 tessellation is designed for real-time performance. Each
base primitive is processed independently, enabling parallelism.
EDGEDICE is implemented efficiently in fixed-function hardware
and surface evaluation at mesh vertices is data-parallel. However,
the performance benefits of this design are tempered by three no-
table constraints.

First, as stated above, the scheme lacks the adaptability of split (the
contribution of this paper overcomes this limitation).

Second, D3D11 tessellation requires that primitives support arbi-
trary parametric evaluation. This enables surface evaluation to be
expressed as a domain shader program operating on a single para-
metric location, but the convenience of this abstraction prevents the
use of efficient forward differencing schemes that rely on uniform
spacing of domain points [Lien et al. 1987]. While many subdi-
vision surfaces can be evaluated directly [Stam 1998], these tech-
niques often require one to two levels of subdivision to meet the
conditions for direct evaluation, resulting in overtessellation. Fur-
thermore, direct evaluation of patches with extraordinary vertices
is computationally expensive in comparison to a regular bicubic
patch. Approximation schemes [Loop and Schaefer 2008] can be
used to produce a very good approximation to the underlying sub-
division surface with a set of Bezier patches. Recent work has
extended this approach to include surfaces with creases and cor-
ners [Kovacs et al. 2009], and we feel research will continue to
expand the set of surfaces with an efficient, parametric evaluation.

Third, independent primitive processing requires special care by ap-
plication developers to prevent cracks. The parametric location of
vertices generated by D3D11 tessellation is determined entirely by
the edge factors computed by the Hull Stage. Thus, to ensure a
crack-free boundary between two primitives, Hull stage process-
ing of each primitive must produce an identical tessellation factor
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ACM Transactions on Graphics, Vol. 28, No. 5, Article 150, Publication date: December 2009.



for the shared edge. Further, domain shader execution on para-
metric points along edges must always yield the same surface po-
sition, regardless of the patch the vertex belongs to. These prop-
erties are non-trivial for a shader author to guarantee, especially
in the presence of texture-based displacement; when adjacent base
primitives have different displacement texture coordinates (e.g. on
texture atlas seams), they may not evaluate consistently along the
shared edge. Some approaches used to solve this problem are to use
seamless texture atlases [Purnomo et al. 2004] or to avoid UV-atlas
assignment altogether [Burley and Lacewell 2008].

3 Algorithm

In this section we describe DIAGSPLIT, a variant of the Split-Dice
algorithm designed for real-time pipelines. DIAGSPLIT tessellates
parametric surfaces into micropolygon meshes. It adapts well to
surface complexity, does not rely on inter-subpatch mesh stitching
to eliminate cracks, and does not incur the overtessellation of binary
dicing.

Following the NOSPLIT and BINSPLIT algorithms described in
Section 2, DIAGSPLIT determines surface tessellation along sub-
patch edges using only properties of the edge. Subsequently, DI-
AGSPLIT determines surface tessellation of the subpatch interior
using the Split-Dice algorithm. The interior tessellation is guaran-
teed to match the previously-determined edge behavior, ensuring
that there are no T-junctions or cracks. DIAGSPLIT meets this re-
quirement via two significant modifications to Reyes Split-Dice:

• DIAGSPLIT is permitted to split subpatches along non-
isoparametric directions (hence the name DIAGSPLIT). Non-
isoparametric splits occur only when necessary to prevent
cracks.

• DIAGSPLIT requires EDGEDICE dicing to stitch tessellations
of subpatch interiors to the tessellation required along edges.

In addition to these changes, DIAGSPLIT also considers the final,
displaced position of the surface when computing edge tessellation
factors and sets EDGEDICE’s interior tessellation scale parameter S
to produce micropolygons that closely approximate a user-specified
target area.

3.1 DiagSplit

Recall that in NOSPLIT the D3D11 Hull shader computes uniform
tessellation factors for all patch edges. In DIAGSPLIT, we define
the tessellation along an edge using the function T . Given an edge,
T designates that the edge can be uniformly diced using t segments,
or that non-uniform tessellation along the edge is necessary. If non-
uniform tessellation is required, the edge is partitioned at its para-
metric midpoint, and T is used to determine the tessellation along
each partition. This process, applied recursively, fully determines
a piecewise-uniform adaptive tessellation along the original edge
(Figure 5).

DIAGSPLIT ensures that the tessellation of the interior of the patch
generated by the Split-Dice process conforms to the behavior along
edges dictated by T . This guarantee holds for edges of base patches
and also holds recursively for edges introduced by splits.

DIAGSPLIT’s behavior is simple when T dictates that tessellation
along all edges of a subpatch is uniform. The subpatch is diced us-
ing EDGEDICE according to the four edge tessellation factors. If at
least one subpatch edge requires non-uniform tessellation, the sub-
patch cannot be diced and must be split. Consider the case where
the tessellation must be non-uniform along both edges in the u para-
metric direction (Figure 6-top). In accordance with the edge behav-

T
(0,1)

 = NonUniform

T
(0, .5)

 = 2

T
(.5, .75) 

= 4 T
(.75, 1)

 = 2

T
(.5, 1)

 = NonUniform

u=0 u=1

Figure 5: DIAGSPLIT produces tessellations that are piecewise-
uniform along edges. In this example, tessellation along an edge
over the 0-1 parametric domain is determined by T . T computes
an integer tessellator factor when the surface should be tessellated
uniformly along an edge. Otherwise, DIAGSPLIT will perform a
split dividing the edge at its parametric midpoint and T is used to
set the tessellations along the two partitions.

ior described above, DIAGSPLIT will split the subpatch along the
line connecting the parametric midpoint of each edge. Notice that
this behavior is equivalent to that of ISOSPLIT.

When only one edge in the u parametric direction forces non-
uniform tessellation (Figure 6-middle, bottom), DIAGSPLIT will
split the subpatch along the line between the parametric midpoint
of the non-uniform bottom edge and some point in the uniform tes-
sellation along the top edge. Our implementation chooses the point
closest to the parametric midpoint. If the edge tessellation factor
for the top edge is odd, this split occurs along a non-isoparametric
line (a diagonal in parametric space). As a result, DIAGSPLIT can
generate subpatches with non-isoparametric quadrilateral domains.
When splitting is required along both parametric directions, DI-
AGSPLIT is free to choose which split to perform first or it can
implement a split that directly produces four subpatches.

Following the behavior described above, DIAGSPLIT generates
tessellations that connect adjacent subpatch interior regions (uni-
formly tessellated) using two rows of triangles [Rockwood et al.
1989]. Each subpatch interior is independently stitched to its own
edges by EDGEDICE. Adjacent patches stitch to the same segments
along their shared edge, so no stitching across subpatches is re-
quired to prevent cracks.

Pseudocode for a recursive implementation of DIAGSPLIT operat-
ing on quadrilateral domain subpatches is given in Figure 7. The
function DiagSplit carries out the splitting procedure given a sub-
patch defined by its four parametric corners (SubPatch) and tessel-
lation factors (EdgeFactors) for all edges (note that edge tessella-
tion factors can take on the special value NonUniform). The subrou-
tine PartitionEdge is used to compute split points and tessellation
factors for new subedges when splits occur. The provided imple-
mentation easily extends to triangle domains where each triangle
subpatch is split into triangular subpatches. Although not shown in
the example, in the rare condition that an edge with a tessellation
factor of one is partitioned in a split, we produce a triangular child
subpatch and proceed with triangle-domain tessellation.

We call the reader’s attention to a detail of the pseudocode that was
not discussed in the description of the DIAGSPLIT algorithm above.
When partitioning an edge that is assigned a uniform tessellation
factor (the “else” clause of PartitionEdge), our implementation de-
rives tessellation factors for subedges without additional calls to T .
This ensures that subpatch tessellations together contain exactly t
uniform segments as required. Calling T to determine the tessel-
lation along the subedges is incorrect in this case, as there is no

150:4       •       M. Fisher et al.
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Figure 6: DIAGSPLIT produces tessellations that adhere to edge
behavior defined by T . Top: When tessellation along both edges
in the same parametric direction is non-uniform, DIAGSPLIT splits
the subpatch along the line through the midpoint of both edges.
Middle, Bottom: When only one of the edges in a parametric direc-
tion requires a split, the split runs through the vertex on the opposite
edge closest to the edge midpoint. Subedges of the uniform edge are
constrained to ensure agreement with the tessellation factor dic-
tated by T . Bottom: Partitioning a uniform edge requiring an odd
number of tessellation segments requires a non-isoparametric split.

guarantee it would yield edge factors that sum to the value t.

D3D11’s EDGEDICE implementation positions mesh vertices
within the [0, 1]2 domain. Although DIAGSPLIT produces
subpatches spanning non-isoparametric quadrilateral domains,
EDGEDICE can be used unchanged. We map EDGEDICE’s output
in the unit square to the base patch’s parametric domain using bi-
linear interpolation. The surface is then evaluated directly at these
parametric locations.

It is often useful to compute subpatch bounding boxes during ren-
dering. Unfortunately, the non-isoparametric domains generated by
DIAGSPLIT complicate computation of these bounds. For example,
the bounding box of a bicubic Bezier patch is efficiently computed
from the patch’s control cage. However, the non-isoparametric re-
gions of a bicubic base patch do not constitute bicubic patches,
precluding this efficient implementation. We compute conservative
subpatch object-space bounds by computing a bounding box of the
subpatch in parametric space, and then bounding the bicubic patch
that corresponds to this isoparametric region.

3.2 Edge Tessellation Factors

DIAGSPLIT’s tessellation quality depends heavily on the imple-
mentation of T . T should be cheap to compute and accurately
estimate the number of segments needed to tessellate an edge well.
We define a good tessellation to be one where no segment exceeds
a maximum-specified screen space length L.

Both analytic and sampling-based methods have been used to com-
pute tessellation factors. For example, it is possible to compute
the surface derivatives of a Bezier patch directly from the control
points. These derivatives can then be used to compute an upper
bound on the tessellation factor of an edge [Clark 1979; Rockwood
et al. 1989]. Large variation in surface derivative along an edge
indicates that the edge is non-uniform and needs to be split. One
disadvantage of this analytic approach is that it does not take the
displaced positions of the surface into account. Also, it is more
complicated to apply to non-isoparametric subpatch edges because

DiagSplit(SubPatch = {P00, P10, P11, P01},
EdgeFactors = {tv=0, tu=1, tv=1, tu=0})

if tv=0 or tv=1 = NonUniform

{Pv=0, ta
v=0, tb

v=0} ← PartitionEdge(P00, P10, tv=0)
{Pv=1, ta

v=1, tb
v=1} ← PartitionEdge(P01, P11, tv=1)

tsplit ← T (Pv=0, Pv=1)
Split({P00, Pv=0, Pv=1, P01}, {ta

v=0, tsplit, ta
v=1, tu=0})

Split({Pv=0, P10, P11, Pv=1}, {tb
v=0, tu=1, tb

v=1, tsplit})
else if tu=0 or tu=1 = NonUniform, ...
else dispatch (SubPatch, EdgeFactors) to tessellator

PartitionEdge(Pstart, Pend, EdgeFactor = t)
if t = NonUniform

P ← (Pstart + Pend)/2
t0← T (Pstart, P ), t1← T (P , Pend)

else

Choose vertex index I = Floor(t/2) as split vertex
P ← Parametric coordinates of vertex I
t0 ← I , t1 ← t− I

return {P , t0, t1}

t
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t
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Figure 7: DIAGSPLIT’s splitting algorithm: The function Di-
agSplit takes four parametric coordinates that define an input patch
and emits subpatches that, when diced, contain micropolygons with
near-uniform area.

T (Pstart, Pend)
for i = 0 to N − 1

Pi = Pstart + (i/(N − 1)) ∗ (Pend − Pstart)
Li = ToScreen(Pi)− ToScreen(Pi−1)

tmin =
⌈
(
∑N−1

i=1 Li)/R
⌉

tmax = d(N ∗maxi(Li)/R)e
if tmax − tmin ≥ SplitThreshold

return NonUniform

else return tmax

Figure 8: Implementation of T : T determines whether a paramet-
ric edge has significant screen-space variation and requires split-
ting, or should be tessellated using t segments of equal parametric
length, with a goal of producing vertices spaced apart by R pixels.
It makes this decision by sampling the surface N times and looking
at the screen-space length of the N − 1 edges that are formed.
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MP Area
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Figure 9: Normalizing triangle areas using the interior tessellation
scale parameter S. Left (2.1M triangles): Rendering BIGGUY us-
ing S=1 results in many triangles below the target area. Right
(1.6M triangles): Adaptively modifying S results in a more uniform
triangle area distribution. In both tessellations, blue lines denote
subpatch boundaries.

these edges are not necessarily Bezier curves. Analytic techniques
can be applied to non-isoparametric edges by computing an isopara-
metric bounding box around an edge, then computing derivative
bounds over this region. This gives an exact upper bound, albeit at
higher computational cost compared to what is required for isopara-
metric edges.

Our implementation of T supports any surface type and does not
rely on analytic techniques. Instead, we coarsely sample the screen
space position of the surface at N uniformly spaced points along
the edge. We treat the edge as a piecewise-linear curve consisting
of N − 1 segments connecting the points. The sum of all segment
lengths constitutes a lower bound on the edge’s actual length and is
used to compute tmin, a lower bound for the edge tessellation factor.
We also estimate a tessellation factor upper bound, tmax, based upon
the longest of the N − 1 segments. When the difference between
tmin and tmax exceeds a specified threshold, the edge is determined
to require adaptive tessellation. Otherwise, T returns tmax as the
tessellation factor for the edge. Figure 8 summarizes this imple-
mentation of T .

To ensure that the mesh is crack-free, T must always return the
same result for both subpatches that share an edge. Like the D3D11
pipeline, we can achieve independent processing of subpatches by
using only edge information that is available to both subpatches.
In particular, T cannot use information such as numerical deriva-
tives on the patch interior. Differences in numerical precision due to
different subpatch orientations can also lead to inconsistent T eval-
uations. Ordering control points along an edge by their world space
position can be used to ensure consistent numerical evaluation.

3.3 Subpatch Interior Scaling

T estimates the tessellation rate of an edge, using only edge infor-
mation. No information about the interior of the patch is used. As a
result, no guarantees are made about the quality of the tessellation
inside the patch. A reasonable tessellation goal is to produce tessel-
lations with a number of triangles that is proportional to the screen-
space coverage of the subpatch. Bounding maximum edge length
in the micropolygon mesh guarantees surface geometry and shad-
ing are sampled at least as frequently as this length, but enforcing

this constraint causes oversampling of subpatches with poor aspect
ratio (such as those along object silhouettes, see Figure 9-left). For
this reason, we instead choose to prioritize generating triangles that
closely match a desired target area.

To achieve a more uniform distribution of triangle areas, we adjust
subpatch interior tessellations by modifying EDGEDICE’s interior
scale parameter S ∈ [0, 1]. S isotropically scales the interior tessel-
lation in each parametric direction. Varying S controls the number
of triangles in the final tessellation and, correspondingly, the area
of these triangles.

S is computed by estimating the subpatch’s screen-space area. Prior
to dicing, we evaluate the surface at a 3x3 uniform grid of points
(these points define four quads) in the subpatch and conservatively
estimate the subpatch’s area, Apatch, as four times the area of the
largest of these quads. To approximate the target micropolygon area
of Atri pixels, we set S so that the subpatch’s diced mesh contains
Apatch/Atri triangles.

Given edge tessellation factors a, b, c, d (let Mu and Mv be the
maximum factors in the u and v parametric directions) the number
of triangles contained in a quadrilateral patch is given by:

Ntris = 2((SMu − 2)(SMv − 2) +

(SMu − 2) + (SMv − 2)) + a + b + c + d

Given a desired triangle count, the interior tessellation scaling is
determined by solving this equation for S.

Our method makes three assumptions: that a 3x3 uniform grid is
a good estimate of the final subpatch area, that triangles in a diced
subpatch all have the same area (splitting makes this a safe assump-
tion), and that there is no integer rounding applied to the interior
tessellation factor after scaling by S. Nevertheless, the technique
behaves very well in practice. In Figure 9, observe that vertex posi-
tions on subpatch boundaries are not changed by area scaling. Even
using area scaling, some triangles remain very small; this tends
to occur at subpatches on object silhouettes, which have near-zero
area, so any tessellation of the patch interior will generate triangles
with area smaller than Atri since we must produce at least enough
triangles to triangulate the vertices along the patch edges.

4 Evaluation

Direct comparison of recent work in the field of parallel, adaptive
tessellation is challenging because of wide variation in research
goals. Some studies have focused primarily on efficient GPU im-
plementations (with little regard to the quality of tessellation out-
put), while others have focused on algorithms for adapting to sur-
face detail. Further, some techniques intend to approximate sur-
faces with large polygons when possible while others target mi-
cropolygons. We choose to evaluate DIAGSPLIT by comparing its
quality and performance against three schemes that, in our opinion,
best characterize the space of alternative methods. For high qual-
ity, we wish to produce tessellations that represent surfaces accu-
rately and are suitable for per-vertex shading calculations. To meet
both requirements, we seek to produce triangle micropolygons that
are approximately 0.5 pixels in area. For high performance, DI-
AGSPLIT must avoid overtessellation and the cost of splitting must
be kept low.

Our implementation of DIAGSPLIT uses the splitting algorithm
described in Section 3 for performing splits, EDGEDICE with in-
terior area scaling for dicing, and an implementation of T that
samples the (potentially displaced) surface at four points along
subpatch edges (N=4). By construction, DIAGSPLIT permits a
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DiagSplit Execution Summary
Base Patches MP Area (pixels) Max Split Depth Verts/Subpatch Overhead Surface

Avg. Max Avg. Max Avg. Evals (% of Total)

LONGPLANE 1 .48 .60 20.0 20 160.4 9
BIGGUY 2,570 .45 1.27 2.0 6 134.3 12
MONSTERFROG 1,292 .41 3.84 2.4 10 117.7 14
BUMPY 6 .43 2.85 13.0 13 145.1 11
ZONEPLATE 1 .25 14.24 79.0 79 52.2 32
COLUMNS 13,044 .40 1.38 1.7 10 89.4 20
ZINKIA 151,651 .45 1.23 0.1 13 66.4 25

Table 2: Execution statistics from tessellating scenes in Figure 10 using DIAGSPLIT. DIAGSPLIT tessellations contain triangles that on
average are within 20% of the target micropolygon area (0.5 pixels).

DiagSplit (our method)IsoSplit (Reyes)BinSplitNoSplit (D3D11)

.25x 2x.5x

Overtessellation
(poor perf)

Undertessellation
(poor quality)

Target MP Area 4x.125x

Average Micropolygon Area

LongPlane

BigGuy

MonsterFrog

Bumpy

ZonePlate

Columns

Zinkia

Figure 10: We seek tessellations containing micropolygons of approximately 0.5 pixels in area. In the images above, green pixels are covered
by micropolygons very close to the target size. Red and blue pixels indicate overtessellation and undertessellation respectively. For all scenes,
DIAGSPLIT generates a tessellation that is as good as or better than alternative approaches (Zinkia scene c© Zinkia Entertainment, S.A.).
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parallel implementation. We compare this configuration of DI-
AGSPLIT against the following alternatives.

NOSPLIT: This configuration is parallelizable and mimics the be-
havior of the D3D11 pipeline as well as the CudaTess system by
[Schwarz and Stamminger 2009]. It does not perform splits, uses
EDGEDICE dicing with area scaling, and uses the same edge-based
T as DIAGSPLIT.

BINSPLIT: This configuration performs isoparametric splitting
with binary UVDICE dicing. Dicing factors are computed using
T , but are rounded up to the nearest power of two. Binary dicing
allows for a simple, crack-free, parallel implementation. The algo-
rithms described in Eisenacher et al. [2009] and Patney et al. [2009],
if configured to output micropolygons, produce tessellations simi-
lar to BINSPLIT. Patney and Owens [2008] also implement BIN-
SPLIT but do not prevent cracks.

ISOSPLIT: This configuration mimics an advanced Reyes imple-
mentation and performs isoparametric splitting and UVDICE dic-
ing. ISOSPLIT evaluates the surface at a 4x4 grid of points spanning
the subpatch to make splitting decisions and determine dicing fac-
tors. Post-tessellation stitching removes cracks, but requires com-
plex data structures that preclude efficient parallel implementation.

We evaluate the four algorithms using the seven examples shown in
Figure 10 rendered at 1728 × 1080 resolution. Scene geometry is
modeled using Catmull-Clark subdivision surfaces that are directly
evaluated using the Loop-Schaefer approximation scheme [2008].
These scenes test different aspects of tessellation:

• LONGPLANE contains a single patch undergoing severe per-
spective foreshortening. Adaptive tessellation is required to
avoid overtessellation.

• BIGGUY and MONSTERFROG are simple character tests
(MONSTERFROG features textured displacement).

• BUMPY and ZONEPLATE use high-frequency procedural dis-
placement to create surface detail (subdivision base cages are
a cube and plane respectively).

• COLUMNS and ZINKIA are full scenes containing large vari-
ation in base-primitive size.

4.1 Algorithm Comparisons

Figure 10 visualizes the quality and performance of all algorithms
by coloring images according to the average area of micropolygons
overlapping each pixel. Properly tessellated areas containing 0.5
pixel area micropolygons are green, areas overtessellated by at least
4x are red (poor performance), and areas undertessellated by more
than 4x are light blue (poor quality). Since previous algorithms do
not consider displacement mapping during splitting, we first com-
pare algorithm performance on non-displacement mapped scenes.

DIAGSPLIT, NOSPLIT, and BINSPLIT each provide parallelizable,
crack-free tessellation solutions. Of these three algorithms, only
DIAGSPLIT consistently produces good tessellations. While DI-
AGSPLIT meets the target area very well (most regions of the DI-
AGSPLIT images are green), NOSPLIT generates areas of overtes-
sellation and undertessellation. The problem is acute in the patho-
logical case of LONGPLANE, where a single patch undergoes sig-
nificant perspective foreshortening. NOSPLIT’s uniform tessella-
tion of LONGPLANE is too coarse near the viewer and too fine
at a distance. Removing undertessellation by tessellating conser-
vatively (so that the near region of LONGPLANE becomes green)
increases overtessellation afar and results in over 8.2x as many ver-
tices as DIAGSPLIT. Conservative NOSPLIT tessellations of other
scenes contain 1.4x (BIGGUY) to 2.2x (COLUMNS) more vertices.

BINSPLIT is adaptive but rounds dicing factors to powers of two
and lacks DIAGSPLIT’s interior area scaling capabilities (unlike
EDGEDICE, UVDICE cannot modify its interior tessellation inde-
pendently from tessellation at subpatch edges). As a result, BIN-
SPLIT overtessellates severely. We measure that BINSPLIT gener-
ates between 2.1x (ZINKIA) to 3.0x (COLUMNS) more vertices than
DIAGSPLIT. When content is authored well for uniform tessel-
lation (BIGGUY, MONSTERFROG, COLUMNS), BINSPLIT’s tes-
sellations contain more micropolygons than NOSPLIT’s. In addi-
tion, because BINSPLIT-tessellation factors jump between powers
of two, it produces tessellations that are less locally uniform than
those of the other three algorithms. Modifying BINSPLIT to round
edge factors to the nearest power of two (rather than rounding up)
reduces overtessellation, but introduces large regions of undertes-
sellation.

DIAGSPLIT is designed for subpatch-parallel execution while
ISOSPLIT is not. However, because ISOSPLIT does not rely on
preserving agreement along edges to prevent cracks, it is able to
make splits and set tessellation rates using information from sub-
patch interiors as well as edges. Further, ISOSPLIT does not need
to determine subpatch tessellation factors until a decision to dice is
made (it requires no edge constraints). Despite retaining more flexi-
bility, we find that in tests where displacement is not present, ISOS-
PLIT and DIAGSPLIT tessellations approximate the desired microp-
olygon area equally well.

When displacement is present, DIAGSPLIT produces better tessel-
lations than ISOSPLIT because it accounts for the displaced posi-
tion of the surface (not just the subdivision limit surface) in T .
The disparity in quality is notable when displacement is large. For
example, ISOSPLIT (as well as NOSPLIT and BINSPLIT) consis-
tently undertessellates ZONEPLATE because splitting decisions as-
sume the surface is a flat plane. In offline rendering, resolving this
problem requires manually increasing tessellation amounts for such
objects. This is labor intensive and produces overtessellation in ar-
eas of the object that do not contain significant displacement. Ac-
counting for displacement during tessellation requires no user input
and yields a better approximation to the final surface. We have ver-
ified that modifying ISOSPLIT to account for displacement yields
tessellations of approximately the same quality as DIAGSPLIT’s.
Accounting for displacement in NOSPLIT has little benefit because
the scheme is incapable of adapting to the increased surface detail.

4.2 Edge Sampling

Our implementation of DIAGSPLIT uniformly samples surface po-
sition along an edge to compute tessellation factors. We empiri-
cally determined that four samples per edge (N=4) yields a good
balance between cost to compute T and overall tessellation quality.
Figure 11 visualizes tessellations that result from a range of edge
sampling rates.

Even when surfaces contain no high frequency detail, approximat-
ing an edge as a line formed by its endpoints (N=2) results in poor
quality at silhouettes. When an edge crosses over a silhouette, it
is common for the projected position of its endpoints to fall nearly
on top of each other, triggering undertessellation. This sampling
error is troublesome because it negates a major advantage of the
micropolygon representation: high quality silhouettes.

In practice we find that N=3 often suffices for smooth, undisplaced
surfaces and that our choice of N=4 yields good results for most
displacements. Of course, any uniform sampling of the edge is
prone to aliasing, which is clearly present in the ZONEPLATE scene
(surface detail becomes very high frequency in the top-right corner
of the plane). However, with the exception of pathological cases
such as ZONEPLATE, we observe little difference between values
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N=2 N=3 N=4 N=5 N=16

Figure 11: DIAGSPLIT tessellation quality improves as the number of surface samples used by T increases. Errors due to sparse edge sam-
pling are particularly apparent in ZONEPLATE, which contains a surface with high frequency detail. Our implementation of DIAGSPLIT uses
four samples to determine the tessellation factor for an edge (N=4).

of N greater than five. We have not studied the impact of employ-
ing irregular or adaptive sampling techniques in T ; the advantage
of adaptivity is largely achieved through splitting and it is important
that the cost of T remain as small as possible to keep the overhead
of producing the tessellation low.

4.3 DiagSplit Characteristics

Table 2 quantifies DIAGSPLIT’s behavior on our workloads. The
table corroborates the result illustrated by Figure 10; on all scenes
except ZONEPLATE, DIAGSPLIT generates triangles that are, on
average, within 20% of the 0.5 pixel target area. Micropolygons
of this size do not approximate the high frequency detail of ZONE-
PLATE well, so DIAGSPLIT tessellates more finely to yield a close
approximation to the surface.

Table 2 also provides insight into the overhead of adaptivity. The
cost of determining where DIAGSPLIT places tessellation vertices
is dominated by point sampling surface position. These evalua-
tions, which occur in T and to compute interior scale parameters
prior to dicing, add to the fundamental cost of evaluating surface
position and shading interpolants at final micropolygon vertex lo-
cations. When subpatches are reasonably large, less than 14% of all
surface evaluations constitute overhead of computing the split-dice
tessellation. This fraction grows to 20 and 25% in COLUMNS and
ZINKIA, which contain many small base patches (these scenes have
the smallest number of vertices per diced subpatch). However,
small base patches are rarely split (see split depth in Table 2), so DI-
AGSPLIT incurs essentially the same “overhead” to compute edge
factors as NOSPLIT. In practice (Section 4.4, Figure 12) we mea-
sure splitting overhead to be a larger fraction of total tessellation
time than these counts indicate because our implementation more
aggressively optimizes surface evaluation at final mesh vertices.

4.4 Performance Evaluation

We parallelized DIAGSPLIT on a multi-core CPU to better under-
stand its performance characteristics. Our implementation lever-
ages locality inherent in split-dice by processing split subpatches
in depth-first order. We represent subpatches compactly as 52 byte
records (four parametric coordinates, four tessellation factor con-
straints, and a pointer to the base patch) so supporting a 20 element
stack requires less than 1 KB of storage (Table 2 shows this is more
than sufficient for most scenes). Thus, our implementation runs al-
most entirely out of local data caches and does not exhibit the large
memory footprint or high-bandwidth limitations of breath-first tes-
sellation [Patney and Owens 2008; Eisenacher et al. 2009].

ACC surface (no displacement)

Displaced ACC surface

2. Split: edge factor computation (T)
3. Split: interior scaling estimate

5. Dice: generate topology
6. Dice: evaluate surface

4. Split: misc. logic1. ACC patch conversion

DiagSplit Execution Time Breakdown

654321

Figure 12: Relative cost of major DIAGSPLIT operations when tes-
sellating MONSTERFROG with and without displacement. Dicing
dominates execution time of computing a DIAGSPLIT tessellation.

We have vectorized key sections of the code (namely surface eval-
uation), resulting in a fast implementation. A single core of a
3 GHz Intel Core i7 processor tessellates Approximate Catmull-
Clark (ACC) surfaces at 20.8M triangle micropolygons per second.
This timing includes the cost of converting the base mesh to ACC
patches, as well as evaluation of surface normals, tangents, and tex-
ture coordinates for shading. Performance increases to over 41.3M
MPs/sec (per core) if only surface position is required (e.g., when
generating shadow maps). When evaluating displaced surfaces our
implementation sustains 10.9M MPs/sec (the cost of accessing tex-
ture data is expensive in our CPU implementation). Figure 12 dis-
plays the cost of major DIAGSPLIT operations when tessellating
MONSTERFROG with and without displacement. Although dicing
is more heavily optimized in our implementation, it still dominates
execution time. On wide vector architectures the relative cost of
split may increase as it is more challenging to vectorize T and area
scaling estimates than tune surface evaluation at mesh vertices.

We parallelize DIAGSPLIT by having multiple cores cooperate to
perform tessellation work using a shared work queue. The granu-
larity with which work is dispatched to cores is a parameter of the
system (multiple patches to multiple subpatches at a time). This
simple implementation scales well out to eight processors (6.2x for
non-displaced surfaces, 6.7x for displaced ones). On an eight core
Intel Core i7 system, we tessellate ACC surfaces at a rate of 129.9M
MPs/sec (73.1M when displaced). We stress that this performance
is obtained while also producing a very high quality and low mi-
cropolygon count tessellation.

In addition to the implementation discussed above, we have inte-
grated DIAGSPLIT into a parallel, sort-first rasterization pipeline
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running on multi-core CPUs. Sort-first renderers scale by oper-
ating on screen tiles in parallel. Our renderer processes different
subpatches of the same base patch simultaneously when the prim-
itive covers multiple screen tiles. Preliminary end-to-end studies
indicate that generating DIAGSPLIT tessellations of displaced ACC
surfaces constitutes only 30% of total rendering time when microp-
olygons are shaded using a simple Phong model (single texture
lookup) and rasterized to a 16x multi-sampled framebuffer. We
expect more realistic shading computations and sophisticated ras-
terization techniques (such as motion blur and defocus) to dwarf
the cost of micropolygon generation in a real-time system. The
overhead of adaptivity when computing a tessellation is more than
justified because avoiding overtessellation decreases the amount of
work performed by subsequent, more costly, rendering operations.

5 Discussion

DIAGSPLIT adapts the Split-Dice algorithm to perform non-
isoparametric cuts and use a dicing scheme that supports different
tessellation factors for each subpatch edge. These modifications al-
low DIAGSPLIT to retain the adaptivity and crack-free quality of
advanced Reyes implementations while processing subpatches in
parallel. DIAGSPLIT generates tessellations containing fewer and
more uniform micropolygons than existing parallel methods.

DIAGSPLIT’s advantages significantly outweigh the increase in cost
of computing subpatch bounding boxes, edge tessellation factors,
and numerical derivatives of vertex shading quantities that results
from non-isoparametric splits. Also, given new methods for repre-
senting subdivision surfaces using parametric approximations, we
do not view DIAGSPLIT’s limitation to parametrically-evaluable
surfaces as severe for real-time rendering.

We believe DIAGSPLIT can be integrated tightly into future real-
time rendering pipelines and that it will be possible to generate mi-
cropolygon representations of complex scenes in real-time in the
near future. Still, many additional aspects of graphics pipeline im-
plementations must be re-tuned to efficiently render micropolygon
workloads. In conjunction with DIAGSPLIT, we have conducted a
detailed evaluation of micropolygon rasterization [Fatahalian et al.
2009], but the challenges of culling and shading micropolygons
and efficiently parallelizing an end-to-end micropolygon rendering
pipeline still require further study.

Acknowledgments

Support for this research was provided by the Intel Foundation
Ph.D. Fellowship Program, an Intel Larrabee Research Grant, the
National Science Foundation Graduate Research Fellowship Pro-
gram, and the Fannie and John Hertz Foundation. Zinkia scene
c© Zinkia Entertainment, S.A.

References

APODACA, A. A., AND GRITZ, L. 2000. Advanced RenderMan:
Creating CGI for Motion Pictures. Morgan Kaufmann.

BLINN, J. F. 1978. Computer display of curved surfaces. PhD
thesis, The University of Utah.

BURLEY, B., AND LACEWELL, D. 2008. Ptex: Per-face texture
mapping for production rendering. In Computer Graphics Fo-
rum, vol. 27, Blackwell Publishing Ltd, 1155–1164.

CATMULL, E. E. 1974. A subdivision algorithm for computer
display of curved surfaces. PhD thesis, The University of Utah.

CLARK, J. H. 1979. A fast scan-line algorithm for rendering para-
metric surfaces. In Computer Graphics (Proceedings of ACM
SIGGRAPH ’79), ACM, 174.

COOK, R., CARPENTER, L., AND CATMULL, E. 2008. The Reyes
image rendering architecture. In Computer Graphics (Proceed-
ings of ACM SIGGRAPH ’87), vol. 27, 1–11.

EISENACHER, C., MEYER, Q., AND LOOP, C. 2009. Real-time
view-dependent rendering of parametric surfaces. In I3D ’09:
Proceedings of the 2009 Symposium on Interactive 3D Graphics
and Games, ACM, 137–143.

FATAHALIAN, K., LUONG, E., BOULOS, S., AKELEY, K.,
MARK, W. R., AND HANRAHAN, P. 2009. Data-parallel ras-
terization of micropolygons with defocus and motion blur. In
HPG ’09: Proceedings of the Conference on High Performance
Graphics 2009, ACM, 59–68.

FOSTER, C., 2009. Aqsis renderer. http://aqsis.org/.

KOVACS, D., MITCHELL, J., DRONE, S., AND ZORIN, D. 2009.
Real-time creased approximate subdivision surfaces. In I3D ’09:
Proceedings of the 2009 symposium on Interactive 3D graphics
and games, ACM, 155–160.

LANE, J. M., CARPENTER, L. C., WHITTED, T., AND BLINN,
J. F. 1980. Scan line methods for displaying parametrically
defined surfaces. Communications of the ACM 23, 1, 23–34.

LIEN, S., SHANTZ, M., AND PRATT, V. 1987. Adaptive for-
ward differencing for rendering curves and surfaces. Computer
Graphics (Proceedings of ACM SIGGRAPH ’87) 21, 4, 111–118.

LOOP, C., AND SCHAEFER, S. 2008. Approximating Catmull-
Clark subdivision surfaces with bicubic patches. In ACM Trans-
actions on Graphics, vol. 27, 1–11.

MICROSOFT, 2009. DirectX 11 SDK: August 2009. msdn.
microsoft.com/en-us/directx/.

MORETON, H. 2001. Watertight tessellation using forward differ-
encing. In Proceedings of the Eurographics Workshop on Graph-
ics Hardware, ACM, 25–32.

MOULE, K., AND MCCOOL, M. 2002. Efficient bounded adaptive
tessellation of displacement maps. In Graphics Interface, 171–
180.

PATNEY, A., AND OWENS, J. D. 2008. Real-time Reyes-style
adaptive surface subdivision. ACM Transactions on Graphics
(Proceedings of ACM SIGGRAPH Asia) 27, 5.

PATNEY, A., EBEIDA, M. S., AND OWENS, J. D. 2009. Par-
allel view-dependent tessellation of Catmull-Clark subdivision
surfaces. In Proceedings of High Performance Graphics 2009,
99–108.

PURNOMO, B., COHEN, J. D., AND KUMAR, S. 2004. Seamless
texture atlases. In SGP ’04: Proceedings of the 2004 Eurograph-
ics Symposium on Geometry Processing, ACM, 65–74.

ROCKWOOD, A. P., HEATON, K., AND DAVIS, T. 1989. Real-time
rendering of trimmed surfaces. In Computer Graphics (Proceed-
ings of SIGGRAPH ’89), 107–116.

SCHWARZ, M., AND STAMMINGER, M. 2009. Fast GPU-based
adaptive tessellation with CUDA. In Computer Graphics Forum,
vol. 28, Blackwell Publishing Ltd, 365–374.

STAM, J. 1998. Exact evaluation of Catmull-Clark subdivision
surfaces at arbitrary parameter values. In Proceedings of ACM
SIGGRAPH ’98, ACM, 395–404.

150:10       •       M. Fisher et al.

ACM Transactions on Graphics, Vol. 28, No. 5, Article 150, Publication date: December 2009.




