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Figure 1. A design adjective is a learned model of a design concept, and can be used in the design adjectives framework to guide exploration of
parameterized design spaces. From top to bottom, design adjectives defined in three domains (parametric materials, parametric fonts, particle systems).
Each row depicts the process of creating a design adjective from a set of annotated examples in the design space (left), learning the adjective’s design
preference function through Gaussian process regression (center), visualized here with a 2D slice of the function values indicating scores with color (0
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ABSTRACT

Many digital design tasks require a user to set a large number
of parameters. Gallery-based interfaces provide a way to
quickly evaluate examples and explore the space of potential
designs, but require systems to predict which designs from
a high-dimensional space are the right ones to present to the
user. In this paper we present the design adjectives framework
for building parameterized design tools in high dimensional
design spaces. The framework allows users to create and edit
design adjectives, machine-learned models of user intent, to

guide exploration through high-dimensional design spaces.

We provide a domain-agnostic implementation of the design
adjectives framework based on Gaussian process regression,

1 (yellow)), and generating design suggestions by sampling the design adjective (right).

which is able to rapidly learn user intent from only a few
examples. Learning and sampling of the design adjective
occurs at interactive rates, making the system suitable for
iterative design workflows. We demonstrate use of the design
adjectives framework to create design tools for three domains:
materials, fonts, and particle systems. We evaluate these tools
in a user study showing that participants were able to easily
explore the design space and find designs that they liked, and
in professional case studies that demonstrate the framework’s
ability to support professional design concepting workflows.



Author Keywords
Design tools, creativity support, interactive interfaces,
sampling methods

CCS Concepts

*Human-centered computing — Interactive systems and
tools; *Computing methodologies — Graphics systems
and interfaces; *Applied computing — Media arts;

INTRODUCTION

Many design tasks in digital applications take place in param-
eterized spaces, where an output design is determined by tens
to hundreds of parameters. These design spaces occur com-
monly in domains such as parametric materials, parametric
fonts, and particle systems for web applications, game engines,
and visual effects (Figure 1). New design spaces arise often
(e.g., each procedural material might have its own unique pa-
rameters), creating never seen before spaces for designers to
explore. For example, the fish scale material created with
Substance Designer [40] (Figure 1-top) has 22 parameters;
the brick material (Figure 7), also created with Substance De-
signer, has 62; and the five Prototypo [31] font templates in
Figure 13 share a set of parameters but produce significantly
different visual outputs.

When performing a design task there is often no single “cor-
rect” solution. The criteria used to determine success is a
combination of task constraints and a designer’s personal pref-
erences, both of which are often poorly defined at the start, and
which become more definite over the duration of the design
process [39]. As a result, designers typically engage in an
iterative process where multiple designs are rapidly generated
and evaluated against current objectives [15, 45, 21]. This
problem-solving process occurs at all skill levels [16], and the
ability to efficiently generate and refine designs is a critical
part of effective design interfaces [36].

Unfortunately, most commercial tools [40, 41, 43, 3] only
provide interfaces for modifying parameter values one-by-
one with per-parameter sliders. Design-gallery based inter-
faces [23] provide a way to rapidly explore a range of design
possibilities and evaluate examples, but to be effective in high
dimensional spaces they must predict what designs are most
useful to present to the user throughout the iterative design
process. To address this problem, we present the design ad-
Jjectives framework for building parameterized design tools
for high dimensional design spaces. Central to the framework
is a design adjective: a learned model of a user’s design in-
tent. The design adjectives framework provides support for
interactively creating and sampling from design adjectives
to populate gallery-based interfaces. We demonstrate that
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this combination facilitates interactive exploration of high-
dimensional parameterized design spaces, and also provides
opportunities to enhance the per-parameter slider interfaces
present in state-of-the-art systems. Specifically we make the
following contributions:

The design adjectives framework. We define a domain-
agnostic framework for creating parameterized design tools
that guide user exploration through high-dimensional design
spaces using a learned model of user intent called a design
adjective. The components of the framework are aligned with
the conceptual progression of the design process: providing
support for preliminary exploration of the design space, refine-
ment of a design idea, and per-parameter fine tuning needed
in professional design tools.

An implementation of design adjectives using Gaussian pro-
cess regression [32]. This model requires only a small number
of training examples to capture preference. It learns at inter-
active rates, allowing it to support interactive, iterative design
workflows that include evolving user preferences. The imple-
mentation also provides user interface components inspired
by prior work on design galleries and slider highlighting [23,
19] to support visual exploration of the design space guided
by examples from the learned preference model.

An evaluation of design tools built using the design adjec-
tives framework that demonstrates that our implementation
supports exploratory design in the font design and material de-
sign domains. We find that users are more easily able to create
designs that they like with the design adjectives framework,
also and find that the interface supports professional design
concepting workflows.

RELATED WORK

The design process is characterized by three distinct phases:
preliminary design (creating an initial design), refinement
(iterating on or exploring an existing feature), and detail (fine-
tuning specific aspects of the design) [15]. The goal of the de-
sign adjectives framework is to facilitate user interaction with
a design space in a manner that mirrors these steps: defining
an initial model of user intent (the learned design adjective),
refining that model by reacting to examples produced by an
interactive sampling process, and fine-tuning using low-level
parameter controls. Our solution involves a synthesis of prior
work in creativity support tools, parameter manipulation tools,
re-parameterization methods, and machine learning, which we
describe here.

In parameterized design spaces, sampling-based design tools
have been proposed as an exploration support tool. A possi-
ble approach is to exhaustively sample the space and present
those samples to the user in a Design Gallery [23]. Exhaustive
sampling of arbitrary design spaces becomes more difficult as
the number of parameters increases. More efficient sampling
methods use some form of human-provided seed data to locate
regions of interest in the space [33, 22, 42], or objective func-
tions, if they exist, to limit the scope of designs found in the
space [24, 37]. Our generic implementation of design adjec-
tives cannot rely on such objectives, as the domain itself is the
one component we assume is variable. Such gallery-based tool
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allow users to pick through the provided samples, but refining
designs in these frameworks can be difficult. Users can only
explore designs that they can see in the gallery, and must use
a different tool to perform adjustments.

The most direct way to adjust a parameterized design is to
manually set a parameter value. These controls are typically
displayed as sliders. Many methods have been developed to
assist users with locating what visual changes a parameter
is responsible for [4, 44, 35], and some methods overlay a
preference function on the sliders to assist with finding gen-
erally good configurations [19]. It is difficult to create many
alternatives when manipulating parameters one-by-one, and
this class of interface is better suited for detail work instead of
exploratory design. Therefore, we employ slider highlighting
techniques similar to those described in Koyama et al. [19]
primarily for the detail design phase.

One way to speed up the process of performing per-parameter
design is to re-parameterize the design space to have fewer di-
mensions; ideally ones that are meaningful to designers. Early
methods to do this in computer graphics used support vector
machines trained on large data sets to create axes representing
different traits [25]. Later methods adopted the term semantic
attributes to describe this style of re-parameterization, using
modern machine learning techniques to generate using human-
understandable image labels [10, 11]. Semantic attributes have
seen success in a variety of computer graphics domains [6, 29,
20, 48, 38, 8], presenting the learned attributes as sliders that
could be manipulated as if they were normal parameters.

Semantic attributes model objective functions by using an
expensive learning process on a large amount of annotated
data. While working with these attributes, designers may want
to personalize or adjust the attributes to be closer to their in-
dividual design goals. Methods exist for refining semantic
attributes [30, 18], but such methods can only be used after an
initial set of attributes has been defined. Additionally, these
methods assume that the interests of designers are “regular” [5,
19], meaning that there exists a consensus about what the at-
tribute means between designers. In creative domains, this
assumption does not always hold true. Instead of pre-defining
attributes across the space for later adjustment, a design ad-
jective learns a model of intent from input data provided by a
single user.

Methods for modeling an objective function given a small
amount of input data have been studied in machine learning.
This class of problems is referred to as few-shot, or zero-
shot, learning. Of the numerous techniques that could be
used to implement a low-data model of an objective function,
we have chosen Gaussian process regression (GPR) [32] to
implement a design adjective. This technique was selected due
to prior work demonstrating success with computer graphics
design tasks for material design [49] and shape grammars [7].
We build upon work in [49] to demonstrate GPR’s ability to
support design tasks in general parameterized design spaces.

Interactive approaches for defining concepts and exploring a
design space were proposed as possible interface paradigms
early in the computer graphics literature [17], but these meth-

ods rely on the ability to generate and render design sugges-
tions in real time in order to allow designers to quickly perform
iteration cycles. At the time, the computational power avail-
able to these methods limited which domains they could be
used on. Recent advances in computer hardware and algo-
rithms have led to the development of techniques that enable
real-time rendering of complex design domains [46, 47, 27, 34,
49], allowing them to be used in interactive machine learning.
The design adjectives framework applies the iterative, trial-
and-error, training paradigm presented by Amershi et al. [2, 1]
in parameterized design spaces for creative applications.

DESIGN ADJECTIVES OVERVIEW

To understand how design adjectives are used to support pre-
liminary design, refinement, and final detail, consider the
following scenario: Jen, a material designer, seeks to create a
shiny blue version of the fish scale material shown at the top
of Figure 1.

Preliminary Design

The first thing Jen wants to do in the preliminary design
phase is to see what material variations are possible in the
22-parameter design space. This requires the generation of a
large number of diverse materials. Jen can use a bootstrapper
provided by the framework to generate a set of random fish
scale designs. She can then browse through a gallery of these
designs to select and assign high scores to designs that best
represent her vision of “shiny blue scales” and low scores to
those that do not (Figure 1-top left). The examples provided
to the adjective define Jen’s initial model of intent.

Refinement

After surveying the design space and establishing an initial
idea for what “shiny blue scales” means to her, Jen creates
a number of variations of her initial designs, refining her de-
sign ideas as she does so. Jen generates designs by sampling
from the “shiny blue scales” design adjective. Jen decides to
look at designs that have similar scores to her current design.
(Figure 1-top right). Jen sees a returned sample that is not as
shiny as the others, and assigns it a low score to update the
adjective. She then runs another sampling operation with the
updated adjective. The interactive refinement loop created by
Jen’s repeated sampling and updating of the design adjective
enables intent-driven exploration of the design space.

Detail Design

Towards the end of the design process, Jen wants to make a
few final tweaks. To do so, Jen uses the individual parameter
controls. The adjective that Jen created highlights which pa-
rameters had the most impact on her definition of “shiny blue
scales,” helping Jen determine which parameters to change
for her final edits. Jen can make use of the framework’s per-
parameter tools at any time.

THE DESIGN ADJECTIVES FRAMEWORK

To enable workflowssuch as the one described above, the
design adjectives framework consists of components that in-
terface with design adjectives (Figure 2). The framework is
designed to support guided exploration based on design adjec-
tives learned from personal preferences, and facilitate access
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Figure 2. Overview of the Design Adjectives Framework. The framework consists of a set of components that allow users to explore a design space in
a way that aligns with the design process itself. These components are shown in the shaded boxes, with our domain-agnostic implementation of the
component shown in white boxes. The framework is centered around a design adjective, defined by scored examples, that can be used to generate new
designs through a sampling method. Adjectives can be updated by adding new examples or modifying the scores of existing examples, and are initialized
with the aid of a bootstrapper. Low-level parameters are always accessible. The model can be used to aid per-parameter operations, and per-parameter

controls can help filter out parameters during adjective sampling.

to low-level parameter tools. The interfaces specified by the
framework support an interactive workflow, using real-time
sampling to enable guided exploration, and always represents
samples in the original parameter space to allow access to
low-level parameters at all times.

In this section, we provide a specification for the design ad-
jectives framework. We provide a domain-agnostic implemen-
tation of the full framework in the next section. Of course,
other implementations of the framework could modify or re-
place these components based on the needs of a specific design
domain.

Parameterized Desigh Space Definition

The design adjectives framework supports design domains
consisting of a finite set of bounded, real-valued parameters.
The domain also must provide a rendering function that, given
a point in the design space, generates a visual preview of the
corresponding design (preferably at interactive rates). The
rendering function is required for enabling visual exploration,
and parameter bounds are required for normalizing data passed
to the design adjective. Our domain-agnostic implementation
only requires a design domain definition for use in a new
domain.

The Design Adjective

The design adjective represents user intent from user-scored
input examples. The input to the adjective is assumed to be
standard example-score pairings, with examples created in the
design space that the user is working in. The output of the
adjective is a function that assigns a real-valued preference
score to all points in the design space. The adjective must be
able to learn a user’s intent given a small amount of initial data,
and be trained and updated at interactive rates in order to sup-
port rapid iteration. The user should be able to incrementally
update the adjective by providing new examples or editing
existing example scores. The adjective should also provide
the ability to operate on a user-specified subset of parameters
within the design space.

Sampling from the Design Adjective
Designs are generated from the adjective with a sampler. Gen-
erating designs serves two purposes: to show the user things

that they might like, based on the current adjective definition,
and to give the user the chance to assess the accuracy of the
adjective and adjust the definition by manually scoring the
returned suggestions.

This sampler must be able to return results at interactive rates
(one second or less) according to what the user wants to see
relative to the current adjective (such as “more like this” or
“similarly scored designs”). Note that this interactivity require-
ment can be met by streaming results into the UI, allowing
users to explore designs as they get generated instead of wait-
ing for the entire process to complete. To speed up this process,
the adjective must provide its training data to the sampling
method, allowing the sampler to potentially use this data as
part of the sampling process. For example, our implementa-
tion of this sampler uses high-scored inputs to accelerate the
sampling process. Results returned by the sampler must be
arranged in the Ul in a way that allows users to update the
definition of an adjective. In our implementation, we present
the results in a gallery view.

Bootstrapping the Adjective

The adjective must use in-domain examples as inputs. This
means that when a new adjective is created, there are no exist-
ing examples to use, and users must find some way to provide
initial examples and scores to the adjective. At minimum, this
can be done with existing per-parameter controls, but better
tools can be provided. Our implementation provides a uniform
random sampler as its bootstrapper. We expect that interfaces
developed for a specific domain will be able to provide better
bootstrappers by using domain-specific design principles.

Per-Parameter Identification Tools

The design adjective can be used to provide additional support
during the detail design phase. The preference function can be
used to enable tools such as per-parameter highlighting [19]
when performing detail design. All framework components
operate on the original parameters, so other techniques for
parameter identification [44, 35] can be easily added to any
implementation of this framework.



IMPLEMENTING DESIGN ADJECTIVES

We present a domain-agnostic implementation of the design
adjectives framework that can be used with any design domain
that meets the framework specification. Domain-specific im-
plementations of this framework gain immediate access to all
domain-agnostic components, and can replace these compo-
nents with domain-specific variations as desired.

Building Adjectives using Gaussian Process Regression
The design adjective takes as input a set of points in the design
space with associated scores { (X1, f1), (X2, f2) ... }, where the
X; points are parameter vectors in the design space D and the
fi values are the scores between 0 and 1 assigned by the user
to these points. We use this data to estimate the preference
function f(x) across the entire design space at interactive rates.
Our implementation uses Gaussian process regression (GPR)
to estimate this function. We chose GPR because it satisfies
the requirements expected by a design adjective; it is able to
estimate functions given a small amount of input data, and
can be trained in real time. We perform the regression with
GPyTorch [13]. GPR is a known technique and we refer to the
book by Rasmussen and Williams [32] for a detailed review.
For the sake of completeness, the rest of this section introduces
the basic concepts required in our context and discusses how
they apply to the design adjectives framework.

GPR uses a Gaussian process (GP) to estimate the value of
an unknown function. A Gaussian process is a collection of
random variables, any finite number of which have a joint
Gaussian distribution. Gaussian processes are completely
specified by a mean function m(x) and a covariance function
k(x,x’). In the case of a design adjective, the random variables
are the preference scores f; of the points x; in the design
space. An input pair (x;, f;) can be viewed as a point sample
of the preference score at x;. A GP defines a distribution
over functions, meaning that the value of the GP at a point
x* in the space is itself a Gaussian distribution. We use the
mean of the GP as the estimate of the adjective score at an
unobserved point x*. We do not make use of the variance in
our implementation.

To define a GP for a given design adjective, we create the
matrix X = [x],Xz...] (i.e., its columns are the points with
a user-assigned score) and the vector f = [fi,f5...]T from
the scores, and use a standard zero-mean function m(x) = 0,
indicating that every unobserved point is assumed to have a
low adjective score. For the covariance function, we use the
radial basis kernel:

k(x,x') = exp (-é(x—x')T 02 (x —x/)) (1)

where O is a diagonal matrix learned at training time that

applies a scaling factor to each dimension of the design space.

This function k can be used to construct a covariance vector
Kk(-,-) with the covariance values between the column vectors
of a matrix and a given vector, and a covariance matrix K(-,-)
with the covariance values between all pairs of vector columns
of two matrices. Using these quantities, the GP estimates the

score at a new point X* as follows.

fx) =k(X,x") KX, X)"' f )

The GP defined above can actually be used as an estimator
immediately, although it is not likely to be accurate, as the
covariance function does not accurately represent the relation-
ships between the different parameters. In order to improve
the accuracy of the function, we optimize the GP by adjusting
the scaling factors contained in the ® matrix of the covariance
function for each parameter (Eq. 1), a process called automatic
relevance determination [32, ch. 5.1]. Intuitively, the scaling
factors indicate how quickly the function varies along each
dimension. In this instance, small factors indicate that the func-
tion value varies quickly, while large factors indicate that the
function varies slowly. The value of the factor associated with
a parameter is a proxy for how important it is to the overall
function score. After completing this regression process, the
GP can be used to more accurately estimate adjective scores
for arbitrary points.

Adjectives may be defined on a subset of parameters in the de-
sign space. This subset is referred to as the adjective’s affected
parameters. Using GPR to implement affected parameters is
straightforward: the input parameter vectors x; defined on the
full design space are projected onto the affected parameter
subspace before being provided to the GPR. Our implementa-
tion automatically detects affected parameters from the input,
assuming that a parameter is affected if it has different values
in any two input points. Users can override the set of affected
parameters at any time.

Generating Designs with a Guided Rejection Sampler

In order to use the Gaussian process model of an adjective
in the design adjectives framework, we need to provide a
sampling method. To return samples as quickly as possible,
we introduce a guided rejection sampler on the design adjective
(Alg. 1), accepting samples that meet a user-specified criteria
described later in this section, and are different enough from
already accepted samples according to a L? distance threshold.

Conceptually, Algorithm 1 attempts to guide itself towards
good samples by starting with highly-rated examples provided
by the user (Step #1), and randomizing a subset of the pa-
rameters of those examples (Step #2). The sampler should be
returning novel samples, not just recycling what the designer
has already input, so we do not use a hill climbing (or similar)
step in the sampler to avoid returning the best already labeled
samples. In our implementation, pg is set equal to half of
the length of the design space parameter vector, pgoor = 3,
maxIter = 10000, r = 10, and count = 20. All five settings
can be modified by the users, although none of them saw the
need for it in our experiments.

Acceptance Criteria

Users have different intents at different stages of their explo-
ration. We express these intents in the sampling algorithm
by changing the rejection sampler’s acceptance criteria (the
Accept(x, f(x)) function in Algorithm 1). We provide four
criteria in this implementation (Figure 3).
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Algorithm 1: Guided Rejection Sampler

input  adjective function and input examples: f(-), X

set of affected parameters: P

current design: X

settings of the fine randomization: pg, Poors

max number of iterations before bailing out: maxlter
number of samples to generate: count

acceptance criteria function: Accept(x, f(x))

output set of samples: S

// Initialization
S+ {}
Xoood < {Xi € X, s.t. f(x;) > 0.5} // Select examples

P < Do i7pcount 0

with a score above 50%.

// Main loop of the sampler
while (|S| < count) and (i < maxIter) do

/Il Step #1: Coarse Randomization
Randomly select a good example.
X < GetRandomElement(Xyooq)

/I Step #2: Fine Randomization
Randomly perturb a random parameter subset.
Trandom < SelectRandomlIndices (P, p) // Subset of
affected indices to randomize

for index € T andom do
x[index] <— UniformRnd(0,1) // Use a uniform
distribution to randomize the selected indices.

/I If a parameter is not affected by the adjective, set it
to the value of the current design.

for index ¢ P do
| X[index] < xq[index]

/' If this is a valid sample...

if Accept(x, f(x)) then

S+ SU{x} // add it to sample set...

p < po // and reset the fine randomization.
else

Pcount <= Pcount + 1

/' 1f the algorithm failed too many times to find a
valid sample...
if pcount > r then
Peount < 0// reset the counter...
p < max(p — 1, paoor) / and weaken the fine
randomization without going below a
minimum.

| ii+1

Axis

Towards Similar Score

Away

Figure 3. Sampling Mode Visualizations. The four sampling modes de-
scribed in the “Acceptance Criteria” section visualized on a 2D design
space. The adjective score is represented by color, with yellow indicating
high scores and blue indicating low scores. The starting point for each
sampling method is indicated with the large circle, and the sample points
represented with smaller circles. Dotted lines around the sample points
in Towards and Away represents the difference threshold criteria.

Towards generates samples with a higher adjective score,
which is useful, for instance, when searching for the final
design. New designs must score better than the current design.

Away generates samples with a lower adjective score, e.g., to
refine the definition of the adjective. New designs must score
worse than the current design. This sampling mode is used to
get out of local maxima, moving the current design away from
known good samples in order to show more variety.

Similar Score picks variants with similar “amount of the ad-
jective” to the current design, e.g., to help users explore the
design space without converging to a high-score sample. New
designs must have an adjective score within +10% of the
current design’s score. Samples returned by this method are
not necessarily visually similar to the current design, as the
similarity metric is the adjective score not parameter vector
distance.

Axis visualizes samples regularly spaced on the adjective scale,
which is useful to assess the range of the effect captured by
the adjective and quickly navigate through it. All new designs
are accepted at first, but an additional de-duplication step is
added where designs that score within £2.5% of a previously
accepted design are rejected.

Bootstrapping Design Adjectives

Adjectives are defined by labeled examples, and a newly cre-
ated adjective has no examples to start with. In order to ini-
tialize, or bootstrap, the adjective, examples must be provided
by the user. To assist users in this task, the design adjectives
framework requires a bootstrapping tool. We provide two
random samplers for generating preliminary examples in a
domain-agnostic scenario.

The uniform randomizer draws samples from a uniform ran-
dom distribution. The jitter sampler applies a random delta to
each parameter in the current parameter vector. These func-
tions can either operate on all parameters in the design space,
or use a subset of parameters selected by the user. We find
that these samplers are sufficient for working in generic design
spaces.

Per-Parameter Tools
As the designer reaches the end of the design process, small
tweaks to the design are performed using individual parameter
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Figure 4. Slider Controls. Labeled components of a single parameter con-
trol element in our adjectives interface (shown in Figure 7). The slider
highlighting indicates how the current adjective score would change if
the parameter were moved to the corresponding location. Yellow high-
lighting indicates a higher score, blue indicates a lower score.

controls. The framework requires that the output of sampling
an adjective is a design representable in the original parameter
space, so all existing per-parameter tools can be used in this
platform. We provide a set of tools for per-parameter manip-
ulation that we found to be most useful for users working in
general parameterized spaces. This is a non-exhaustive list of
per-parameter tools, and we expect that domain-specific imple-
mentations of this platform will add additional tools specific
to their domain.

Highlighted Parameter Sliders

We color-code the sliders to show the user how the adjective
score would change if the parameter value were modified (Fig-
ure 4). This technique helps users navigate complex design
spaces [19]. To color-code the sliders, we evaluate the ad-
jective at individual parameter values across its full range,
sampled in increments of 5%, while holding all other parame-
ters constant. Our interface supports both absolute and relative
color coding of of sliders. Absolute color coding assumes
the adjective function values fall within the [0, 1] range and
assign colors accordingly, while relative color coding assigns
colors relative to the minimum and maximum values observed
in the parameter sweep over all parameters. Running the
color-coding operation is almost instant in our implementa-
tion, allowing users to perform optimization steps themselves,
if they desire, during the fine-tuning phase.

Parameter Selection

Adjectives do not need to affect every parameter in the design
space. Designers can select a subset of parameters to work
with while defining adjectives and running the bootstrapping
tools. Users may wish to do this to reduce the dimensionality
of the search space; focusing only on changing parameters that
are likely to lead to a design of interest. Expert designers may
not need help identifying which parameters are relevant, but
novice users may have trouble determining what a parameter
does.

To assist users in finding relevant parameters, we provide
a visualization of the parameter extents. Clicking on the
name of a parameter toggles this visualization, which displays
thumbnails of designs that span the full range of the selected
parameter’s values while all other parameters are held con-
stant (Figure 5). This visualization is a type of side view [44],
providing assistance with locating the effect of a single param-
eter so that the user can determine if the parameter should be
included or excluded in the next operation.

Figure 5. Parameter Extents. Displaying thumbnails for values of
“beam_vertical_amount” between 0 and 1.

Parameter Mixer

The mixer utility takes two parameter vectors and creates a
new vector by randomly combining parameters from the input
vectors, similar to a crossover operation in a genetic algorithm
(Figure 6). Designers can set a bias value to select parameters
more frequently from one design over the other.

The mixer returns a gallery of re- R
o [IIIT IO

sults, each with a different set of
parameters selected for combina- sl L1 " [[ITTTTT]
tion. This allows designers to * Mﬁ%ﬁ”‘%‘B
pick out elements that they like ©
in a design, without needing to Figure 6. Mixer. One run of
know which exact parameters are the mixer combining designs

. . A and B, with a bias towards
responsible for creating that ele- design B.
ment. The mixer does not require
an adjective to operate. As an example, the mixer could be
used to combine a blue brick design with a large brick de-
sign to create a large blue brick design, without the designer
needing to know what parameters control those properties.

Technical Implementation Details

We implement the design adjectives framework using a generic
client-server interface. The server runs the training of the
adjective model using GPyTorch [13], and the client renders
designs and provides the requisite Ul for interacting with the
adjectives. The server does not have knowledge of any specific
design domain, operating on the parameters assuming they are
bounded within [0, 1]. The client performs the normalization
step before sending data to the server, and discrete parameters
are made continuous by mapping the enumerated options to
equal-sized intervals within [0, 1]. This is a common way of
performing this type of transformation, but does create visual
discontinuities along the discrete parameter’s range.

The server’s adjective model training process favors training
speed over accuracy, and the number of optimization steps
taken is tuned such that the training completes in under a
second (400 iterations on our hardware). Training a GPR is
known to scale poorly as the size of the training set increases,
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Figure 7. Design Adjectives User Interface. A screenshot of the design adjectives interface used in the evaluation of the system. The current design is
rendered in the top-left. Design suggestions returned from sampling an adjective are shown in a gallery at the bottom, and hovering over a thumbnail
renders the design in the main view. The adjective definition is viewable and editable in the right-center, with per-parameter controls always available

on the right.

typically running in O(n?) time. In our context, n is the num-
ber of input points, i.e., n = |X|. Most adjectives defined in
our implementation are well under the size at which this be-
comes a problem, however sparse Gaussian process regression
algorithms can be used if needed [13]. Splitting the capabili-
ties of the server and client in this way made it possible for us
to implement three design domains (fonts, materials, particle
systems) in the framework using the same generic software
primitives.

The user interface (Figure 7) is written in Javascript using
Electron [9] to provide a desktop application wrapper. New
design domains can be added to the interface by implementing
a driver interface, requiring the domain to provide a render-
ing function for full-quality renders and thumbnail previews,
and requiring a list of parameters that can be modified in the
domain. Rendering is typically performed on an HTML can-
vas element. Implementing the three domains shown in this
paper in the interface took a few hours of development time
each, with the variance coming primarily from how easily re-
sults could be rendered in the Electron-based UI. With enough
development time, the server could be re-used in plugins de-
veloped for existing parameterized design interfaces. Client
and server source code for our implementation can be found
at https://github.com/ebshimizu/DesignAdjectives.

EVALUATION
To determine how effectively our implementation of the design
adjectives framework supports exploratory design, we perform

two studies: a study with intermediate users evaluating the tool
in a series of short design tasks, and a case study evaluating
the tool’s ability to support expert workflows.

In the user study, we are primarily interested in determining
the extent to which the design adjective models are perceived
to accurately represent a design concept. We also investigate
the extent to which the system is perceived by users to sup-
port exploration, and which parts of the toolkit are viewed
as the most useful. We detail the process and results in the
“User Study” section and find that our implementation is able
to represent per-user design concepts, and that it supports
exploratory design better than existing interfaces.

In the expert case study, we investigated the extent to which
the design adjectives framework can support an expert-level
design process. The tool was given to a professional graphic
designer, who used it to create a series of fonts. The designer
found that adjectives enabled them to perform design concept-
ing easily and quickly. In an additional informal evaluation, an
expert material designer spent a day with the tool to generate
a set of brick material variations, and we detail the results of
this design session later in this section.

User Study

In the user study, participants performed three design tasks:
two using our implementation of the design adjectives frame-
work, and one using a baseline sliders configuration. We
collected user feedback via Likert scale questions measuring
the extent to which users felt that each configuration helped
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Figure 8. User Study Initial Configurations. The initial designs displayed
to users performing the tasks in the user study. The font for Tasks 1 and
3 is shown on the left, and the material for Task 2 is shown on the right.
The particle system configuration is omitted here because it is not used
in an evaluated task, but is shown in the video accompanying this paper.

them with the design task. Overall, we found that participants
were able to use adjectives to easily explore the design space,
and find solutions that satisfied the design task. Participants
preferred to use the adjectives configuration over the baseline
sliders-only configuration for exploratory tasks.

Participants

10 adult participants were recruited for this voluntary study.
No compensation was given. All participants had at least
used a computer graphics design tool (e.g. Autodesk Maya,
Unity3D, Adobe Photoshop, etc.) before. Participants gener-
ally rated themselves as skilled users of design tools, but not
daily users of these tools, with a median self-reported skill of 3
out of 5 on a scale ranging from “uses design tools once every
few months” (1) to “uses design tools daily” (5). Users were
not specifically knowledgeable about particle system design,
material design, or font design.

Interface Configurations
Participants used the two following configurations.

Design Adjectives This configuration allows users to use our
implementation of the design adjectives framework (Figure 7).
When performing a task with this configuration, users were
limited to using one self-defined adjective, mirroring the work-
flow described in the “Design Adjectives Overview” section.
No pre-existing adjectives were provided.

Sliders This configuration only allows users to use the slid-
ers, a baseline similar to existing state-of-the-art computer
graphics tool interfaces. This configuration used the same
interface shown in Figure 7 with all design adjectives-related
functionality disabled.

Tasks

We used one design domain to teach users how to use the
design adjectives configuration, and two design domains to
evaluate the design adjectives configuration. Each participant
in this study performed the same tasks in the same order,
performing two tasks with the design adjectives configuration
and then repeating the first task using the sliders configuration.
By running tasks in this order, we can investigate to whether or
not the design adjectives configuration helped users understand
how the low-level parameters affect the design space.

Participants were first given a 20 minute tutorial, where they
were taught how to use the tools present in the design adjec-
tives configuration using a particle system. They were then

given a series of three 10-minute design tasks where they were
instructed to create a font or material according to a descrip-
tion of the design goal. Participants were allowed to finish
their design tweaks at the end of the 10 minute time period, if
they felt that it was necessary.

Participants answered a series of Likert-scale survey questions
between each task, and the interface recorded a log of actions
taken during each task. At the end of the study, participants
answered three forced-choice questions asking them to choose
one of the two configurations for use in general exploration
tasks, directed exploration tasks, and detail design tasks. They
were also allowed to give written feedback at the end of the
study. The study took approximately 60 minutes to complete.

Particle System (50 parameters): Tutorial. A particle sys-
tem simulation run by particles.js [14], an open-source library.
This domain is only used for the tutorial task. The tutorial
consisted of a fully user-driven exploration task, where par-
ticipants were instructed to find a particle system that was
interesting to them using the adjectives configuration while
being taught about the interface capabilities.

Font (26 parameters): Tasks 1 and 3. Participants were
asked to create a “futuristic” font for a made-up networking
conference titled “Future Networks.” Participants designed
their font using the characters contained in the conference
title. The parameters were provided by the Prototypo [31] font
design system, using the "Elzevir" template as the base (Fig-
ure 8-left). Task 1 allowed users to use the design adjectives
configuration, while Task 3 repeated the design task with the
sliders configuration. Under these conditions, we expected
that the repeat task would be easier, as users had previously
worked in the design space.

Material (62 parameters): Task 2. Participants were asked
to make the selected brick texture look more “weathered,
cracked, old, or broken.” The material was created using Sub-
stance3D [40] and rendered using the physically-based shader
in the three.js library [28] (Figure 8-right). This configuration
was used in Task 2.

User Study Results
We draw four main conclusions from analyzing the results of
the user study:

e Adjectives support exploratory design,

e Users prefer to use the adjectives configuration for ex-
ploratory design tasks,

e Adjectives are the most commonly used component of the
adjectives configuration, and

e Adjectives are used for directed exploration in particular.

Adjectives Support Exploratory Design

Participants felt that the design adjectives framework helped
them with exploratory design, in that it was easy to explore the
different design options in the design space, explore variations
of their current design adjective, and the adjectives gener-
ated designs that were consistent with their expectations of
the adjective (Figure 9). While most participants agreed that
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Figure 9. Adjectives Interface Survey Results. Likert plots of the responses to the survey questions about the adjectives interface used in the font design
task (task 1, left) and the material design (task 2, right). Responses are generally consistent between tasks using the adjectives configuration.

the adjective definition was easy to modify, a few disagreed,
possibly indicating that the initial examples provided to the ad-
jective held too much weight. Participants used an average of
23 examples (13 positive, 10 negative) to define the “futuristic”
adjective in Task 1, and 21 examples (11 positive, 10 negative)
to define the “weathered” adjective in Task 2. In contrast to
prior work [26, 12], participants expressed no difficulty in lo-
cating negative examples. This is likely due to the preliminary
random sampler outputting a large number of clearly irrelevant
samples that can easily be marked as negative at the start of
the process.

Participants agreed that the adjectives configuration allowed
them to find designs that they might not have found otherwise.
This suggests that the design suggestion sampling method
for adjectives is effective at providing suggestions that are
different enough from the input examples. Another source
of this variation comes from the global samplers, however,
participants indicated that they found the adjective sampling
to be more useful (median score of 5) to them than the general
random sampling operations (median score of 4) (Table 1).
Analysis of the interface logs shows that users ran 2 global
sampling operations on average and 5 adjective sampling op-
erations.

Participants felt that they were more easily able to explore dif-
ferent variations in the design space with the design adjectives
configuration when compared to the baseline sliders configu-
ration. Plotting the designs explored in the space during Tasks
1 and 3 with a PCA projection along the first two components
shows that users did indeed end up exploring many more dis-
similar designs while using the design adjectives interface
(Figure 10). Some participants noted that some of the designs
found while using the adjectives configuration were interest-
ing but orthogonal to their current design goal and wanted to
use multiple adjectives to keep track of those designs. This
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capability exists in the interface, but was restricted for this
study.

Participants felt that adjectives configuration did not particu-
larly help them understand how individual parameters affect
the design space, however only half of the participants in the
study ended up using the per-parameter controls (Table 1).
Participants were still successful in creating a design that they
liked with the adjectives configuration, indicating that the ad-
jectives configuration can model user preferences accurately
even without the user understanding how individual parame-
ters affect the design.

The Adjectives Configuration is Preferred for Exploratory De-

sign Tasks

Participants appeared to be more engaged with the adjectives
configuration, reporting that they liked working with the adjec-
tives configuration much more than the sliders configuration,
while also spending less time with the sliders configuration
task. Participants took 9.5 minutes to complete the font de-
sign task on average with the adjectives configuration and
6.3 minutes on average with the sliders configuration. The
shorter completion time and the survey results in Figure 11
suggest that while users were able to complete all tasks in the
study, they appeared to be more engaged with the adjectives
configuration, to the point of voluntarily spending as much
time as possible with the adjectives configuration. Some users
expressed a strong dislike for the sliders configuration in writ-
ten feedback, mentioning that “using the sliders was not an
enjoyable experience. While I felt I did not have enough time
with the adjectives interface, I could not wait to be done with
the sliders task.”

Participants were generally able to complete the task to their
satisfaction, although a higher percentage of participants were
dissatisfied with their final results in Task 3. Their dislike of
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Median Rating % Used Avg. Use Time

Task 1
Median Rating % Used Avg. Use Time

Adjective Sampler 5 100 %
Global Samplers 4 100 %
Parameter Highlighting 4 50 %
Parameter Selection 4 40 %
Parameter Extents 4.5 20 %
Mixer 5 50 %

322s 5 100 % 259s
125s 4 90 % 148's
53s 4 50 % 152s
45s 5 80 % S51s
115s 5 60 % 105s
97s 4 50 % 94 s

Table 1. Component Usefulness Scores. Summary of survey feedback regarding the usefulness of each adjectives interface component. Participants
were asked to rate how useful each component was on a five-point scale. The rating column reports the median score from these questions, the “%
Used” column reports the percentage of participants that used the component at least once during the trial, and the “Avg. Use Time” column reports
the average amount of time spent using the component in seconds (see Figure 12 for when each tool was used). Ratings and times are only taken into
account if the participant used the component (validated by the trial’s action log).
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Figure 10. 2D PCA Projections of User Design Sessions. Users tended
to explore a more diverse set of designs while using the design adjectives
configuration. These plots represent designs seen by participant IDs 2, 5,
and 8 during design sessions for Tasks 1 and 3 projected into 2D along
the first two PCA components. Color indicates when a design was seen
during the process, with blue indicating earliest and yellow indicating
latest. The pink outlined point is the final design chosen by the user. The
same embedding is used for all plots.

the sliders configuration was specific to its use for exploratory
design tasks, noting that while the sliders limited the number
of variations they felt they could explore, they did prefer to use
the sliders in the detail design phase. One participant explained
that “the slider interface was nice for fine control (somewhat
slow), while adjectives was kind of fast. I think there could be
a nice workflow going between these two configurations.”

When asked to pick one interface to use for each part of the
design phase in a forced choice comparison, users again indi-
cated a strong preference for using the adjectives configuration
over the sliders configuration for exploratory tasks, with all
participants stating that they would use it for general explo-
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ration (p < 0.01), and all but one participant stating that they
would use it for directed exploration (p < 0.05). For perform-
ing detail-oriented design, a majority of participants (7 out of
10) indicated that the sliders interface was more appropriate
for small, low-level design changes, with only 3 out of 10
users preferring to use the adjectives configuration for that
phase of the design process. This last result is only weakly
significant (p > 0.05).

Adjectives are the Most Commonly Used Component

To better understand which parts of the interface contributed
the most to the participant’s evaluation of the adjectives con-
figuration in Figure 9, each participant rated how useful they
felt each component was, and we compare this data with how
frequently each tool was used in the interface logs. Table 1
summarizes the results of this analysis, listing the per-task
median score, the percentage of users who used the the com-
ponent at least once during a task, and the average amount of
time spent using the tool was during each task. We find that the
adjective sampling was perceived as central to the adjectives
configuration, as every participant used the adjective samplers
at least once and rated it highly, while other framework compo-
nents were seen as useful optional utilities. The bootstrapping
tools (global random and jitter samplers) were also frequently
used, but seen as less useful than the adjective samplers. The
other components were used less frequently than both sam-
plers, but were viewed favorably by the participants that did
use those features.

The per-parameter features were rated highly, but not used
as frequently as the sampling components. Many of these
tools provide additional control over individual sliders, and
some participants may have perceived these as unnecessary,
as the adjectives alone were sufficient to accomplish their
design goals. The usage rate for the per-parameter features
(highlighting, selection, and extents) increased between Task
1 and Task 2. Since Task 2 contained more parameters than
Task 1, many participants chose to perform operations that
limited the number of active parameters (parameter selection).
These tools, selection and viewing extents in particular, may
be more useful as the number of parameters increases.

Adjectives are Used for Directed Exploration

To validate the claim that adjectives are primarily used for the
exploratory phase of the design process, we plot the times at
which participants used each interface component in Tasks
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1 and 2, and for how long, in Figure 12. Each segment of a
timeline marks when a major interface component has been
invoked, and its width indicates the time until the next major
component is used. The major components are the adjective
sampler operations, global samplers (random and jitter), pa-
rameter selection, the mixer, and individual parameter changes
(sliders). With one exception (user 4 in both tasks), the global
samplers are all used first, followed by the adjective samplers,
with a few selection operations sometimes happening before
adjective use.

In both tasks, the activity traces reveal a design process that
is closely aligned with the three conceptual phases of the
design. Users generally performed preliminary design by
using the global samplers, refined their design idea by using
the adjective sampling methods, and often performed detail
work with the individual parameter controls, extents view, or
mixer components at the end. In general, we see usage of
the design adjectives tools where we expected; comprising
the bulk of the design process, used to refine and explore
preliminary concepts. Participants used per-parameter controls
less frequently in Task 1, possibly due to most parameter
configurations outputting valid fonts. In contrast, Task 2’s
material had a larger possibility of outputting invalid designs,
requiring users to use the parameter selection, extents, and
direct controls more frequently.

Speed is Important

Speed is critical in interactive design applications, and the
adjectives configuration is no exception. While the sampling
operation for adjectives completed within a second, the pro-
totype interface required a few second to render the returned
design suggestions. A few users expressed frustration with this
small delay, commenting that “The biggest thing that threw
me off is the rendering time/lag,” and that “it takes a while
to render and thus its harder for me to see the differences
between similar things.” Interfaces implementing a design
adjectives-style framework should ensure that the training and
sampling of adjectives, and rendering of results, completes in
real-time.

Professional Case Study

We asked a professional graphic designer to create a set of
fonts using our implementation of the design adjectives frame-
work. Many of this designer’s projects involve the selection
and editing of a font for a logo or package design. Their typi-
cal workflow involves the selection of a base font, followed
by the generation of a number of design-specific adjustments
to the base font, which are then presented to the client and
further refined based on that feedback. The interface used to
perform these adjustments is typically a glyph editor, where
the font characters are edited directly.

The designer was given the design adjectives interface, five
Prototypo [31] font templates (Antique, Elzevir, Fell, Grotesk,
and Spectral), and a 15-minute tutorial. The font templates
contained 26 parameters controlling different font properties,
without requiring the use of a glyph editor. While the full
Prototypo interface offered glyph-level control in addition to
parameter-level control, re-implementing a glyph editor in our
interface was out of scope for this project. They used the inter-
face unsupervised over the course of one week and created the
15 fonts in Figure 13. When working with the templates, the
designer set out to create distinct fonts within each template.
Each font took an estimated 16 minutes on average to create,
as reported by the designer, and are considered by the designer
to be usable in professional work with a few glyph-specific
tweaks.

Overall, the designer enjoyed working with the tool, specifi-
cally noting that the tool was especially effective at providing
a framework for quick design concepting. Their primary work-
flow when using the tool consisted of creating a new adjective,
then adding one positive (high rated) example, and one nega-
tive (low rated) example to an adjective. The designer would
then perform a “towards” sampling operation, update the cur-
rent design, and repeat the addition of one positive and one
negative example to the adjective. The designer would repeat
this refinement cycle until sampling “towards” stopped return-
ing results. This process converged in three to four cycles and
“almost always produced an adjective that was good enough to
start detailed refinement.” In the instances when this method
was not used, the designer bootstrapped the adjectives by gen-
erating a set of random samples, and then used the mixer
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tool to create examples. The designer noted that the random
samples would often have features that would be considered
unreasonable by most design standards, such as distorted ser-
ifs, and that the implementation may want to impose some
stricter bounds for the parameters in this space.

Analysis of the interface’s recorded logs verify the designer’s
assertions. The logs show that the professional designer typ-
ically followed a usage pattern similar to that of the inter-
mediate designers in Figure 12. They first bootstrapped the
adjectives using the global sampler, ran the adjective sam-
pler a few times, and finished designs with the mixer and
per-parameter tools. This professional liked using the mixer,
and the log shows frequent use of that tool at all parts of the
design process.

One of the limitations of the tools in the designer’s view was
the lack of a sideboard, a panel in the interface that can store
designs unrelated to any current adjectives for later use. To
get around this limitation, the designer created a “sideboard”
adjective, where the scores did not matter, to store these de-
signs. The designer expressed some frustration with the tool’s
parameter selection capabilities, mentioning that it was dif-
ficult to find the controls for preventing a parameter value
from changing during sampling. While this capability exists
in the implementation, it was not presented clearly enough for
the designer to make effective use of it. Fonts created in this
interface could be exported to existing glyph editing tools for
final adjustments, after the design concepts have been created.
Parametric fonts such as those used in this case study already
provide a high-level interface for modifying all of the font
glyphs at once, without resorting to a low-level glyph editor.
Even in this context, the designer felt that the adjectives frame-
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work helped them locate interesting variations much more
quickly than directly manipulating parameters.

Material Design Session

A professional material designer spent a day experimenting
with our implementation, creating and adjective and twenty
representative variations of that adjective for a brick texture
in Figure 14. The adjective (left unnamed by the designer)
used for this design session included 160 labeled examples.
Figure 14 includes visualizations of the axis and towards sam-
pling acceptance criteria, and details an professional’s thought
process regarding how a design gets refined by using sampling
results combined with the mixer interface component. High
resolution images of the created design variations and the pro-
fessional’s process diagrams can be found in the supplemental
material.

DISCUSSION

In this paper, we introduced design adjectives, models of user
intent defined through interactive machine learning, and in-
troduced a software framework that uses design adjectives to
build interfaces that enable interactive guided exploration in
parameterized design spaces. We found that when using tools
built on top of this framework, users were more easily able
to create designs that satisfied their personal objectives. We
hope that the framework, and our domain-agnostic implemen-
tation of its components, serves as an inspiration and baseline
for the creation of new component implementations and new
design tools that can react in real time to the ever changing
preferences of designers as they solve ill-structured design
problems.
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Figure 13. Professionally Created Fonts. 15 fonts created by a professional graphic designer using the design adjectives interface. Fonts are grouped by
which Prototypo template was used to create them, with the designer chosen font name displayed on the left. The template font is shown at the top of

each group.
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Design Variations
Created by sampling and refining designs from the adjective

Figure 14. Professionally Created Materials. A visualization of a professional design session with the adjectives interface. The adjective definition is
visualized by displaying the results of sampling using the Axis acceptance criteria (top). Samples generated by using the Towards criteria produce
designs that are highly rated by the adjective (middle left). These designs can be iterated on by mixing together pairs of sampled designs (middle-right),
where the large design is created from a combination of the two smaller designs on the top and bottom. A set of 20 designs created from this adjective

is shown on the bottom.

Limitations

Our implementation of a design adjective sampler requires at
least one positive example in order for the guided sampler to
run, and creating this initial positive example can be difficult.
The global randomization bootstrapper works well enough
for the design spaces used in the evaluation, but may strug-
gle to provide valid examples in spaces where only a small
number of parameter configurations produce a satisfactory
initial design. The GPR formulation of adjectives permits use
of more complex priors to help shape the adjective function,
but creating these priors may require expert knowledge about
a specific design space. For example, it may be possible to
create classifiers that mark obviously bad designs in a space
(e.g. for a material: overexposed, low contrast, etc.) that can
be used by a bootstrapper to present only designs that pass this
filter.
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We chose to focus on workflows involving a single design
adjective in order to demonstrate that adjectives can represent
design concepts defined by one user. This is an important
baseline to establish before adjectives are used as the basis for
more complex interfaces. It is possible that a user might create
a library of adjectives and wish to use multiple adjectives at
the same time during a design task. Understanding such use
cases was outside the scope of this paper.

Adjectives are only valid for the specific design domain they
are learned on. For example, if an adjective is defined on a
brick material created with Substance3D, the adjective cannot
be used on a brick material that has a different parameteriza-
tion. Since the design adjectives framework only operates on
the low-level parameters, domain transfer of intent cannot be
easily implemented in the current framework. It may be pos-
sible to create transferrable design adjectives if the adjective



has knowledge of the visual properties of the design. This
type of understanding may also enable better per-parameter
identification tools, as the framework would have a way to
recognize what parameters affect specific visual properties.

Future Work

We believe that the design adjectives framework opens excit-
ing avenues for future work. Our approach could be applied to
local editing which would enable a new take on the creation of
complex structured artifacts, e.g., to manipulate the materials
of a large 3D scene. The framework could be extended to
a collaborative environment where multiple users who each
have their own collections of adjectives could combine their
adjectives into a library, creating opportunities to share infor-
mation and combine adjectives. Finally, we also see a lot of
potential between our framework and other design metaphors
like sketching and image-based modeling, that could be used
to create better bootstrappers for a design adjective. We hope
that providing an implementation of this framework will make
it easier to create and experiment with these future interfaces.
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