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Abstract

Many tasks in graphics and vision demand machinery for
converting shapes into representations with sparse sets of pa-
rameters; these representations facilitate rendering, editing,
and storage. When the source data is noisy or ambiguous,
however, artists and engineers often manually construct such
representations, a tedious and potentially time-consuming
process. While advances in deep learning have been success-
fully applied to noisy geometric data, the task of generating
parametric shapes has so far been difficult for these methods.
Hence, we propose a new framework for predicting paramet-
ric shape primitives using deep learning. We use distance
fields to transition between shape parameters like control
points and input data on a raster grid. We demonstrate effi-
cacy on 2D and 3D tasks, including font vectorization and
surface abstraction.

1. Introduction
The creation, modification, and rendering of vector graph-

ics and parametric shapes is a fundamental problem of in-
terest to engineers, artists, animators, and designers. Such
representations offer distinct advantages over other models.
By expressing a shape as a collection of primitives, we are
able to apply transformations easily, to identify correspon-
dences, and to render at arbitrary resolution, all while having
to store only a sparse representation.

It is often useful to generate a parametric model from
data that does not directly correspond to the target geometry
and contains imperfections or missing parts. This can be
an artifact of noise, corruption, or human-generated input;
often, an artist intends to create a precise geometric object
but produces one that is “sketchy” and ambiguous. Hence,
we turn to machine learning methods, which have shown
success in inferring structure from noisy data.

Convolutional neural networks (CNNs) achieve state-
of-the-art results in vision tasks such as image classifica-
tion [23], segmentation [27], and image-to-image transla-
tion [20]. CNNs, however, operate on raster representations.

Grid structure is fundamentally built into convolution as a
mechanism for information to travel between layers of a
deep network. This structure is leveraged during training
to optimize performance on a GPU. Recent deep learning
pipelines that output vector shape primitives [40] have been
significantly less successful than pipelines for analogous
tasks on raster images or voxelized volumes.

A challenge when applying deep learning to parametric
geometry is the combination of Eulerian and Lagrangian
representations. CNNs process data in an Eulerian fashion
in that they apply fixed operations to a dense grid of values;
Eulerian shape representations like indicator functions come
as values on a fixed grid. Parametric shapes, on the other
hand, use sparse sets of parameters like control points to
express geometry. In contrast to stationary Eulerian grid
points, this Lagrangian representation moves with the shape.
Navigating the transition from Eulerian to Lagrangian geom-
etry is a key step in any learning pipeline for the problems
above, a task we consider in detail.

We propose a deep learning framework for predicting
parametric shapes, addressing the aforementioned issues. By
analytically computing a distance field to the primitives at
each training iteration, we formulate an Eulerian version of
the Chamfer distance, a common metric for geometric simi-
larity. Our metric can be computed efficiently and does not
require sampling points from the predicted or target shapes.
Beyond accelerating evaluation of existing loss functions,
our distance field enables alternative loss functions that are
sensitive to specific geometric qualities like alignment.

We apply our new framework in the 2D context to a
diverse dataset of fonts. We train a network that takes in
a raster image of a glyph and outputs a representation as
a collection of Bézier curves. This maps glyphs onto a
common set of parameters that can be traversed intuitively.
We use this embedding for font exploration and retrieval,
correspondence, and unsupervised interpolation.

We also show that our approach works in 3D. With sur-
face primitives in place of curves, we perform volumetric
abstraction on ShapeNet [8], inputting an image or a distance
field and outputting parametric primitives that approximate
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the model. This output can be rendered at any resolution or
converted to a mesh; it also can be used for segmentation.
Contributions. We present a technique for predicting para-
metric shapes from 2D and 3D raster data, including:
• a general distance field loss function allowing definition

of several losses based on a common formulation;
• application to 2D font glyph vectorization, with applica-

tion to correspondence, exploration, retrieval, and repair;
• application to 3D surface abstraction, with results for

different primitives and constructive solid geometry (CSG)
as well as application to segmentation.

2. Related Work
Font exploration and manipulation. Designing or even
finding a font can be tedious using generic vector graphics
tools. Certain geometric features distinguish letters from one
another across fonts, while others distinguish fonts from one
another. Due to these difficulties and the presence of large
font datasets, font exploration, design, and retrieval have
emerged as challenging problems in graphics and learning.

Previous exploration methods categorize and organize
fonts via crowdsourced attributes [29] or embed fonts on
a manifold using purely geometric features [7, 3]. Instead,
we leverage deep vectorization to automatically generate a
sparse representation for each glyph. This enables explo-
ration on the basis of general shape rather than fine detail.

Automatic font generation methods usually fall into two
categories. Rule-based methods [39, 32] use engineered
decomposition and reassembly of glyphs into parts. Deep
learning approaches [1, 42] produce raster images, with
limited resolution and potential for image-based artifacts,
making them unfit for use as glyphs. We apply our method
to edit existing fonts while retaining vector structure and
demonstrate vectorization of glyphs from partial and noisy
data, i.e., raster images from a generative model.

Parametric shape collections. As the number of publicly-
available 3D models grows, methods for organizing, classify-
ing, and exploring models become crucial. Many approaches
decompose models into modular parametric components,
commonly relying on prespecified templates or labeled col-
lections of specific parts [21, 36, 30]. Such shape collections
prove useful in domain-specific applications in design and
manufacturing [34, 41]. Our deep learning pipeline allows
generation of parametric shapes to perform these tasks. It
works quickly on new inputs at test time and is generic,
handling a variety of modalities without supervision and
producing different output types.

Deep 3D reconstruction. Combining multiple viewpoints
to reconstruct 3D geometry is crucial in applications like
robotics and autonomous driving [15, 35, 38]. Even more

challenging is inference of 3D structure from one input.
Recent deep networks can produce point clouds or voxel
occupancy grids given a single image [14, 10], but their
output suffers from fixed resolution.

Learning signed distance fields defined on a voxel grid
[12, 37] or directly [31] allows high-resolution rendering
but requires surface extraction; this representation is neither
sparse nor modular. Liao et al. address the rendering issue by
incorporating marching cubes into a differentiable pipeline,
but the lack of sparsity remains problematic, and predicted
shapes are still on a voxel grid [25]

Parametric 3D shapes offer a sparse, non-voxelized so-
lution. Methods for converting point clouds to geometric
primitives achieve high-quality results but require supervi-
sion, either relying on existing data labelled with primitives
[24, 28] or prescribed templates [16]. Tulsiani et al. output
cuboids but are limited in output type [40]. Groueix et al.
output primitives at any resolution, but their primitives are
not naturally parameterized or sparsely represented [17].

3. Preliminaries
Let A,B ⊂ Rn be two smooth (measurable) shapes. Let

X and Y be two point sets sampled uniformly from A and
B. The directed Chamfer distance between X and Y is

Chdir(X,Y ) =
∑
x∈X

min
y∈Y

d(x, y), (1)

and the symmetric Chamfer distance is defined as

Ch(X,Y ) = Chdir(X,Y ) + Chdir(Y,X). (2)

It was proposed for computational applications in [6] and has
been used as a loss function assessing similarity of a learned
shape to ground truth in deep learning [40, 14, 26, 17].

We also define variational directed Chamfer distance

Chvar
dir (A,B) =

∫
A

inf
y∈B
‖x− y‖2 dx, (3)

with variational symmetric Chamfer distance Ch(A,B)var

defined analogously, extending (1) and (2) to smooth objects.
We use this to relate our proposed loss to Chamfer distance.

If points are sampled uniformly, under relatively weak
assumptions about A and B, Ch(X,Y )→ 0 iff A = B, as
the sizes of the sampled point sets grow. Thus, it is a reason-
able shape matching metric. Chamfer distance, however, has
fundamental drawbacks:
• It is highly dependent on the sampled points and sensitive

to non-uniform sampling, as in Figure 1a.
• It is slow to compute. For each x sampled fromA, it is nec-

essary to find the closest y sampled from B, a quadratic-
time operation when implemented naı̈vely. Efficient struc-
tures like k-d trees are not well-suited to GPUs.

2



10 points

10 points

(a) Sampling (b) Alignment

Figure 1: Drawbacks of Chamfer distance. In (a), sampling
from Bèzier curve B (blue) by uniformly sampling in pa-
rameter space yields disproportionately many points at the
high-curvature area, resulting in a low Chamfer distance to
the segments of A (orange) despite geometric dissimilarity.
In (b), two sets of nearly-orthogonal line segments have
near-zero Chamfer distance despite misaligned normals.

• It is agnostic to normal alignment. As in Figure 1b, the
Chamfer distance between a dense set of vertical lines and
a dense set of horizontal lines approaches zero.

Our method does not suffer from these disadvantages.

4. Method
Beyond architectures for particular tasks, we introduce a

framework for formulating loss functions suitable for learn-
ing placement of parametric shapes in 2D and 3D; our formu-
lation not only encapsulates Chamfer distance—and suggests
a means of accelerating its computation—but also leads to
stronger loss functions that improve performance on a vari-
ety of tasks. We start by defining a general loss on distance
fields and propose three specific losses.

4.1. General Distance Field Loss

Given A,B ⊆ Rn, let dA,dB : Rn → R+ measure
distance from each point in Rn to A or B, respectively,
dA(x) := infy∈A ‖x−y‖2. In our experiments, n ∈ {2, 3}.
Let S ⊆ Rn be a bounded set with A,B ⊆ S. We define the
general distance field loss as

LΨ[A,B] =

∫
x∈S

ΨA,B(x) dV (x), (4)

for some measure of discrepancy Ψ. Note that we represent
A and B only by their respective distance functions, and the
loss is computed over S.

Let Φ ∈ Rp be a collection of parameters defining a
shape. For instance, a parametric shape may consist of
Bézier curves, in which case Φ contains a list of control
points. Let dΦ : Rn → R+ be the distance to the shape
defined by Φ. Given a target object T with distance function
dT , we formulate fitting a parametric shape to approximate
T w.r.t. Ψ as minimizing

fΨ(Φ) = LΨ[Φ, T ]. (5)

For optimal shape parameters, Φ̂ := arg minΦ fΨ(Φ). We
propose three discrepancy measures, providing loss func-
tions that capture different geometric features.

Bézier curves

3D primitives

B

d

∇d

χ(d)

one -hot
vector

128x128
image

128x128
image

64x64x64
distance �eld

conv. + res.
blocks

fully
connected

template
loss alignment

loss

global
loss

surface
loss

Figure 2: An overview of our pipelines—font vectorization
(green) and volumetric primitive prediction (orange).

4.2. Surface Loss

We define surface discrepancy to be

Ψsurf
A,B(x)=δ{ker dA}(x)dB(x)+δ{ker dB}(x)dA(x) (6)

where δ{X} is the Dirac delta defined uniformly on X , and
ker f denotes the zero level-set of f . Ψsurf is only nonzero
where the shapes do not match, making it sensitive to fine
details in the matching:

Proposition 1 The symmetric variational Chamfer distance
between A,B ⊂ Rn equals the corresponding surface loss
between, i.e., Chvar(A,B) = LΨsurf

A,B
.

Unlike the Chamfer distance, the discrete version of our
surface loss can be approximated efficiently on GPU without
sampling points from either the parametric or target shape.

4.3. Global Loss

We define global discrepancy to be

Ψglob
A,B(x) = |dA(x)− dB(x)|2. (7)

Minimizing LΨglob
A,B

is equivalent to minimizing the L2 dis-

tance between dA and dB . fΨglob(Φ) increases quadratically
in distance between the shape defined by Φ and the target
shape. Thus, minimizing fΨglob encourages global alignment,
quickly placing the parametric primitives close to the target
and accelerating convergence.

4.4. Normal Alignment Loss

We define normal alignment discrepancy to be

Ψalign
A,B(x) = ‖∇ d2

A(x)−∇ d2
B(x)‖22. (8)

Minimizing fΨalign aligns normals of the predicted primitives
to those of the target. Following Figure 1b, if A contains
dense vertical lines and B contains horizontal lines, LΨalign

A,B

is large while Ch(A,B) ≈ 0.

4.5. Final Loss Function

The general distance field loss and the specific discrep-
ancy measures proposed thus far are differentiable w.r.t the
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shape parameters Φ, as long as the distance function dΦ is
differentible w.r.t. Φ. Thus, they are well-suited to be opti-
mized by a deep network that predicts parametric shapes. To
discretize, we simply redefine (4) to be

LΨ[A,B] =
∑
x∈G

ΨA,B(x), (9)

where G is a 2D or 3D grid. Thus, we minimize a weighted
sum of fΨ(Φ) across the Ψ defined in §4:

Ψ = Ψglob + αsurfΨsurf + αalignΨalign. (10)

We use αsurf = 1 and αalign = 0.001 across experiments. In
3D experiments, we decay the global loss term exponentially
by a factor 0.5 every 500 iterations.

4.6. Network architecture

The network takes a 128×128 image or a 64×64×64
distance field as input and outputs a parametric shape. We
use the same architecture for 2D and 3D, following advances
in network architecture design. Let c5s2-64 be a convolu-
tional layer with 64 filters of 5×5 evaluated at stride 2, Rx7
be 7 residual blocks [19, 18] of size 3×3 (keeping filter count
constant), and fc-512 be a fully-connected layer. To in-
crease receptive field without dramatically increasing param-
eter count, we also use dilated convolution [43, 9] in residual
blocks. We use ELU [11] after all linear layers except the
last. We use LayerNorm [2] after each conv and residual
layer, except the first. Our encoder architecture is: c5s1-32,
c3s2-64, c3s1-64, c3s2-128, c3s1-128, c3s1-128,

c3s2-256, Rx7, c3s2-256, Rx1, c3s2-256, Rx1,

fc-512, fc-N, where N is the dimension of our target
parameterization. Our pipeline is illustrated in Figure 2. We
train each network on a single Tesla K80 GPU, using Adam
[22] with learning rate 10−4 and batch size 16.

5. 2D: Font Exploration and Manipulation
We demonstrate our method in 2D for font glyph vec-

torization. Given a raster image of a glyph, our network
outputs control points that form a collection of quadratic
Bézier curves approximating its outline. When used on a
glyph of a simple font (non-decorative, e.g., sans-serif), our
method recovers nearly the exact original vector represen-
tation. From a decorative glyph with fine-grained detail,
however, we recover a good approximation of the glyph’s
shape using relatively few Bézier primitives and a consistent
structure. This process can be interpreted as projection onto
a common sparse latent space of control points.

We first describe our choice of primitives as well as the
computation of their distance fields. We introduce a template-
based approach to allow our network to better handle multi-
modal data (different letters) and test several applications.

5.1. Approach

5.1.1 Primitives

We wish to use a 2D parametric shape primitive that is sparse
and expressive and admits an analytic distance field. Our
choice satisfying these requirements is the quadratic Bèzier
curve, which we will refer to as curve, parameterized by
control points a, b, c ∈ R2 and defined by B(t) = (1 −
t)2a + 2(1 − t)tb + t2c, for 0 ≤ t ≤ 1. We represent
2D shapes as the union of n curves parameterized by Φ =
{a1, b1, c1, . . . , an, bn, cn}, where ai, ci, bi ∈ R2.

Proposition 2 Given a curve B parameterized by a, b, c ∈
R2 and a point p ∈ R2, the t̂ ∈ R such that B(t̂) is the
closest point on the curve to p satisfies the following:

〈B,B〉t̂3 + 3〈A,B〉t̂2 + (2〈A,A〉+ 〈B, a− p〉)t̂
+ 〈A, a− p〉 = 0,

(11)

where A = b− a and B = c− 2b+ a.

Thus, evaluating the distance to a single curve d(p,Bi) =
‖p−Bi(t̂)‖2 requires finding the roots of a cubic [33], which
we can do analytically in constant time. To compute distance
to the union of the curves, we take a minimum:

dΦ(p) =
n

min
i=1

dBi
(p). (12)

In addition to the control points, we predict a stroke thick-
ness parameter for each curve. We use this parameter when
computing the loss by “lifting” the predicted distance field
and, consequently, thickening the curve—if a curve B has
stroke thickness s, we set dsB(p) = min(dB(p) − s, 0).
While we do not visualize stroke thickness in our experi-
ments, this approach allows the network to thicken curves to
better match fine-grained decorative details (Figure 4). This
thickening is a simple and natural operation in our distance
field representation; note that sampling-based methods do
not provide a natural way to “thicken” the surfaces.

5.1.2 Templates

Our training procedure is unsupervised, as we do not have
ground truth curve annotations. To better handle the multi-
modal nature of our data without a separate network for each
letter, we label each training example with its letter, passed
as additional input to our network. This allows us to condi-
tion based on input class by concatenating a 26-dimensional
one-hot vector to the input of each convolutional layer (after
replicating to the appropriate spatial dimensions), a common
technique for conditioning [44].

We choose a “standard” Bèzier curve representation for
each letter, which captures that letter’s distinctive geometric
and topological features, by designing 26 templates from
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(a) Plain font glyphs (b) Decorative font glyphs
Figure 3: Vectorization of various glyphs. For each we show the raster input (top left, gray) along with the vectorization
(colored curves) superimposed. When the input has simple structure (a), we recover an accurate vectorization. For fonts with
decorative details (b), our method places template curves to capture overall structure. Results are taken from the test dataset.

Figure 4: Glyphs with corresponding predicted curves ren-
dered with predicted stroke thickness. The network thickens
curves of to account for stylistic details.

(a) Letter templates (b) Simple templates

Figure 5: Font glyph templates. These determine the connec-
tivity and initialize the placement of the predicted curves.

a shared set of control points output by our network. A
template of class ` ∈ {A, . . . ,Z} is a collection of points
T` = {p1, . . . , pn} ⊆ R2n with corresponding connectivity
determining how points in T` are used to define curves. Since
we predict glyph boundaries, our final curves form closed
loops, allowing us to reuse endpoints.

For extracting glyph boundaries from uppercase English
letters, there are three connectivity types—one loop (e.g., C),
two loops (e.g., A), and three loops (B). We design templates
such that the first loop has 15 curves and the other loops have
4 curves each. Our templates are shown in Figure 5. We will
show that while letter templates (a) are better able to special-
ize to the boundaries of each glyph, we still achieve good
results for most letters with the simple templates (b), which
also allow for establishing cross-glyph correspondences.

We use predefined templates together with our labeling of
each training example for two purposes. First, connectivity
is used to compute curve control points from the network
output. Second, they provide a template loss

Ltemplate(c, x) = αtemplateγ(t/s)‖Tc − ht(x)‖22, (13)

where s ∈ Z+, γ ∈ (0, 1), and t is the current iteration. This
serves to initialize the network output, such that a training
example of class ` initially maps to template letter `; as
the loss decays during training, it acts as a regularizer. We
choose αtemplate = 1, γ = 0.7, and s = 300.

Figure 6: Nearest neighbors for a glyph in curve space,
sorted by proximity. The query glyph is in orange.

5.2. Experiments

We train our network on the 26 uppercase English letters
extracted from nearly 10,000 fonts. The input is a raster
image of a letter, and the target distance field to the boundary
of the original vector representation is precomputed.

5.2.1 Vectorization

For any font glyph, our method generates a sparse vector
representation, which robustly and accurately describes the
glyph’s structure while ignoring decorative and noisy details.
For simple fonts comprised of few strokes, our representation
is a nearly perfect vectorization, as in Figure 3a.

For glyphs from decorative fonts, our method produces a
meaningful representation. In such cases, a true vectorization
would contain many curves with a large number of connected
components. Our network places the sparse curve template
to best capture the glyph’s structure, as in Figure 3b.

Our method preserves semantic correspondences in our
templates. The same curve is consistently used for the bound-
ary of, e.g., the top of an I. These correspondences persist
across letters for both letter templates and simple templates—
see for example the E and F glyphs in Figure 3a and 3b and
“simple templates” in Figure 12.

We demonstrate robustness in Figure 8 by quantizing our
loss values and visualizing the number of examples for each
value. Outliers corresponding to higher losses are generally
caused by noisy data—they are either not uppercase English
letters or have fundamentally uncommon structure.
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Figure 7: Interpolating between fonts in curve space. The
start and end are shown in orange and blue, resp., and nearest-
neighbor glyphs to linear interpolants are shown in order.

Figure 8: Number of examples per quantized loss value. We
visualize the input and predicted curves for several outliers.

5.2.2 Retrieval and Exploration

Our sparse representation can be used to explore the space
of glyphs, useful for artists and designers. By treating the
control points as a metric space, we can perform nearest-
neighbor lookups to retrieve fonts using Euclidean distance.

In Figure 6, for each query, we compute its curve rep-
resentation and retrieve seven nearest neighbors in curve
space. Because our representation uses geometric structure,
we find fonts that are similar structurally, despite decorative
and stylistic differences.

We can also consider a path in curve space starting at the
curves for one glyph and ending at those for another. By sam-
pling nearest neighbors along this trajectory, we interpolate
between glyphs. As in Figure 7, this produces meaningful
collections of fonts for the same letter and reasonable results
when the start and end glyphs are different letters. Additional
results are available in the supplementary material.

Nearest-neighbor lookups in curve space also can help
find a font matching desired geometric characteristics. A
possible workflow is in Figure 9—through incremental re-
finements of the curves the user can quickly find a font.

5.2.3 Style and Structure Mixing

Our sparse curve representation describes geometric struc-
ture, ignoring stylistic elements (e.g., texture, decorative
details). We leverage this to warp a glyph with desired style
to have a target structure of another glyph (Figure 10).

We first generate the sparse curve representation for
source and target glyphs. Since our representation uses the

Figure 9: User-guided font exploration. At each edit, the
nearest-neighbor glyph is displayed on the bottom. This lets
the user explore the dataset through geometric refinements.

structure

style

Figure 10: Mixing of style (columns) and structure (rows)
of the A glyph from different fonts. We deform each starting
glyph (orange) into the structure of each target glyph (blue).

same set of curves, we can estimate dense correspondences
and use them to warp original vectors of source glyph to
conform to the shape of the target. For each point p on the
source, we find the closest point q on the its sparse curve
representation. We then compute the translation from q to
the corresponding point on the target glyph’s sparse repre-
sentation and apply this translation to p.

5.2.4 Repair

Our system introduces a strong prior on glyph shape, al-
lowing us to robustly handle noisy input. In [1], a gen-
erative adversarial network (GAN) generates new glyphs
based on samples. The outputs, however, are raster images,
often with noise and missing parts. Figure 11 shows how
our method can simultaneously vectorize and repair GAN-
generated glyphs. Compared to a vectorization tool like
Adobe Illustrator Live Trace, we infer missing data to rea-
sonably fit the template. This post-processing step makes
the glyphs from generative models usable starting points for
font design.

5.2.5 Comparison and Ablation Study

We show a series of experiments that demonstrate the advan-
tages of our loss over standard Chamfer distance as well as
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GAN-generated Adobe IllustratorOurs Our (�lled) GAN-generated Adobe IllustratorOurs Our (�lled)

Figure 11: Vectorization of GAN-generated fonts from [1].

Loss type Sec/it Average error
Full model (ours) 1.119 0.748

No global term (ours) 1.111 0.817
No surface term (ours) 1.109 0.761

No alignment term (ours) 1.118 0.786
Simple templates (ours) 1.127 0.789

Chamfer 1.950 0.910

Table 1: Comparison between subsets of our full loss as well
as standard Chamfer distance. Average error is Chamfer
distance (in pixels on a 128×128 image) between predicted
curves and ground truth, with points sampled uniformly. This
demonstrates advantages of our loss over Chamfer distance
and shows how each loss term contributes to the results.

the contributions of each term in our loss. We demonstrate
that while having 26 unique templates helps achieve better
results, it is not crucial—we evaluate a network trained with
three “simple templates” (Figure 5b), which capture the three
topology classes of our data.

Table 1 shows seconds per iteration for our full distance
field loss, our loss without each of its three terms and with
simple templates, and Chamfer loss. Training using our loss
is nearly twice as fast as Chamfer per iteration. Moreover,
each of our loss terms adds ≤0.1 seconds. In these experi-
ments, for training with the distance field function we use the
same parameters as above, and for Chamfer loss, we use the
same training procedure (hyperparameters, templates, batch
size), sampling 5,000 points from the source and target ge-
ometry. We choose the highest possible value for which the
sampled point pairwise distance matrix fits in GPU memory.

We also evaluate on 20 sans-serif fonts, computing Cham-
fer distance between our predicted curves and ground truth
geometry, sampling uniformly (average error in Table 1).
Uniform sampling is a computationally-expensive and non-
differentiable procedure only for evaluation a posteriori—
not suitable for training. While it does not correct all of the
Chamfer distance’s shortcomings, we use it as a baseline to
evaluate quality. We limit to sans-serif fonts since we do not
expect to faithfully recover local geometry. We see our full
loss outperforms Chamfer loss, and all three loss terms are

No global No surface No alignment Simple templates ChamferInput Full model

Figure 12: Comparisons to missing terms and Chamfer.

necessary. Here, all models are trained for 35,000 iterations.
Figure 12 shows qualitative results on test set glyphs; see
supplementary material for additional results.

The global loss term strongly favors rough similarity be-
tween predicted and targeted geometry, helping training con-
verge more quickly (see supplementary material Figure 18).

6. 3D: Volumetric Primitive Prediction
We reconstruct 3D surfaces out of various primitives,

which allow our model to be expressive, sparse, and abstract.

6.1. Approach

Our first primitive is a cuboid, parameterized by {b, t, r},
where b = (w, h, d), t ∈ R3 and r ∈ S4 a quaternion, i.e., an
origin-centered (hollow) rectangular prism with dimensions
2b to which we apply rotation r and then translation t.

Proposition 3 Let C be a cuboid with parameters {b, t, r}
and p ∈ R3 a point. Let p′ = r−1(p−t)r using the Hamilton
product. Then, the signed distance between p and C is

d(p, C) = ‖max(d, 0)‖2+min(max(dx, dy, dz), 0), (14)

where d = (|p′x|, |p′y|, |p′z|)− b and vx, vy , vz denote the x-,
y-, and z-coordinates, respectively, of vector v.

Our second primitive is a sphere, parameterized by its center
c ∈ R3 and radius r ∈ R. We compute signed distance to
the sphere S via the expression d(p, S) = ‖p− c‖2 − r.

Since these distances are signed, we can compute the
distance to the union of n primitives as in the 2D case, by
taking a minimum over the individual primitive distances.
Similarly, we can perform other boolean operations, e.g.,
difference. The result is, again, a signed distance function,
and so we take its absolute value before computing losses.
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(a) ShapeNet chairs

(b) ShapeNet airplanes

(c) Shape COSEG chairs

Figure 13: Cuboid shape abstractions on test set inputs. In
(a) and (b), we show ShapeNet chairs and airplanes. In (c),
we show Shape COSEG chair segmentation. We show each
input model (left) next to the cuboid representation (right).

6.2. Experiments

We train on the airplane and chair categories of ShapeNet
[8] using distance fields from [12]. The input is a distance
field. Hence, our method is self-supervised: The distance
field is the only information needed to compute the loss.
Additional results are available in supplementary material.

Surface abstraction. Figure 13 shows results of training
shape-specific networks to build abstractions over chairs and
airplanes from 64×64×64 distance fields. Each network
outputs 16 cuboids. We discard small cuboids with high
overlap as in [40]. The resulting abstractions capture high-
level structures of the input.

Segmentation. Because we place cuboids in a consistent
way, we can use them for segmentation. Following [40],
we demonstrate on the COSEG chair dataset. We first label
each cuboid predicted by our network (trained on ShapeNet
chairs) with one of the three segmentation classes in COSEG
(seat, back, legs). Then, we generate a cuboid decomposition
of each chair mesh in the dataset and segment by labelling
each face according to its nearest cuboid (Figure 13c). We
achieve a mean accuracy of 94.6%, exceeding the 89.0%
accuracy reported by [40].

Single view reconstruction. In Figure 14, we show results
of a network that takes as input a ShapeNet model rendering
and outputs parameters for the union of four cuboids minus
the union of four spheres. We see that for inputs that align
well with this template, the network produces good results.

Figure 14: Single view reconstruction using different primi-
tives and boolean operations.

It is not straightforward to achieve unsupervised CSG-style
predictions using sampling-based Chamfer distance loss.

7. Conclusion

Representation is a key theme in deep learning—and ma-
chine learning more broadly—applied to geometry. Assorted
means of communicating a shape to and from a deep net-
work present varying tradeoffs between efficiency, quality,
and applicability. While considerable effort has been put
into choosing representations for certain tasks, the tasks we
consider have fixed representations for the input and output:
They take in a shape as a function on a grid and output a
sparse set of parameters. Using distance fields and derived
functions as intermediate representations is natural and effec-
tive, not only performing well empirically but also providing
a simple way to describe geometric loss functions through
different discrepancies Ψ.

Our learning procedure is applicable to many additional
tasks. A natural next step is to incorporate our network
into more complex pipelines for tasks like rasterization of
complex drawings [4], for which the output of a learning
procedure needs to be combined with classical techniques
to ensure smooth, topologically valid output. A challenging
direction might be to incorporate user guidance into train-
ing or evaluation, developing the algorithm as a partner in
shape prediction or reconstruction rather than generating a
deterministic output.

Our experiments suggest several extensions for future
work. The key drawback of our approach is the requirement
of closed-form distances for the primitives. While there
are many primitives that could be incorporated this way, a
fruitful direction might be to alleviate this requirement, e.g.
by including flexible implicit primitives like metaballs [5].
We could also incorporate more boolean operations into our
pipeline, which easily supports them using algebraic oper-
ations on signed distances, in analogy to the CAD pipeline
to generate complex topologies and geometries with few
primitives. The combinatorial problem of determining the
best sequence of boolean operations for a given input would
be particularly challenging even for clean data [13]. Finally,
it may be possible to incorporate our network into generative
algorithms to create new unseen shapes.
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Figure 15: Glyph nearest neighbors in curve space.

Figure 16: Interpolations between fonts in curve space.
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Figure 17: Distance field loss comparisons.

Figure 18: Local loss (smoothed) over the first 4,000 iterations of training with and without global loss in the objective function.
The global loss term results in faster convergence.
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Figure 19: Cuboid reconstructions of ShapeNet chairs.
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Figure 20: Cuboid reconstructions of ShapeNet airplanes.
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Figure 21: Cuboid segmentation of Shape COSEG chairs.
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