
DATA-DRIVEN TOOLS

FOR SCENE MODELING

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Matthew Fisher

May 2013

Abstract

Detailed digital environments are crucial to achieving a sense of immersion in video

games, virtual worlds, and cinema. The modeling tools currently used to create these

environments rely heavily on single-object modeling: designers must repeatedly search

for, place, align, and scale each new object in a scene that may contain thousands of

models. This style of scene design is enabled by the large collections of 3D models

which are becoming available on the web. While these databases make it possible

for designers to incorporate existing content into new scenes, the process can be slow

and tedious: the rate at which we can envision new content greatly exceeds the rate

at which we can realize these imagined constructs as digital creations.

In this dissertation, we aim to alleviate this bottleneck by developing tools that

accelerate the modeling of 3D scenes. We rely upon a data-driven approach, where

we learn common scene modeling design patterns from examples of 3D environments.

We show which properties of scene databases such as Google 3D Warehouse are most

important for data-driven tasks, and how to transform existing scene databases into a

form that is amenable to pattern learning. We also describe a custom scene modeling

program which serves as a testbed for the modeling tools we develop, and which we

use to create a curated corpus of scenes that enable the development of powerful

modeling tools.

Our tools require the ability to compare arrangements of objects. We present

several techniques to do so, including kernel density estimation and graph kernels,

and show how these approaches can be applied to produce practical modeling tools.

We use this machinery to support basic modeling operations such as searching for

iv

or orienting single models. We show how to use a corpus of 3D scenes to automati-

cally categorizing and aligning collections of objects by group objects into contextual

categories. Finally, we combine these contextual categories and our arrangement

comparison algorithm to enable example-based 3D scene synthesis, where the artist

provides a small number of examples and we generate a diverse and plausible set of

similar scenes. All of the methods we develop use a data-driven approach in order to

enable the rapid construction of large virtual environments without the need for an

artist to try and specify the “rules of design” for each possible domain.

v

Acknowledgments

I am grateful for financial support from the Fannie and John Hertz Foundation, which

provided immense freedom in pursuing novel research directions. Through the Hertz

Foundation I have met some of the most innovative and intelligent researchers whose

broad areas of expertise continuously push me to find new ways to connect my work

to a wider audience. Several of my projects were also generously supported by the

Intel Science and Technology Center for Visual Computing.

I would like to thank my amazing advisor Pat Hanrahan for supporting me and

my research group through our diverse and sometimes risky research directions. Pat’s

advising style is unique and his lab cultivates a style of research that continuously

makes advances in the most unexpected areas. Pat also connected our group with

Tom Funkhouser at Princeton who continues to be an invaluable collaborator.

Scott Klemmer and Barbara Tversky both generously agreed to read drafts of this

thesis and their contrasting backgrounds have contributed greatly to its structure and

style. Scott has always encouraged me to think very cautiously about who might use

the technology we develop and why, and my group is indebted to Barbara for provided

us with a strong psychological basis for our work.

In high school, Mary Whitton provided me with my first introduction to the

research project at the virtual reality lab at UNC Chapel Hill. My undergraduate

advisors Mathieu Desbrun and Peter Schroeder were also vital to my development as

a researcher and continue to be important sounding boards for my career and research

directions.

All of my work has been presented at the SIGGRAPH and SIGGRAPH Asia

conferences, and I am grateful to the sometimes exhausting but always extensive and

vi

rewarding reviewers who make these journals and conferences such a powerful force

in the graphics research community.

Finally, my most important thank you goes out to Mom, Dad, Megan, and Max

for their love and support.

vii

Contents

Abstract iv

Acknowledgments vi

1 Introduction 1

1.1 Virtual Worlds . 2

1.2 The Basic Scene Modeling Pipeline 4

1.2.1 3D Model Collections . 4

1.2.2 Modeling Interface . 5

1.3 Modeling Tools . 7

1.4 Comparing Arrangements . 8

1.5 Dissertation Road Map . 9

2 Datasets 11

2.1 Ideal Examples . 11

2.2 Google 3D Warehouse . 13

2.3 Scene Processing . 14

2.3.1 Segmentation . 15

2.3.2 Tagging . 17

2.3.3 Summary . 18

2.4 Scene Studio . 19

3 Model Comparison 22

3.1 Attribute Lists . 23

viii

3.2 Comparing Text . 24

3.3 Comparing Geometry . 25

3.4 Comparing Materials . 27

3.5 Model Kernel . 28

4 A Visual Memex for Model Search 29

4.1 Spatial Context in Computer Vision 31

4.2 Context Search Algorithm . 32

4.2.1 Observations . 33

4.2.2 Spatial Relationships . 34

4.2.3 Object Similarity . 35

4.2.4 Model Ranking . 35

4.3 Results . 38

4.3.1 Context Search vs. Keyword Search 38

4.3.2 Adapting to Context . 38

4.3.3 Multiple Supporting Objects 41

4.3.4 User Evaluation . 41

4.3.5 Failure Cases . 44

4.4 Chapter Summary . 45

5 Graph Kernels in Scene Modeling 46

5.1 Previous Work . 48

5.1.1 Scene Comparison . 48

5.1.2 Graph Kernels . 49

5.1.3 Spatial Relationships . 50

5.2 Representing Scenes as Graphs . 51

5.3 Graph Comparison . 52

5.3.1 Node Kernel . 54

5.3.2 Edge Kernel . 54

5.3.3 Graph Kernel . 54

5.3.4 Algorithm Details . 57

5.4 Dataset . 60

ix

5.5 Tools . 61

5.5.1 Relevance Feedback . 61

5.5.2 Find Similar Scenes . 64

5.5.3 Context-based Model Search 65

5.5.4 Performance . 68

5.6 Chapter Summary . 69

6 A Generative Model for 3D Scenes 70

6.1 Introduction . 70

6.2 Related Work . 73

6.3 Approach . 75

6.4 Contextual Categories . 77

6.5 Learning Mixed Models . 81

6.6 Occurrence Model . 83

6.6.1 Object Distribution . 83

6.6.2 Parent Support . 86

6.6.3 Final Model . 86

6.7 Arrangement Model . 86

6.7.1 Spatial Placement . 87

6.7.2 Surface Placement . 89

6.7.3 Final Model . 90

6.8 Synthesis . 91

6.8.1 Static Support Hierarchy . 91

6.8.2 Object Layout . 92

6.9 Results and Evaluation . 94

6.9.1 Synthesis Results . 94

6.9.2 Human Evaluation . 95

6.9.3 Controllable Synthesis . 98

6.10 Chapter Summary . 98

7 Discussion 101

7.1 Data-driven vs. Rule-based Systems 102

x

7.2 Weaknesses of Data-driven Scene Modeling 103

7.3 Scene Modeling Software . 104

7.4 Future Work . 105

8 Conclusion 107

Bibliography 110

xi

List of Tables

2.1 Database snapshot . 18

5.1 A list of spatial primitives used to study how humans reason about

spatial relationships . 50

5.2 Weighting used for combining graph kernels with different path lengths 62

xii

List of Figures

2.1 A typical Google 3D Warehouse component 15

2.2 Sample Google 3D Warehouse scene graph 16

2.3 Our modeling interface for interior scene design 20

3.1 A sample attribute list for object comparison 24

4.1 Scene modeling using a context search 30

4.2 Context query using a simple database 33

4.3 Density estimation as a function of radial separation between objects 37

4.4 Comparing keyword and context search 39

4.5 Context query results for a desk scene 40

4.6 Benefit of additional supporting objects 42

4.7 Precision-recall results using human evaluation 43

5.1 Living rooms from Google 3D Warehouse 47

5.2 A scene and its representation as a relationship graph 53

5.3 Comparison of two walks when evaluating the graph kernel 55

5.4 Classification error using a support vector machine to estimate scene

relevance . 62

5.5 Scene search results using relevance feedback 63

5.6 “Find Similar Scene” search results using graph kernels 64

5.7 A model context search expressed by introducing a query node to a

relationship graph . 66

5.8 Context-based model search results using graph kernels 67

xiii

5.9 Comparison between the Memex and graph kernel context queries . . 68

6.1 Example-based scene synthesis . 71

6.2 Alignment for contextual categories 80

6.3 Comparing basic and contextual categories 81

6.4 Bayesian structure learning example 84

6.5 Pairwise spatial distributions for object arrangement 88

6.6 Surface descriptor visualization . 89

6.7 Support mixing . 93

6.8 Spatial mixing . 94

6.9 Synthesis judgement study . 97

6.10 Constrained synthesis . 99

xiv

Chapter 1

Introduction

Environments in the real world are characterized by a richness in object diversity and

complexity. Attempting to enumerate all the unique objects in a house could end

up with a list containing tens of thousands of objects — especially if one considers

every unique book or brand of cosmetic a distinct item. The arrangement of objects

in environments like this are typically built up through a combination of intentional

effects (such as books placed on a bookshelf) and incidental effects (such as socks left

on the floor). Environments that lack this richness in object diversity and arrange-

ment often feel stale and artificial — the entire home staging industry is built around

this premise.

To feel immersive, virtual environments require object richness comparable to that

of the real world, and yet at present the task of modeling scenes containing many

objects is an extremely time consuming task. This content creation bottleneck is

an endemic problem in the construction of 3D environments: we can think up new

content much faster than we can transfer it to a digital representation. There are

many different ways to decompose the task of modeling digital content. We use the

term object modeling to refer to the modeling of individual objects such as a television

or a mug. We use the term scene modeling to refer to the modeling of environments

composed of many objects such as a laboratory or a bedroom.

The goal of this dissertation is to present novel approaches to overcoming the con-

tent creation bottleneck, focusing on the task of modeling 3D scenes. Although each

1

CHAPTER 1. INTRODUCTION 2

digital creation is ultimately unique, it is never totally independent of all previous

design tasks. Through our experiences with the real world or other imagined content

we establish a strong prior over the types of entities we might expect to create. A

human is typically characterized by two feet, two hands, two eyes, and a mouth, and

a bedroom typically contains a nightstand, a dresser, a blanket, and a bed. These

repeating design patterns are pervasive in both real and virtual worlds. Understand-

ing these patterns allows us to anticipate the intent of an artist as they create new

content. With sufficient mastery of a design pattern we can perform complex tasks

such as automatically instantiating a pattern many times to create novel variations

of the same type of artifact.

There are many different ways we might learn patterns that occur in 3D content.

One option is to have humans explicitly encode rules about the patterns. This is

challenging because it is not straightforward to enumerate the design principles for

a domain: what rules describe a mad scientist’s laboratory or a messy college dorm

room? Furthermore, rules must be quantified and prioritized. General concepts such

as “nightstands occur near beds” must be annotated with numeric values that provide

a distribution over allowable distances that are not as natural for humans to specify.

Another option is to learn design patterns from examples. Making examples is a very

common design task and one well suited to humans. The challenge is then to learn

from examples which of the many possible relationships are incidental and which are

the important design principles for the domain being exemplified. In this work, we

focus on learning design patterns from examples of 3D environments.

1.1 Virtual Worlds

3D content creation is a task performed for a wide variety of target applications

including video games, animated movies, and special effects for film or advertisement.

The types of tools that will best improve the content creation bottleneck will depend

on which application is being targeted. A motivating application for the research

in this dissertation is the task of designing virtual worlds. Virtual worlds are large

digital environments designed to support the simultaneous interaction of many users.

CHAPTER 1. INTRODUCTION 3

Modern virtual worlds are characterized by expansive 3D scenes populated by complex

architecture and contain both interior and exterior designs. Some worlds, such as

Blizzard Entertainment’s World of Warcraft, are designed by a dedicated team of

professional artists. Other worlds, such as Second Life, are designed incrementally by

casual users as part of their interaction with the environment.

The larger virtual worlds have millions of users and development times in the

millions of person-hours. Since high user interest is necessary to sustain a monthly

subscription model, popular virtual worlds also undergo continuous (and expensive)

expansion: World of Warcraft has released four large expansions over the course of

a decade each containing large, new environments that share many design patterns

with the original release of the virtual world. The total revenue from an American

user with a continuous subscription to World of Warcraft over its current product

lifetime is 1500 USD, which greatly motivates Blizzard Entertainment to maintain

continuous interest in the world. The popularity of virtual worlds combined with

their lengthy construction times indicates that there is a strong desire for tools that

make it faster and easier to design virtual worlds.

Here, we briefly explore some of the properties of virtual worlds that will guide

our development of scene modeling tools:

• Design Pattern Coverage — To support the interaction of multiple users and

to maintain user interest in the world, virtual worlds contain a large number of

diverse environments. This is important because it provides us good coverage

over the space of possible models and the relationships between them. As with

most knowledge extraction tasks in machine learning, the quality of the results

improves with increasing amounts of data.

• Artistic Design — Environments in virtual worlds are often modeled by a

dedicated team of professional artists. These artists design the world with the

intention that various zones embody a distinct set of construction and design

styles. This dataset provides a rich opportunity to explore how to learn and

adapt to the many stylistic variations in the world.

• Segmentation and Tagging — To facilitate user interaction, many virtual

CHAPTER 1. INTRODUCTION 4

worlds provide a good segmentation of the scene into meaningful objects. This

allows users to perform actions such as “sit on that chair” or “pick up that

plate”. A good segmentation of the scenes into meaningful objects is important

because we need to learn relationships between objects. Likewise, many objects

in these environments are tagged by artists to help with the maintenance and

upkeep of the world. Good model tagging is useful because tags can relate

objects that are geometrically distinct but functionally very similar, and tagging

is a natural way to query a model database.

Unfortunately, one key obstacle preventing virtual worlds from being used as a

data source is accessibility. Few virtual worlds were designed with the intention that

the decomposition of their environments into meaningful objects be readily accessible

by people outside the designers of the world such as graphics researchers. Although

the inaccessibility of commercial virtual worlds requires us to use examples drawn

from other collections of 3D environments such as Google 3D Warehouse, the tools

we develop are designed to take advantage of the properties that might be expected

from virtual world datasets.

1.2 The Basic Scene Modeling Pipeline

1.2.1 3D Model Collections

Attempting to model a large environment by specifying the precise geometry, down to

the level of individual triangles, for every object in an environment is a considerable

undertaking. Instead, most scene design tasks are performed by using models designed

by other artists. Typically, these models are drawn from a 3D model collection

such as Google 3D Warehouse or the Blender Model Repository. Sometimes these

collections are maintained by communities of modeling enthusiasts in order to show

off their work and allow others to reuse their creations. Other model collections are

maintained by professional companies for a specific use such as a virtual world. In

all cases, an artist modeling an environment needs to be able to search the database

to find models they want to use in their scene. There has been significant research

CHAPTER 1. INTRODUCTION 5

in evaluating different approaches to querying 3D model databases such as searching

using keywords, searching using 2D sketches, and searching for models similar to

an existing 3D model [Min 2004]. All previous search algorithms are designed for

searching for models independent of the task these models are being used for. In

this work, we will show that it is possible to take advantage of knowledge about the

scene being modeled to improve querying 3D model databases for the task of scene

modeling.

1.2.2 Modeling Interface

There are a wide range of programs that can be used for 3D modeling tasks, such as

Autodesk 3ds Max, Autodesk Maya, Google SketchUp, and the open source Blender.

Each 3D modeling program focuses on different use cases and depending on the pro-

gram different tasks will be significantly easier or more challenging. For example,

3ds Max has many tools that focus on adding fine-scale details to 3D surfaces, while

Google SketchUp is designed for the rapid prototyping of buildings, homes, and other

large 3D environments. To understand what tools might benefit artists modeling

scenes, we need to understand the pipeline that is currently used in existing modeling

programs. We center our analysis on Google SketchUp (version 8) since this program

focuses on ease-of-use and designing large environments, but the scene modeling pro-

cess does not vary significantly between the popular modeling programs. Google

SketchUp is also tightly integrated into a community-driven 3D model corpus called

Google 3D Warehouse which greatly facilitates the construction of richly decorated

environments. We do not focus on the modeling of architecture since this varies sig-

nificantly across programs and requires very specialized design constraints and tools

to model correctly. For some domains such as houses, automatic tools have been

developed to help with this process [Merrell et al. 2010].

We start by assuming that the user has some very high level idea of what they

want to model, such as a house or a shopping mall. They then begin the following

iterative process:

• Think of something to add — Based on their observation of the current

CHAPTER 1. INTRODUCTION 6

environment, the artist needs to think of a model that is missing from the scene

and needs to be added.

• Search for the model — Given a concept of what to add, such as “a large

flatscreen television”, the user needs to acquire an acceptable model of this

type. In Google SketchUp, this is accomplished by bringing up a website view

to Google 3D Warehouse and performing keyword searches. Once found the

model is added to the current SketchUp environment. If an appropriate model

cannot be found, the artist may need to model its geometry themselves or think

of a new type of model they wish to insert.

• Insert the model into the environment — Once a model is added to the

environment, SketchUp does not attempt to match the scale of the imported

object to the current scene, or to translate it to a meaningful location. The

artist needs to scale the object to an appropriate size, and navigate the active

camera to point to the location where they want to insert the object. Once they

are at the target location they need to translate the object to its final position,

and rotate it into a desirable orientation.

These tasks are not performed in a linear order: artists often think of many ob-

jects to insert at the same time, it is common to first navigate to the location where

an object is going to be inserted to help visualize what types of objects might be

most appropriate to insert, and the location, scale, and rotation of existing objects

are continuously tweaked as new objects are added or undesired objects deleted. Nev-

ertheless, the above tasks of thinking, searching, and placing are extremely common

operations in the modeling pipeline used in Google SketchUp and will guide our devel-

opment of scene modeling tools. We refer to operations such as navigating, searching,

scaling, rotating, and translating as low-level modeling operations because they have

a single, well-defined effect and are the simplest modeling operations exposed in mod-

eling programs like SketchUp. These operations are sufficient to complete modeling

tasks which have a small number of objects, but they rapidly become cumbersome

for scenes with thousands of distinct objects.

CHAPTER 1. INTRODUCTION 7

1.3 Modeling Tools

We want to use knowledge of design patterns that we learn from examples to enable

tools that improve the process of modeling large scenes. We break down the tools we

develop into roughly two categories. First, we develop tools that speed up different

stages of the standard “think, search, insert” scene modeling process described above.

Second, we develop tools that enable entirely new types of modeling operations. Be-

cause these operations perform a large number of simple operations at once, we refer

to them as high-level modeling operations. Here we briefly summarize some of the

tools we develop:

• Scene retrieval and suggestion — This tool looks at the current scene the

user is modeling and finds similar environments in a backing scene database

that may contain models relevant to the artist. This can help the artist think

of new models to add or give them inspiration in the form of possible variations

in style or composition explored by other artists [Lee et al. 2010].

• Context-aware model search — As a user adds models to an environment,

we can gain a lot of insight into the types of models they might add next. This

tool searches for possible new models to insert, conditioned on the scene being

modeled and other types of information that might be specified by the artist.

For example, the user might place a bounding box in the scene to search for

models appropriate to that size and location, or they might ask for objects with

a certain relationship to an existing object, such as “give me objects that belong

on top of this nightstand”.

• Object categorization and alignment — To help deal with the sheer num-

ber of objects in the world, humans group objects into categories according to

various properties such as function, size, and location. This tool automates the

process of partitioning a large set of objects into disjoint categories, and aligns

the objects within each category into a canonical coordinate frame. Having an

aligned set of categories enables rapid exploration of the space of possible mod-

els for a scene. For example, a user might insert a television into their room,

CHAPTER 1. INTRODUCTION 8

then rapidly cycle through a large number of other televisions without having

to manually search for, replace, scale, and align each new television they wish

to try out.

• Synthesis from examples — This tool learns a model for a type of environ-

ment from a small set of examples and generates more environments in a similar

style. The tool introduces novel variations on the input examples to create a

diverse set of results while respecting the important design constraints and pre-

serving the functionality of the environment, without the need for the user to

enumerate what relationships are important and which are not. The artist can

then rapidly browse a large number of generated results to find desirable scenes.

The synthesis can be controlled by the artist by either modifying the examples

or constraining the sampling process.

1.4 Comparing Arrangements

Few interesting design tasks occur in exactly the same state. Each instance of pat-

terns such as bedroom layouts or a blacksmith’s forge will be related to each other

but ultimately unique. To learn these patterns we need the ability to compare one

arrangement of objects to another arrangement in order to understand what data is

most relevant to a user’s request. The task of comparing arrangements is challenging

because one must simultaneously compare individual entities such as two 3D models

along with the relationships or connections between sets of such entities. This is a

commonly recurring problem in many scientific disciplines, and we will look to many

other fields for inspiration when designing our modeling tools.

One instance of the problem of comparing arrangements is object recognition in

photographs, where researchers have looked at using context information to disam-

biguate between visually similar objects [Rabinovich et al. 2007]. Another instance

is the problem of comparing two images, where researchers have reduced images to

segmentation graphs then defined a graph kernel between two such graphs that can

capture the structural similarity between images [Harchaoui and Bach 2007]. Finally,

CHAPTER 1. INTRODUCTION 9

the problem of understanding protein folding and function requires comparing the

molecular arrangement at two different binding locations [Bagley and Altman 1995].

In each case, different techniques have been used to solve the problem of comparing

arrangements, and we will build upon this research as we adapt their approaches to

the scene modeling tools we develop.

One commonality among most solutions to the problem of comparing arrange-

ments of entities is to decompose the problem into two comparison tasks: how to

compare two entities in isolation, and how to compare the arrangements given the

similarity between all the relevant entities. We will make use of the same decomposi-

tion when comparing arrangements. In our case, the entities being compared will be

3D models.

1.5 Dissertation Road Map

The majority of this dissertation is devoted to the technology that supports the tools

described above. We organize this work into the following chapters:

Chapter 2 describes different datasets that can be used to learn design patterns

from examples. It looks at what dataset properties are most important for the tools

we develop, and which of these properties are missing from scene databases such as

Google 3D Warehouse. We also detail Scene Studio, a design tool we developed that

serves as a practical testbed for our scene modeling tools.

Chapter 3 presents our method of comparing two objects in isolation, a sub-

component required by many of our tools. Objects are compared based on their size,

geometry, texture, name, tags, and text description.

Chapter 4 describes context-based search. It presents an algorithm for this type

of search based on the Visual Memex Model, an approach used in computer vision

to classify unknown objects by using kernel density estimation over a set of training

examples [Malisiewicz and Efros 2009].

Chapter 5 presents our work on applying graph kernels to scene modeling tasks.

We first transform scenes into a relationship graph whose nodes represent objects

and whose edges represent different types of relationships between nodes. Using this

CHAPTER 1. INTRODUCTION 10

representation we show how to apply established graph comparison techniques to

support 3D model context search and scene retrieval and suggestion tasks.

Chapter 6 develops a generative model for 3D environments. An artist provides a

small number of examples of a 3D scene, and our algorithm synthesizes new scenes of a

similar type. This model uses the machinery developed in Chapter 4 to group models

into contextual categories that are a set of functionally or semantically interchangeable

objects. The scene comparison algorithm developed in Chapter 5 is leveraged to

produce plausible, diverse scenes by drawing additional training samples from a larger

database of scenes.

Chapter 7 discusses the scene modeling task as a whole. It highlights the areas

where our tools are most effective and suggests areas for future development.

Chapter 2

Datasets

We want to learn general design patterns by observing many different examples of

3D scene design tasks. The first step towards accomplishing this is to acquire a set

of examples of 3D environments that exemplify the design patterns we are trying to

learn. 3D scenes can be described in many different formats ranging from a list of

objects to range scans to unstructured triangle soups. We start by going over the

properties we want a 3D scene corpus to have for pattern learning tasks. We then

contrast this against existing scene corpora and show how to recover some of the

properties that are most important for our scene modeling tools. Finally, we describe

Scene Studio, our scene modeling tool, and the properties of the dataset generated

using this tool.

2.1 Ideal Examples

Some scene representations make it very easy to extract design patterns, while others,

such as unstructured point clouds, make it very challenging. Since data-driven scene

modeling tools are not yet common, most existing scenes are not designed with data-

driven tasks in mind so are missing many useful properties. Below we delineate the

properties that ideal examples would possess.

• Many environments — The more examples we have, the more design patterns

they exemplify and the more information we can learn about each pattern. As

11

CHAPTER 2. DATASETS 12

with most data-driven tasks, having sufficient amounts of data often allows

simpler approaches to be effective and combats overfitting or noisy data. As

a concrete example, in natural language processing a very simple technique

known as Stupid Backoff proves surprisingly effective at dealing with certain

data processing tasks once sufficient examples are available [Brants et al. 2007].

• High object detail — Because adding object detail to 3D content is time

consuming, many existing virtual environments are very barren. They contain

rooms with only a few pieces of furniture and no decorative or functional objects.

Even among scenes with some functional objects, examples are best if they

contain detail at the same level that is desired in the environments an artist is

designing.

• Relevant environments — Any set of examples is going to encode only a

small subset of possible design patterns. For a data-driven tool to be useful, it

needs to have examples that encode patterns that are desired by artists using

the tool. A database of interior, 21st century scenes might share only a few

design patterns that are useful for artists modeling an Elven treehouse or a 25th

century spaceport.

• Clear object segmentation — If we want to learn what possible arrangements

of objects correspond to a given design pattern, we need to first understand how

to decompose a scene into meaningful objects. Oversegmentation down to the

level of polygons makes it very challenging to recover meaningful relationships,

and failure to segment below the level of collections of objects such as “bedroom”

or “house” prevents us from learning relationships between the objects that

composed these scene categories.

• Semantic annotation — To support rendering, all objects in our environ-

ments must contain certain properties such as geometry, texture, and a material

description. Although humans can usually infer the function and type of an ob-

ject from these properties, modern algorithms to compare geometry are much

less effective at this task. To achieve good semantic correspondence between

CHAPTER 2. DATASETS 13

two functionally similar but geometrically different objects, our algorithms will

benefit greatly from per-object text labels that describe their type, function,

or style. Text information is also necessary to support many common search

techniques such as keyword search.

The best source of examples for a tool are environments made for the tool’s tar-

get application. A tool meant to help with home rearrangement tasks should draw

examples from well-designed homes. This is what makes virtual worlds so appealing

as a target application of data-driven modeling tools: they already contain a large

number environments that encode relevant design patterns with an acceptable level

of object detail and typically have a good decomposition into meaningful objects to

enable user interaction with the environment.

2.2 Google 3D Warehouse

A growing demand for massive virtual environments combined with increasingly pow-

erful tools for modeling and visualizing shapes has made a large number of 3D mod-

els available. These models have been aggregated into online repositories that other

artists can use to build up scenes composed of many models. Some of these databases

are publicly accessible on the web. Unfortunately, a 3D model database that contains

only isolated objects, such as the Princeton Shape Benchmark, provides no infor-

mation about the relationships between objects in real scenes [Shilane et al. 2004].

Instead we need to focus on scene databaes that contain collections of objects. The

most popular such repository that is publicly accessible is Google 3D Warehouse,

which we will use extensively throughout this dissertation. Here we explore some of

the important properties of Google 3D Warehouse.

• Individual components and complete environments — Google 3D ware-

house contains many different types of models that have been uploaded for a

variety of purposes. Some are individual objects uploaded by artists or corpo-

rations with an interest in making their models available such as furniture man-

ufacturing companies; Google SketchUp refers to these as components. Other

CHAPTER 2. DATASETS 14

models uploaded to Google 3D Warehouse are complete environments, typi-

cally created by combining components uploaded by other artists. Finally some

models on Google 3D Warehouse do not fall into either category, such as 3D

reconstructions of buildings intended for use on Google Earth or Google Maps.

The distinction between individual components versus complete environments is

not explicit: users searching for individual components will often find complete

scenes and vice-versa.

• Textual information — As an artist uploads each model to Google 3D Ware-

house, it is annotated with three different types of textual information: a model

name which describes the type of model, model tags which further refine the ob-

ject type or describe its style or function, and a longer model description. The

textual information available for a typical Google 3D Warehouse component is

shown in Figure 2.1.

• Types of environments — Because Google 3D Warehouse is community-

driven, there is no specific style of environments common to all scenes. Users

model a wide range of environments ranging from table decorations to dorm

rooms to spaceship interiors, each with a wide range of artistic styles and ob-

ject densities. This results in a very large number of design patterns that can

potentially be learned.

Unfortunately there is no simple way to acquire all models on Google 3D Ware-

house. Instead, we accumulated a set of scenes by searching for keywords that sug-

gested scenes with multiple objects (“room”, “office”, “garage”, “habitación”, etc.).

We then manually filtered out scenes that represented individual objects, 3D buildings

intended for Google Earth, or otherwise did not correspond to complete environments.

After filtering, in total we acquired 4876 scenes this way.

2.3 Scene Processing

Before we can learn patterns from these Google 3D Warehouse scenes we need to seg-

ment the scenes into meaningful objects and (if possible) acquire tags for the objects.

CHAPTER 2. DATASETS 15

Figure 2.1: A typical Google 3D Warehouse component. Artists annotate uploaded
models with a name, set of tags, and text description.

Our first step is to convert all the scenes in the input database into a standardized

format (we chose to use the COLLADA file format because many different applica-

tions can process this format). The scene graph encoded in a typical COLLADA

file from Google 3D Warehouse is shown in Figure 2.2. The text labels attached to

each node are optionally added by the artist as they model the scene and are much

less detailed than the textual information attached to individual components in the

Warehouse which contain a name, tags, and description. Most scene graph nodes

have no textual information at all.

2.3.1 Segmentation

The first step is to segment each scene graph into semantically meaningful objects. In

COLLADA scene graphs, each node may point to any number of child graph nodes

and to any number of child geometry objects. As can be seen in Figure 2.2, some nodes

CHAPTER 2. DATASETS 16

Name Processed Tags
LuminAiria None
rouage Cog
SimpleDome Simple, Dome
11 by 8 paper Paper
FineLiner Fine, Liner
Box Deckel Box, Cover, Lid
Box halter Box, Halter
Stift Pin, Pencil
Stiel Handle, Stem
Eames Softpad Mgmt. Chair Soft, Pad, Management, Chair
HSeat Seat
HFrame None (frame is a stop word)
iPhone iPhone
Macbook Pro Open Macbook, Pro, Open

Figure 2.2: Top: Typical scene and its scene graph decomposition (some nodes omit-
ted for brevity). Objects are labeled with their raw node names. Bottom: Scene
graph node names and their final processed set of tags.

CHAPTER 2. DATASETS 17

such as the Eames chair represent complete objects. Other nodes, such as the children

of the Eames chair, represent parts of objects. Distinguishing between whole objects

and parts of objects is challenging. Although there has been work on segmenting

3D objects, this is often focused on segmenting individual objects into components

and not entire scenes into semantically meaningful objects; we were unable to find

an existing automatic approach that outperformed the scene graph segmentation for

our dataset [Chen et al. 2009].

Considering all the scene graph nodes to be objects would result in considerable

oversegmentation of the environments. We start by performing some limited filtering.

We ignore nodes with common names that we found to be extremely suggestive of

being an object part, such as “plant stem” or “flower petal” (this list was constructed

by sorting the list of node names from most to least frequent followed by manual

inspection and rejection).

After performing this limited filtering, we have a reasonable decomposition of each

environment into objects, but it still contains some oversegmentation as there are sev-

eral nodes that would not be judged to be individual objects by humans. Nevertheless,

the quality is sufficient for algorithms that are robust to errors in segmentation, such

as the Visual Memex approach to model search described in Chapter 4. For algo-

rithms which cannot easily tolerate significant errors in segmentation, such as the

tools based on graph kernels described in Chapter 5, we use a crowdsourcing ap-

proach to manually filter a subset of the scenes by asking a human to classify each

potential scene graph node as either meaningful or not.

2.3.2 Tagging

Additional information about the object can be inferred from the names associated

with the objects in the scene. In our Google 3D Warehouse dataset we gather naming

information from three sources:

1. Scene graph nodes are sometimes named by the artist, as seen in Figure 2.2.

2. The root node of each scene (which corresponds to the entire file) is named by

the artist as it is uploaded.

CHAPTER 2. DATASETS 18

Scenes: 4,876
Scene Graph Nodes: 426,763
Objects: 371,924
Unique Models: 69,860
Tagged Models: 22,645
Shared Models: 10,509

Table 2.1: Current snapshot of our database. A tagged model is a model with at
least one tag. A shared model occurs in at least two scenes.

3. The same model can be used in multiple scenes. We union the names from all

instances of the model.

Unfortunately, there are still many semantically meaningful objects in our database

that are poorly labeled or not labeled at all. This motivates the geometric comparison

term we describe in Chapter 3.

To improve the chances of successfully comparing two objects using their tags, we

start by cleaning up the names and translating them to English. First, we use Google

auto-suggest to perform spelling correction and word separation (e.g., “deskcalender”

becomes “desk calendar”). Second, we use Google Translate (which can auto-detect

the source language) to convert Unicode sequences to English words. Finally, non-

English words and stop words are removed.

The second step in the tag processing pipeline is to add related words to each

source word. WordNet is used to find the most common hypernyms and synonyms

of each word [Fellbaum et al. 1998]. Recall that hypernyms are enclosing categories

of a word; for example, color is a hypernym of red which is a hypernym of crimson.

We refer to the final set of words as the tags for that object. Figure 2.2 shows a set

of scene graph nodes, their raw names, and their processed tags.

2.3.3 Summary

Table 2.1 gives a summary of the dataset after processing. As we will show, this

is a rich dataset and can be used to learn contextual relationships between a wide

range of objects. However, it has several flaws which make it unsuitable for some

CHAPTER 2. DATASETS 19

of our more complex modeling tools. First, some scenes remain poorly segmented

even after manually removing object parts as described above. This typically occurs

when objects are created in certain ways, such as physically extruding the wall to

produce books on a bookshelf, or when geometry is imported from another program

and the model editing program does not maintain the decomposition into individual

components. Second, some scenes are extremely barren and contain only one or two

decorative objects, which is typically below the density our tools are targeting. Third,

even though many components in these environments are imported from Google 3D

Warehouse, the link back to the original model database entry is lost. This makes it

difficult to recover a good textual description for all objects in the corpus, which is

important for many of the tools we design.

2.4 Scene Studio

Here we briefly describe Scene Studio, a modeling program developed to produce

a dataset of scenes that overcome some of the problems with scenes acquired from

Google 3D Warehouse and to test the viability of some of the modeling tools developed

in this dissertation. Unlike most popular modeling programs, ours does not allow

the modeling of individual objects and instead focuses entirely on modeling scenes

populated with objects from an existing 3D model database. To obtain a set of

base models to be composed into complete scenes, we crawled Google 3D Warehouse

using keywords commonly found in interior scenes such as “monitor”, “chair”, and

“wallet”. We then manually removed search results that contain multiple objects,

such as desks that already contain a chair or computer. Users modeling with our

program first select a desired base architecture and then repeatedly search for objects

in this pruned model database to insert into their scene. Figure 2.3 shows a screenshot

of this modeling interface.

Our modeling program produces scenes that have several important properties for

our algorithm:

• Segmentation: Because the scene is composed entirely of models from the

underlying database, we can easily maintain a good segmentation of the scene

CHAPTER 2. DATASETS 20

Figure 2.3: Our modeling interface for interior scene design.

into meaningful objects.

• Tagging: Models in our database come directly from a single entry in Google

3D Warehouse, which we use to obtain a good name, set of tags, and textual

description for each model.

• Parent contact: When a user inserts an object, it is always rooted at a specific

point on the surface of an existing object in the scene. Although the user is

free to then further displace the object, this feature was rarely used when mod-

eling static scenes. Knowing an object’s parent avoids the need to guess object

contact relationships and makes modeling easier because modeling operations

on the parent can be implicitly extended to its children. The set of all parent

contact information for all objects in a scene defines a static support hierarchy.

We make use of the properties of this hierarchy compared to a traditional scene

graph representation in our high-level modeling tools.

CHAPTER 2. DATASETS 21

The model database used by Scene Studio contains 16847 models, including ob-

jects intended for both interior and exterior design. We distributed the program to

users on the web to acquire a corpus of 3D environments to use as a dataset for our

modeling tools. We asked participants in our corpus-building effort to model any

scene they liked using our software. We reminded users to add detail objects such

as light switches and power outlets to their scenes. The majority of our participants

were students and staff from our university’s computer science department, or their

friends and family. In total our participants generated 154 scenes, containing 4651

model instances and using 2970 distinct models. We readily acknowledge that this

dataset quality is very high and is not yet representative of current modeling pro-

grams such as Google SketchUp. Nevertheless, we feel that this dataset reflects the

type of data that is available to the designers of large 3D environments such as virtual

worlds and that it serves as a viable testbed for our modeling tools.

We provide this dataset as a resource to the research community; it can be found

on the project web page: http://graphics.stanford.edu/projects/scenesynth.

Chapter 3

Model Comparison

To learn design patterns from examples, we need the ability to compare arrangements

of objects. As discussed in Section 1.4, an important subcomponent of this problem

is the task of comparing two objects in isolation. The need to compare objects is

a necessary task for both humans and computers to combat data sparsity and al-

low rapid understanding of new situations. Because we encounter so many distinct

objects, neither humans nor computers can afford to learn properties of each object

individually. Instead, when we encounter a new object we relate it to other objects we

have observed in our experiences in order to understand how to interact with it. This

allows humans to transfer knowledge about aspects such as object function between

objects, and the data-driven tools we develop will use object similarity to transfer

knowledge about the expected surroundings of an object between different observa-

tions. Unlike humans, the algorithms we develop will need to precisely quantify the

similarity between objects.

What makes two objects similar? Clearly, if two objects are indistinguishable

without intense scrutiny, such as two new pencils from the same box, then we can

reasonably expect their properties to be similar and we can say that properties we

learn about one pencil should transfer to another identical pencil. Likewise, if two

objects are extremely different along dimensions such as size, geometry, and material

composition, then there is no reason to expect to transfer knowledge between obser-

vations: observations of a construction crane tell us nothing about observations of a

22

CHAPTER 3. MODEL COMPARISON 23

grain of sand. Most of the time, however, object comparison is much less clear cut:

knowledge of black pens can tell us a lot about red pens, yet there are plenty of subtle

differences (red pens are more likely to occur around stacks of homework).

3.1 Attribute Lists

How do humans deal with this problem? One model that has been proposed by psy-

chologists is that we establish a set of attributes across which to compare objects,

then groups observations of objects with commonly co-occurring attributes into natu-

ral categories [Rosch 1973]. In Figure 3.1, we show a subset of what such an attribute

list might look like. When designing our object comparison function, some of these

attributes can be easily inferred from a geometric representation of an object, such

as the object’s height. Unfortunately, many properties are lost in the conversion to

a geometric representation and are not otherwise directly accessible to a computer,

such as the smell of an object. Fortunately, when textual annotations are available

for models, we can hope to use this information to compare properties not readily

determined from the geometry alone. Although we do not have access to all the at-

tributes humans use when comparing objects, the general idea of comparing objects

by comparing sets of attributes remains the same.

Categories are a very powerful way to transfer knowledge between objects — as we

will show in Chapter 6 effective modeling tools can be developed using categories as

the sole means of object comparison. However using them is not without challenges.

The ontology of categories used by humans is very complex. Different languages or

even different speakers of the same language do not always agree on the category of

an object. Categories are also overlapping and hierarchical — a stool and a chair

are different natural categories in English but are both types of single-person seats

which is itself a type of furniture. The problems of relying solely on basic categories

to relate objects has been observed in many computational fields such as computer

vision [Malisiewicz and Efros 2009]. Nevertheless, categorizing objects remains a very

effective tool for comparing objects that we will explore in Chapter 6. In this chapter

CHAPTER 3. MODEL COMPARISON 24

Figure 3.1: A toy example of an attribute list that might be used to group objects
into natural categories.

we will focus on comparing objects using attribute lists, which is an important subrou-

tine for both the modeling tools we develop and the automated object categorization

algorithm we describe later.

We want to define a model kernel Kmodel(a, b) that estimates the similarity be-

tween two models. It evaluates to 1 if the models are identical and 0 if they are

not similar at all. We compose this function by combining comparison of object at-

tributes derived from text, size, geometry, and texture kernels, which we describe in

the following sections.

3.2 Comparing Text

Depending on the data source used, models in scenes may be annotated with textual

information. This may come from the original model database used to create the

scene, tagged by the artist as they inserted the model into the scene, or be available

as part of the object structure of a virtual world. Text information is one of the most

effective ways available to a computer to understand aspects of objects that are not

easily recovered after the transition to a geometric representation, such as function

CHAPTER 3. MODEL COMPARISON 25

or style.

We show three different types of text information available for models that have

been uploaded to Google 3D Warehouse in Figure 2.1. Some of this information is

more reliable than others: the “name” field likely contains information pertaining to

the model’s category, the “tags” field often contains information pertaining to the

style or function of the model, and the “description” field might contain information

such as what modeling program was used. Past work on 3D model search using a

similar dataset has unified these fields into a weighted list of text [Min 2004]. This

work found the “name” field to be significantly more reliable than the “tag” field

and the “description” field to offer essentially no benefit when performing simple

precision-recall tests. As such we form a set of words for each Google 3D Warehouse

model by taking the union of each word in the name and tag fields, weighting words

that occur in the name five times higher than tags. We also apply a standard word

stemming algorithm to handle similar words with different stems such as “fishing”

and “fish” [van Rijsbergen et al. 1980].

There are many ways to compare two weighted word sets; we found the best results

using a variant of the Jaccard index [Levandowsky and Winter 1971]. Let w ∈ W

be the set of all words in the corpus and let x[w] indicate the weight of word w for

model x:

ktext(a, b) =

∑
w∈W

min(a[w], b[w])

min

(∑
w∈W

a[w],
∑
w∈W

b[w]

) (3.1)

3.3 Comparing Geometry

People are very good at using only geometry to relate two objects — we can first seg-

ment the object, classify the components, determine their function, then relate these

properties. While this approach is much harder for a computer, comparing model

geometry remains useful. Many categories of objects are well defined by their geo-

metric features and geometry can discriminate between subcategories within a single

CHAPTER 3. MODEL COMPARISON 26

natural category, such as separating chairs into those with and without armrests.

Geometric comparison is a common problem in computer graphics and many

different approaches have been developed. Most approaches fall into one of two

categories: graph-based representations and vector-based representations. Graph-

based representations attempt to cluster the model into segments and define a graph

connecting the segments. Models are then related by comparing their resulting

graphs. Two such approaches are Reeb graphs [Tung and Schmitt 2005] and skele-

tal graphs [Sundar et al. 2003]. Graph-based approaches can be time consuming to

produce and rapid retrieval is challenging. Vector-based representations typically re-

duce each model into a feature vector in Rn. Two popular approaches are spherical

harmonics [Kazhdan et al. 2003] and extended Gaussian images [Horn 1984]. Studies

have been done that compare many different shape searching methods [Iyer et al.

2005].

In this work we use 3D Zernike descriptors to compare shapes [Novotni and Klein

2003]. These descriptors have the desirable property that they are invariant under

scaling, rotation, and translation. Our Zernike descriptor computation closely follows

work on autotagging models from Google 3D Warehouse [Goldfeder and Allen 2008].

We first scale the geometry into a unit cube and then voxelize it on a binary grid V

that is 128 voxels on each side. We then thicken this grid by 4 voxels; a voxel in V ′

is set if there is a voxel set in V inside a sphere with a radius of 4 voxels. V ′ is used

to compute a 121 dimensional Zernike descriptor using 20 levels of moments.

We use the Euclidean metric between two Zernike descriptor vectors as the dis-

tance between two shapes. The absolute distance between two model descriptors

varies significantly depending on what categories of models are being compared. To

mitigate this problem, we will use the distance to the nth closest model as an estimate

of the local density of models in the descriptor space. This density estimate is used

to normalize the distance between two models. Let dst be the Zernike descriptor dis-

tance between models s and t, and let gi(n) be the distance to the nth closest model

to model i. Our symmetric kernel between two models is given as:

Kgeo(a, b) = e
−
(

dab
min(ga(n),gb(n))

)2

(3.2)

CHAPTER 3. MODEL COMPARISON 27

We chose the minimum value of gi(n) (corresponding to the region of greatest density)

as our normalization term. This prevents an object that lies outside any cluster from

forming a geometric association with an object inside a good cluster. The results in

this work use n = 100.

Note that our use of Zernike descriptors is fundamentally a global comparison,

which we found to be sufficient for most objects in Google 3D Warehouse. Datasets

with a large number of articulated models may benefit from using a partial shape

matching algorithm [Gal and Cohen-Or 2006].

3.4 Comparing Materials

Some categories of objects, such as chairs or airplanes, exhibit very distinct geometric

features and humans can easily distinguish them using only geometry. Other cate-

gories, such as basketballs and soccer balls, are hard to tell apart from geometry alone

and humans need to observe the texture to correctly classify and compare objects in

these categories. This is especially true in digital environments, where 2D texture

mapping is often used to convey the effect of fine-scale geometric features such as the

grooves in a basketball.

Determining the similarity between 2D images is a very challenging problem and

we refer the interested reader to comparison literature [Kokare et al. 2003]. In the

case of 3D models, this problem is significantly more complicated. A single model

may be composed of many different parts each using a different texture and material.

Although many 2D image approaches can be extended to 3D surfaces, such approaches

are complicated by the fact that the geometry itself needs to be aligned. Rather than

formulating a 3D model comparison technique we have adopted a simpler approach.

Two models are said to use the same texture if, after scaling their 2D diffuse texture

maps to be the same dimension, they are equivalent within a small epsilon. We

denote such near-exact matches using Kronecker Delta notation, Kmaterial(a, b) = δab.

This term is most useful for disambiguating objects that are both categorically and

geometrically similar, such as highly decorative plates vs. plates designed for eating.

CHAPTER 3. MODEL COMPARISON 28

3.5 Model Kernel

We want to combine the individual kernels over properties such as geometry and

text described above into a single real valued function that says how similar two

models are. We use the simple approach of using a weighted linear combination of

the attribute kernels:

Kmodel(a, b) = 0.6Ktext(a, b) + 0.3Kgeo(a, b) + 0.1Kmaterial(a, b) (3.3)

To make inference in databases faster, we zero out this model term if it is less than a

small epsilon (ε = 10−6). The empirically chosen weights given in this equation reflect

our observations about the relative importance of the three features: text information

was found to be the most effective way to compare two models. Geometry was found

to be most useful for providing addition discrimination on top of text information

or linking together two models with very similar geometry but that were uploaded

under different sets of tags (such as a model uploaded multiple times using different

languages).

This model kernel will be an important component necessary for all the scene

modeling algorithms we present in future chapters.

Chapter 4

A Visual Memex for Model Search

The first scene modeling tool we develop focuses on the task of searching for models

that belong at a location in the scene the artist is modeling. This chapter describes

our approach to responding to context search queries of the form shown in Fig-

ure 4.1 [Fisher and Hanrahan 2010]. The inspiration for this type of context-based

search for 3D models came from the development of similar search engines for tasks

such as source code retrieval [Henrich and Morgenroth 2003]. This search engine uses

the user’s history and the code the user is currently writing to return relevant results.

Model search and retrieval is the first tool we develop because it is one of the

most forgiving in terms of the quality of the results that are produced: the purpose

of the task is to suggest ideas for a creative process, and even “wrong” results, such

as suggesting a wall sconce on the surface of a desk, are not devastating as long as

a few reasonable results are returned. This allows us to work with real 3D scene

datasets such as Google 3D Warehouse without any human filtering. Overall, this is

the only scene modeling tool we will present in this dissertation that can work well

on databases that have extremely sparse tagging and poor segmentation. Although

the application to 3D model retrieval is novel, the underlying ranking algorithm we

use for model suggestion is based heavily on an algorithm for the Context Challenge

on 2D images called the Visual Memex Model [Malisiewicz and Efros 2009].

Like all tools we develop in this dissertation, our context search algorithm uses a

data-driven approach, attempting to learn spatial relationships from existing scenes.

29

CHAPTER 4. A VISUAL MEMEX FOR MODEL SEARCH 30

Figure 4.1: Scene modeling using a context search. Left: A user modeling a scene
places the blue box in the scene and asks for models that belong at this location.
Middle: Our algorithm selects models from the database that match the provided
neighborhood. Right: The user selects a model from the list and it is inserted into
the scene.

First, we extract a large number of complete scenes from Google 3D Warehouse and

segment these scenes into their constituent components as described in Chapter 2.

We then preprocess this dataset to determine for each model a set of similar models

based on properties such as the model geometry and tags. We make the assumption

that similar objects occur in similar contexts. Given a user-provided context, our

algorithm finds clusters of related models in the database that have appeared in a

similar context.

Work by Funkhouser et al. [2004] is perhaps the most related work in 3D modeling

to the algorithm presented in this chapter. They present a data-driven object model-

ing system. In their work, a user starts with a base model and then issues queries for

related models that have desirable parts. To determine whether a candidate model

is a good match to the query, they approximate the sum of the distances from ev-

ery point on one surface to the closest point on the other, and vice-versa, weighting

selected regions on the surface higher. The main difference between this work and

our approach is that our focus is on scene composition containing a large number of

disjoint models and not on finding similar parts for a single model. When comparing

two scenes, we will not use a surface deformation approach and instead leverage the

semantic segmentation and tagging of the scenes.

CHAPTER 4. A VISUAL MEMEX FOR MODEL SEARCH 31

4.1 Spatial Context in Computer Vision

Computer vision research has made significant progress on using spatial context in-

formation in classifying objects in photographs [Rabinovich et al. 2007]. One way

of evaluating the success of this work is to measure how accurately it labels a set of

test images. Labeling objects in images has a clear analog to the case of 3D scenes,

where we are given a 3D scene and are asked to decompose it into a set of seman-

tically meaningful 3D objects that we then label. Although this is one of the most

commonly used methods for evaluating contextual understanding in 2D scenes, we do

not focus on this problem in this dissertation because we feel it is much less useful in

scene modeling applications.

For a model search engine, a more relevant evaluation method is the Context

Challenge [Torralba 2010]. In this problem, the goal is to determine the identity of

a hidden object given only its surrounding context. Recent work has looked at this

problem in both category-based and category-free frameworks [Malisiewicz and Efros

2009]. In the category-based framework, the goal is to directly identify the unknown

object by returning a weighted set of possible categories the object belongs to. In a

category-free framework, the goal is to provide a set of 2D objects (represented as

bitmaps seen in other images) that belong in the unknown region. A category-free

framework is sometimes advantageous, since many problems can arise when attempt-

ing to categorize the set of meaningful objects. A related problem to the Context

Challenge is scene completion, which attempts to fill or replace undesired regions in

an input image [Hays and Efros 2007].

The category-free Context Challenge problem, extended to 3D, is precisely the

context-based query we present in this chapter: given a query box in a 3D scene,

return an ordered set of models that belong at this location. Although there are

differences that arise in the 3D version of the problem, many of the techniques used

to solve the problem in 2D are highly applicable and can be extended to the 3D case.

In 2D, solving problems like the Context Challenge is often seen as a stepping stone

towards 2D scene understanding. In the 3D case solutions to the Context Challenge

find a direct application in geometric search engines.

CHAPTER 4. A VISUAL MEMEX FOR MODEL SEARCH 32

4.2 Context Search Algorithm

We begin by defining some basic terminology for the context query. We are given a

scene consisting of Q supporting objects, already placed by the user, and a query box

with known coordinates where the user wants to insert a new object. Our goal is to

rank each object in our database according to how well it fits into the query box.

Although many of the algorithms used for learning 2D spatial context could be

used as the basis for our context query, we chose to model our algorithm closely

after The Visual Memex Model, because of its focus on the Context Challenge and

category-free learning [Malisiewicz and Efros 2009]. Intuitively, whenever two objects

f and g are observed in scene A, we take this as a suggestion that if we observe an

object f ′ similar to f in scene A′, then an object g′ that is similar to g is a good

candidate model in scene A′, provided the spatial relationship between f ′ and g′

echoes that of f and g.

To show a more concrete example, in Figure 4.2, the user has placed a query box

in front of a desk. Suppose our database consisted of only the four scenes shown on

the right. The desk in the top-left scene is an excellent match for the query desk.

In the top-left scene, because the relationship between the desk and the chair is very

similar to the relationship between the desk and the query box, the chair in the top-

left scene is an excellent response to the query. On the other hand, the laptop and

lamp in the top-left scene are not good models because their relationships to the desk

are very different. To rank the models in the other three scenes, we need to answer

a lot of highly subjective questions: how similar are the top-right and bottom-left

desks to the query desk? Is the table at all like the desk? It is clear that answering

these questions is a necessary step to responding to context queries, and we will rely

upon the model kernel described in Chapter 3 in our search algorithm.

At a high level, our algorithm quantifies the concept of object similarity and

the similarity between the spatial relationships of two objects, and then uses kernel

density estimation over the set of observed object co-occurrences to determine the

final ranking over all models. We use the Google 3D Warehouse scene database

described in Chapter 2 and summarized in Table 2.1 for all our results. As we will

CHAPTER 4. A VISUAL MEMEX FOR MODEL SEARCH 33

Figure 4.2: Context query using a simple database. To determine if a candidate
model is a good response to a given query, we look through our database for similar
pairs of models.

show, this is a rich dataset and can be used to learn contextual relationships between

a wide range of objects.

4.2.1 Observations

We begin by considering all pairs of object co-occurrence across all scenes, each of

which we will call an observation; we refer to the set of all such observations as O.

Each observation has the following parameters: the 3D spatial relationship between

the objects, and the size, geometry, texture and tags of each of the objects. Two

observations are said to be similar if all of these properties are also similar. We use

fst as an abstract representation of the spatial relationship between two arbitrary

CHAPTER 4. A VISUAL MEMEX FOR MODEL SEARCH 34

objects s and t.

In the next two sections we will define the following similarity functions:

• Kspatial(fst, fuv): determines the similarity between two different spatial rela-

tionships. Evaluates to 0 if the spatial relationships are unrelated, and 1 if they

are the same relationship.

• Sst(σsize): determines the similarity between objects s and t by comparing their

size, geometry, texture, and tags. σsize is the bandwidth of the size kernel which

we will vary based on the objects being compared. Evaluates to 0 if the models

are unrelated, and 1 if they are the same model.

Following the discussion of these two functions, we will describe our model ranking

algorithm.

4.2.2 Spatial Relationships

We use a simple model to capture the similarity of the spatial relationship between

arbitrary objects s and t. The model depends on two distances: the absolute height

displacement zst (along the Z-axis), and the absolute radial separation rst (in the

XY-plane). Both are measured between the centers of the bounding boxes of the

objects. These distances have units of length, and we benefit from the fact that the

input scenes use the same units.

We ran a simple experiment, and found that rst and zst are largely uncorre-

lated. We model the similarity of each distance with a Gaussian kernel G(x, y, σ) =

e−‖x−y‖
2/σ2

, and assume the two kernels are separable. Our final metric is:

Kspatial(fst, fuv) = G(zst, zuv, σz)G(rst, ruv, σr) (4.1)

The two bandwidths σz and σr have units of length. We choose both to be pro-

portional to the length of the longest dimension of the objects being compared (l).

Thus, the rate of fall-off in similarity is proportional to the size of the objects. In

this study we used σz = 0.05l and σr = 0.5l, which encourages objects to be aligned

more precisely in z than r.

CHAPTER 4. A VISUAL MEMEX FOR MODEL SEARCH 35

It would be nice to capture richer spatial relationships between objects. For

example, the chair is in front of the desk, the couch faces the TV, or the plate is

supported by the table. Measuring such relationships requires more sophisticated

geometric analysis and a dataset which very clean segmentations between objects.

We explore many of these ideas in the algorithm described in Chapter 5.

4.2.3 Object Similarity

Two objects are similar if both their sizes and their underlying models are similar.

We assume that the size and model comparisons are separable kernels, and define the

similarity between arbitrary objects s and t as:

Sst(σsize) = G(Size(s), Size(t), σsize)Kmodel(s, t) (4.2)

To compare the size of two objects, we first sort the x-y dimensions of the bound-

ing box of each object based on length. We consider the dimensions of the bounding

box of each object to be a vector in R3. We use the Euclidean distance between

these two vectors to compare the size of the objects. Kmodel(s, t) estimates the sim-

ilarity between two size-normalized models by comparing their textual annotations,

geometry, and texture, and is given in Equation 3.3.

4.2.4 Model Ranking

We can use the two similarity metrics given in Equation 4.1 and 4.2 to estimate the

probability that an object would appear in the context of other objects. We first

define this probability for the case where the support scene contains only a single

object b. Specifically, we need to compute the probability of placing an object a in

the query box. Objects are ranked by their probabilities of being in the box.

We model this probability using the following conditional distribution:

p(a|b, fab) ∝
∑
c∈M

Scb(σ0)Ψ(a, c, fab) (4.3)

CHAPTER 4. A VISUAL MEMEX FOR MODEL SEARCH 36

Ψ(a, c, fab) =

∑
(u,v)∈O

Sau(σ1)Scv(σ2)Kspatial(fab, fuv)∑
(u,v)∈O

Sau(σ1)Scv(σ2)
(4.4)

Here, Ψ(a, c, fab) is the pairwise compatibility between objects a and c. M is the set

of objects in the database and O the set of observed object pairs.

This inference algorithm closely follows that used in the Visual Memex [Mal-

isiewicz and Efros 2009]. The summation in Equation 4.4 can be seen as a weighted

sum of kernels, one for each observation. The weight of each kernel, SauScv, measures

the similarity between the object pair under consideration (a, c) and the arbitrary

object pair (u, v).

The parameters σ0, σ1, and σ2 control how contextual information propagates

between objects of different sizes. These have units of length and are chosen propor-

tional to the length of the longest dimension of the objects being compared (l). We

use σ0 = 2l, σ1 = 0.2l, and σ2 = 2l. The small value of σ1 places increased emphasis

on finding objects that are close to the size of the query box, while the larger values of

σ0 and σ2 permits objects of large size variation to contribute context neighborhood

information. Increasing the value of σ1 denotes increased uncertainty in the size of

the user-specified query box; as this value approaches infinity the size of the query

box becomes irrelevant.

Figure 4.3 provides a visualization of Equation 4.3. In this example, we plot

the probability that a keyboard, chair, couch and bathtub are near a monitor as a

function of the radial separation between the objects. Note that a keyboard has a

high probability of being near a monitor, but is not likely to be far from the monitor.

Examining the plot for a chair, we see there is interesting structure. First, chairs are

further from monitors than keyboards, and can also be found at larger radii. Couches

and bathtubs are much more common at large radii than close to monitors. This

shows that our algorithm is able to learn some of the structure in the scenes.

We presented Equation 4.3 for the case of only one object in the scene. One natural

assumption to make in the case of multiple support objects is to assume p(a|b, fab) is

independent between all support objects b, in which case we would simply compute

the product of this term for all supports (this is the assumption made by the Visual

CHAPTER 4. A VISUAL MEMEX FOR MODEL SEARCH 37

0 2 4 6 8 10 12 14 16

P
ro

b
ab

ili
ty

Radial Separation (meters)

Monitor vs. Keyboard

0 2 4 6 8 10 12 14 16

P
ro

b
ab

ili
ty

Radial Separation (meters)

Monitor vs. Chair

0 2 4 6 8 10 12 14 16

P
ro

b
ab

ili
ty

Radial Separation (meters)

Monitor vs. Couch

0 2 4 6 8 10 12 14 16

P
ro

b
ab

ili
ty

Radial Separation (meters)

Monitor vs. Bathtub

Figure 4.3: Density estimation as a function of radial separation between objects. A
representative object of each class was chosen, and Equation 4.3 was computed as
a function of the radial separation between the objects. The shape of these curves
approximates the expected relationship between these objects.

Memex.) We have found that this tends to unfairly penalize objects that are mostly

found in partial scenes, which may have many support objects where this probability

score is effectively zero. Instead we compute p(a|b, fab) for all Q support objects in

the scene, and store these in a list P for each object a, sorted from most to least

probable. Our final model score is then taken as a product over the q strongest

supporting objects in the scene (we use q = 5:)

p(a|b1, ...bK , fab1 , ...fabK) ∝
q∏
i=1

Pi (4.5)

Once a weighting over all models is complete, if desired a simple voting process

could be used to combine the model weights into a weight over each possible label,

in order to produce a set of labels that are likely to belong to objects in the query

CHAPTER 4. A VISUAL MEMEX FOR MODEL SEARCH 38

box [Medin and Schaffer 1978].

4.3 Results

4.3.1 Context Search vs. Keyword Search

One application of our algorithm is to suggest models to a user who wishes to add

another object to a scene. For example, imagine a user who is modeling a dining

room table and wishes to add a fork to it. One current approach is to use keyword

search. To find a model, the user searches Google 3D warehouse using “fork” as a

query term. The results returned are shown in Figure 4.4a. Using our system, the

user searches for models using a context query. The query is generated by selecting

a 3D bounding box on the dining room table. The context query returns the results

in Figure 4.4b.

Figure 4.4a shows that a keyword search can have trouble returning a useful list

of models. The keyword search was unable to determine what sense of the keyword

“fork” was appropriate. In this case, the result set included only one table fork;

the other eleven objects represent other senses of the term “fork” including “fork

lift” and “bicycle fork.” Although tuning forks are plausible, fork lifts cannot be

placed on dining room tables. In contrast, the context search returned four table

forks (Figure 4.4b). Since no keyword was given, small objects like pens and brushes

were also returned. All the objects could be sensibly placed on a dining room table.

Finally, Figure 4.4c show the results of doing a context plus keyword query search.

In this example, the result set was all table forks, except for one extraneous model.

4.3.2 Adapting to Context

Figure 4.5 shows the results of a context query when the scene consists of a single

object, in this case a desk. The top row shows the results for a query box in front of

the desk. For this query, 21 of the top 24 results are chairs. The middle row shows the

results for a tall box on the side of the desk. Here the context query returned 17 floor

lamps. These two queries demonstrate the algorithm’s ability to find different types

CHAPTER 4. A VISUAL MEMEX FOR MODEL SEARCH 39

Figure 4.4: Comparing keyword and context search. Top: Front page search results
for “fork” in Google 3D Warehouse. Middle: Results of a context search in our
database for a query box placed on a table. Bottom: Filtering the results of the
context search for models with the “fork” tag. A search engine which can look at the
target context and size can better discern the intent of the user’s query, especially for
keywords with multiple meanings.

CHAPTER 4. A VISUAL MEMEX FOR MODEL SEARCH 40

Figure 4.5: Context query results with a desk as the only supporting object. Left:
The user places a query box in the vicinity of the desk. Right: The top 24 search
results for each query. When models with identical geometry but different textures
occur, only the first result is shown.

CHAPTER 4. A VISUAL MEMEX FOR MODEL SEARCH 41

of models using different contexts. The bottom row shows a query to find an object

resting on the desk. This query can be satisfied by many different types of objects.

Quantifying the relevance of these results is more challenging; nevertheless, there at

least four distinct categories of results that are relevant. These include lamps, plants,

goblets, and vases.

It is interesting to note that in all three example queries, the highest rated result

(the one in the upper-left corner) would be a very plausible result for the given context.

If the user requested a single result be immediately returned (by pressing “I’m feeling

lucky”), they would not be disappointed. This is important for the design of more

powerful modeling tools such as automatic scene decoration, which we will show in

Chapter 6.

4.3.3 Multiple Supporting Objects

We ran an experiment to test the effect of adding additional contextual objects to

the scene. In this case, the user wanted to model a kitchen counter. The top row

of Figure 4.6 shows the results of the query with only a sink as context. The query

returns five sinks, and several other relevant models including a toaster oven, a mixer

and a vase, and a few undesirable models such as a printer and at least five objects

that are not meaningful. We now add a second object, a blender, to the scene, and

reissue the query. The additional context significantly raises the rank of the three

microwave models, and slightly increases the rank of the blender, toaster oven, and

vase models. It also removes the printers and three meaningless objects. Overall the

combination of the blender and sink noticeably improved the quality of the results.

4.3.4 User Evaluation

It is difficult to rigorously evaluate a context search algorithm because so much of

it depends on both human perception and user intent. To quantify the quality of

our search results, we use human evaluators to perform a standard precision-recall

evaluation on our results.

We start by making five test scenes, each with a single associated context query,

CHAPTER 4. A VISUAL MEMEX FOR MODEL SEARCH 42

Figure 4.6: Benefit of additional supporting objects. Top: The user places a sink
into an empty scene and asks for an object four feet away. Bottom: The user places
a blender in the scene between the sink and the target object, and repeats the same
query.

and ran our algorithm to get 500 search results for each scene. The number of

supporting objects in the scenes ranges from one to fifty. To compute the “recall”

capability of our results, we need to estimate the total set of viable results. To do this

we union out 500 results with the 1000 objects in the database whose size is closest to

that of the query box. Users were then presented with each model in the candidate

set in a random order and asked to decide whether the model was relevant to the

context query. Our user base consisted of five males and four females, none of whom

had any formal design experience.

The results of this study were used to estimate the set of relevant models for each

query by using human oracles: we assume that the models marked as belonging in the

query box by at least half of the users are the only relevant models in the database.

CHAPTER 4. A VISUAL MEMEX FOR MODEL SEARCH 43

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

P
re
ci
si
o
n

Recall

Figure 4.7: The solid curves show the precision-recall curve for our algorithm on
five test scenes. The relevance of each model was determined by surveying human
subjects. The dashed lines show the expected precision-recall curve if the candidate
model set had been presented to the user in a random order.

Given our search results and a relevance set for each scene, we plot a precision-

recall curve to evaluate the quality of our results. The solid curves in Figure 4.7 show

this curve for each scene. These curves demonstrate that even without keywords,

context-based search can successfully favor relevant models. In all five scenes the

algorithm returned 50% of the relevant models with a precision of at least 35%,

which implies that at least one in every three models was desirable.

To provide a comparison point for our search results, we computed the expected

precision-recall curves after randomizing the models in each candidate set and using

this as our final ranking. These are the dashed curves in Figure 4.7. All of these

curves have a precision between 10% and 20%. Because the candidate sets select

CHAPTER 4. A VISUAL MEMEX FOR MODEL SEARCH 44

highly for the size of the objects, these results can be taken as an approximation of

the performance of a size-only search engine.

The fact that our algorithm provides a noticeable improvement over a random

ordering of the candidate set indicates that context provides some useful information.

The actual information gained from context information compared against just the

bounding box size will depend heavily on the scene and the density of objects in the

database around the size of the query box. As a concrete example of the advantage of

context information, a direct size-based ranking for the top query in Figure 4.5 would

contain 8 toilets in the top 24 results.

4.3.5 Failure Cases

Although our algorithm does a reasonable job of returning relevant models, there are

several failure modes that will cause an irrelevant model to be ranked highly. First,

an object may be geometrically very similar to a relevant object but semantically very

different. Likewise, an irrelevant object may have the same tag as a relevant object.

For example, the model in Figure 4.6, 1st column, 3rd row, is tagged as “channel

mixer”. It is not a very relevant model to the query, but is both geometrically similar

to a microwave model and shares a tag with the “mixer” model, both of which are

relevant and appear in the top 24 results. Another failure mode can occur because our

spatial relationships are overly simplistic. For example, in the top query in Figure 4.5,

the filing cabinet object is not very relevant at the selected location, but was ranked

highly because it was found on the side of desks in the database and our spatial

relationships do not consider the relative orientation. The pairwise independence

assumption made by this algorithm can also result in spurrious suggestions, as we

will show in Chapter 5 (see Figure 5.9).

CHAPTER 4. A VISUAL MEMEX FOR MODEL SEARCH 45

4.4 Chapter Summary

In this chapter, we presented an algorithm to suggest models at a given location

in a scene that is being modeled. Our algorithm is based on a kernel density esti-

mation method used in computer vision to estimate the probability of an unknown

object given its surroundings and a database of images. Our algorithm returns many

useful results despite a comparatively low database quality and strong independence

assumptions about the occurrence of object pairs. In our experience context search

is a very easy tool to use — artists need only find an area they find “barren”, then

quickly browse through a list of results until something acceptable is found. Percep-

tually evaluating results is a very fast operation and undesirable results are easily

filtered. Keywords can also be used to filter the results of a context search, and

our search tool often presents surprising or creative results that help an artist create

diverse or interesting environments by borrowing from the creativity of other artists.

Chapter 5

Graph Kernels in Scene Modeling

In this chapter, we present our work on representing 3D scenes as relationship graphs,

and using graph kernels defined over these relationship graphs to enable scene mod-

eling tools [Fisher et al. 2011]. The tools we enable include relevant scene suggestion,

and a context search tool that overcomes the need to make the the pairwise indepen-

dence assumption used by the algorithm described in the previous chapter. On the

downside, the relationship graphs we define require a good segmentation of the input

scene database into meaningful components: the tools cannot tolerate operating di-

rectly on the Google 3D Warehouse scenes unless they are very well segmented, and

typically some limited human filtering is necessary.

Scene comparison is a challenging problem because scenes contain important struc-

ture at many different resolutions. The challenge of comparing highly structured data

occurs in a variety of fields, such as web search [Habegger and Debarbieux 2006], pro-

tein function prediction [Borgwardt et al. 2005], and image classification [Lazebnik

et al. 2006]. In all of these problems, attempting to directly compare the finest-level

data is rarely successful. Instead, the data is often transformed into a representation

that enables the comparison of important features. In this chapter, we will show

how to transform scenes into a relationship graph whose nodes represent semanti-

cally meaningful objects, and whose edges represent different types of relationships

between nodes. This graph representation greatly facilitates comparing scenes and

parts of scenes.

46

CHAPTER 5. GRAPH KERNELS IN SCENE MODELING 47

Figure 5.1: A set of scenes in the Google 3D Warehouse with “living room” in their
scene name. Many properties of a scene are not reflected well in the scene name. For
example, a user looking for models to add to an entertainment center would only be
pleased with the three scenes on the bottom.

One simple approach to scene comparison is to directly compare the tags artists

have provided for a scene or the name attached to the scene. Unfortunately, while a

scene name can provide useful information about the scene’s category, it cannot easily

express the stylistic variation within these categories. Likewise, it is challenging

for the scene tags to encompass all the interesting substructures within the scene.

In Figure 5.1, we show nine scenes retrieved from Google 3D Warehouse using a

keyword search for “living room”. Understanding the relationships between these

scenes requires a method to compare different aspects of the scene’s internal structure.

In this work we will describe how we can take a 3D scene and extract a set of

spatial relationships between objects in the scene. We show how we can use this set

of spatial relationships to define a positive-definite kernel between any two 3D scenes.

CHAPTER 5. GRAPH KERNELS IN SCENE MODELING 48

We use this kernel to execute several different types of queries for complete scenes

that incorporate the structural relationships between objects. We show how our scene

kernel can also be used to search for models that belong in a particular context and

have a specified spatial relationship to other objects. For example, a user could issue

a search for models that can be hung on a wall in the bedroom they are modeling.

5.1 Previous Work

5.1.1 Scene Comparison

A small number of attempts have been made at comparing 3D scenes. One approach

works by partitioning the mesh of each object into a set of regions, and forming a

graph by connecting adjacent regions [Paraboschi et al. 2007]. A feature vector for

each graph is constructed using the eigenvectors of the spectral decomposition of the

graph topology. This method is sensitive to the mesh segmentation and was not

tested on scenes with a large number of objects. Also, because their focus was on

manifold meshes it does not map well to the datasets we explore. Nevertheless, it is

similar to our approach in that it first reduces scenes to a graph and then compares

two scenes using properties of their graphs.

A problem that has many parallels to scene comparison is image comparison,

where the goal is to relate two images based on their semantic content. One approach

uses local self-similarities of image regions to construct descriptors that can robustly

compare visual entities [Shechtman and Irani 2007]. Another approach to image

comparison is to first segment the image into regions and then construct a graph by

connecting regions that are touching [Harchaoui and Bach 2007]. Two regions are

compared by using their color histograms. The images can then be compared by

looking at their respective segmentation graphs. Our approach can be seen as the

natural extension of this idea to 3D scenes: we first segment our scene into meaningful

objects, then insert edges that represent relationships between pairs of objects.

CHAPTER 5. GRAPH KERNELS IN SCENE MODELING 49

5.1.2 Graph Kernels

Kernel-based methods for machine learning have proven highly effective because of

their wide generality. Once a kernel is defined between the entities under consider-

ation, a wide range of learning algorithms such as support vector machines can be

applied [Cristianini and Shawe-Taylor 2000]. In addition, techniques such as multiple

kernel learning can be used to intelligently combine results from a large number of

kernels [Bach et al. 2004].

There is considerable work on defining kernels between data types that are highly

structured [Shawe-Taylor and Cristianini 2004]. In particular, several different kernels

between two graphs have been proposed [Kashima et al. 2004]. These have been

successfully applied to a variety of problems such as molecule classification [Mahé

et al. 2004] and image classification [Harchaoui and Bach 2007].

In its most general form, a graph kernel takes as input two graphs with labeled

nodes and edges, a kernel knode(na, nb) defined between node labels and a kernel

kedge(ea, eb) defined between edge labels, and returns a non-negative real number

reflecting the similarity between the two graphs. The node and edge kernels used

depend on the types of labeling used and are application specific. In our work,

nodes represent individual objects or collections of objects, and we can use any of the

model comparison techniques used in 3D model database search. Our edges represent

different types of relationships between objects, and the kernel used depends on the

types of relationships.

Given node and edge kernels, constructing an efficient kernel over graphs is a

challenging problem with a diverse set of existing approaches [Gartner et al. 2003].

One method that has proven very successful is to first reduce the graph to a finite set

of strings, and then use kernels defined over these strings. In particular, a graph walk

kernel can be defined by considering all walks of a fixed length as the set of strings.

As we will see, this admits a simple and efficient dynamic programming solution.

Another mapping from graphs to sets of strings is to consider all possible α-ary tree

walks in the graph of a fixed depth [Harchaoui and Bach 2007]. Unfortunately, we

found tree walks to be intractable for our problem because there is not a natural way

of ordering the edges around a node; successful applications for this type of graph

CHAPTER 5. GRAPH KERNELS IN SCENE MODELING 50

kernel have relied on properties like graph planarity to obtain such an ordering. It

has been shown that as long as the underlying node and edge kernels are positive

semi-definite, the resulting walk and tree walk graph kernels will also be positive

semi-definite [Shawe-Taylor and Cristianini 2004].

5.1.3 Spatial Relationships

In order to represent a scene as a graph, we need a way to take the geometric rep-

resentation of the scene and produce a set of relationships between pairs of objects.

These relationships might be largely geometric in nature (“object A is horizontally

displaced by two meters relative to object B”) or largely semantic (“object A is in

front of object B”). Capturing semantic relationships is desirable because they are

are more stable in the presence of object and scene variation.

Computer vision has used the spatial relationships between two objects in a pho-

tograph to assist with problems such as scene content understanding and object cat-

egorization. For example, many objects and materials are difficult to tell apart (sky

vs. water) but can be disambiguated using spatial relationships (sky is rarely found

below grass). One approach uses a conditional random field to maximize the affin-

ity between object labels using semantic relationships [Galleguillos et al. 2008]. The

relationships they consider are {inside, below, around, above}. Although these are

useful examples of relationships between objects or materials in 2D images, they are

not representative of semantic relationships between 3D shapes.

containment encircled circlement
contact surface contact support
attachment adhesion hanging
piercing impaled proximity
above below vertical equality
horizontal support front behind
viewport equality

Table 5.1: A list of spatial primitives used to study how humans reason about spatial
relationships [Feist 2000]. The relationships used in this chapter are shown in bold.

CHAPTER 5. GRAPH KERNELS IN SCENE MODELING 51

Psychologists have tried to understand what set of spatial primitives humans use

to reason about spatial concepts [Xu and Kemp 2010]. Although the nuances of

human spatial understanding are too complicated to construct a comprehensive list

of all possible primitives, in Table 5.1 we show one list of spatial primitives that has

been used with some success. Our goal is to test for these relationships given only

the geometry of two objects. Many of these relationships are highly geometric in

nature (circlement, above, containment), but some are very difficult to infer from

geometry alone (attachment vs. adhesion). Work in computer vision has looked at

using qualitative relationships between objects in images such as attachment, support

and occlusion to infer implicit geometric information from object labels [Russell and

Torralba 2009].

5.2 Representing Scenes as Graphs

Our algorithm takes as input a set of well-segmented scenes represented as scene

graphs. We start by constructing a corresponding relationship graph for each scene.

The nodes of a relationship graph represent all objects in the scene and the edges

represent the relationships between these objects. Our relationship graph represen-

tation is similar to the 3D parse graphs used in image understanding [Gupta et al.

2010]. Each non-transform node in the processed scene graph corresponds directly to

a node in our relationship graph. Given the nodes of the relationship graph, we then

determine the set of relationships between the nodes, thus creating a corresponding

edge set.

Good relationships should capture features of the scene that correspond with

spatial primitives used by humans. We have used a subset of the relationships in

Table 5.1 as our set of possible relationships. We chose relationships that were highly

discriminative and could also be determined using only geometric tests.

We define a polygon in mesh A to be a contact polygon with respect to mesh B

if there is a polygon in mesh B such that the distance between the two polygons is

less than a small epsilon, and the angle between the unoriented face normals of the

polygons is less than one degree. The results in this chapter use a contact epsilon

CHAPTER 5. GRAPH KERNELS IN SCENE MODELING 52

of 2mm, using the unit scaling provided with the scene. For the databases we use,

we also have a well defined gravity vector that describes the global orientation of the

scene.

Below is a list of the relationships we chose and the process used to test for them:

• Enclosure: Mesh A is enclosed inside mesh B if 95% of the volume of mesh

A’s bounding box is inside the bounding box of mesh B.

• Horizontal Support: Mesh A is horizontally supporting mesh B if there exists

a contact polygon in mesh A whose face normal is within one degree of the

gravity vector.

• Vertical Contact: Mesh A is in vertical contact with mesh B if there exists

a contact polygon in mesh A whose face normal is within one degree of being

perpendicular to the gravity vector.

• Oblique Contact: Mesh A is in oblique contact with mesh B if there exists a

contact polygon that does not satisfy any other test.

The tests are performed in the order given and an edge of the corresponding

type is created between two objects for the first test that is satisfied. In addition to

the above relationships we also retain the original parent-child edges from the scene

graph as a separate type of relationship. Figure 5.2 is a simple example illustrating

the resulting relationship graph. Object nodes can be connected by both contact and

scene graph inheritance relationships. Note how the monitor and keyboard nodes are

both scene graph children of the computer node.

5.3 Graph Comparison

By constructing a node and edge set for each input scene we obtain its representation

as a relationship graph. Our goal is to compare two relationship graphs or subparts

of relationship graphs. To accomplish this comparison we first need a way to compare

individual nodes and edges in these graphs. These will be key subcomponents in our

graph kernel.

CHAPTER 5. GRAPH KERNELS IN SCENE MODELING 53

Study

Computer

Keyboard

Monitor Chair

Books

Book

Book

Desk

BookBook

Scene graph parent-child relationship Surface contact relationship

Figure 5.2: A scene and its representation as a relationship graph. Two types of
relationships are indicated by arrows between the object nodes.

CHAPTER 5. GRAPH KERNELS IN SCENE MODELING 54

5.3.1 Node Kernel

The nodes of a relationship graph represent objects within the scene. Each node

contains a number of features that relate to the identity and semantic classification of

a particular object. These properties include the size of the object and the geometry,

tags, and texture of the underlying model. We compare two nodes using the model

kernel described in Chapter 3:

knode(r, s) = σ(r)σ(s)kmodel(r, s) (5.1)

The σ(r) and σ(s) terms are node frequency normalization scalars whose compu-

tation is described in Section 5.3.4. The result of this kernel evaluation is clamped to

0 if it is less than a small epsilon (ε = 10−9). This model kernel can be precomputed

between all possible models in the database.

5.3.2 Edge Kernel

We now define an edge kernel to provide a similarity metric between edges representing

relationships. In our implementation we choose to represent each relationship as a

different edge with a simple string label indicating the type. The kernel between

two edges e and f with types indicated by labels te and tf respectively, is then

simply kedge(e, f) = δtetf . Although we considered performing a more discriminative

comparison between relationships, assigning partial matches (values less than 1) runs

the risk of devaluing functionally similar relationships.

5.3.3 Graph Kernel

Given node and edge kernels we now define a graph kernel to perform the comparison

between two scenes. Our approach is heavily based on a graph kernel algorithm used

for image classification [Harchaoui and Bach 2007].

A walk of length p on a graph is an ordered set of p nodes on the graph along

with a set of p− 1 edges that connect this node set together. Unlike a path, nodes in

a walk may be repeated.

CHAPTER 5. GRAPH KERNELS IN SCENE MODELING 55

Node kernel evaluations Edge kernel evaluations

0.6 0.9 0.41.0 1.0

r1 r2 r3

e1 e2

s1 s2 s3

f1 f2

Figure 5.3: Comparison of two walks. Left: The two scenes being compared. Right:
Two walks in each scene, both rooted at the lamp node. The two walks are compared
by taking the product of kernel evaluations for their constituent nodes and edges.
The similarity between these two walks is 0.6 ∗ 1 ∗ 0.9 ∗ 1 ∗ 0.4 = 0.22.

CHAPTER 5. GRAPH KERNELS IN SCENE MODELING 56

Let W p
G(r) be the set of all walks of length p starting at node r in a graph G.

As defined earlier, knode(r, s) and kedge(e, f) represent the node and edge kernels.

Considering nodes r and s in relationship graphs Ga and Gb respectively we now

define the p-th order rooted-walk graph kernel kpR:

kpR(Ga, Gb, r, s) =
∑

(r1,e1,...,ep−1,rp)∈W p
Ga

(r)

(s1,f1,...,fp−1,sp)∈W p
Gb

(s)

knode(rp, sp)

p−1∏
i=1

knode(ri, si)kedge(ei, fi) (5.2)

This kernel is comparing nodes r and s by comparing all walks of length p whose first

node is r against all walks of length p whose first node is s. The similarity between

two walks is evaluated by directly comparing the nodes and edges that compose each

walk using the provided kernels for these object types. In Figure 5.3, we visualize one

step of the computation of k2R for two nightstand scenes.

If we also define NG(x) to be the set of all neighboring nodes of x in the graph G

we can formulate a recursive computation for kpR(Ga, Gb, r, s):

kpR(Ga, Gb, r, s) = knode(r, s)×
∑

r′∈NGa (r)
s′∈NGb

(s)

kedge(e, f)kp−1R (Ga, Gb, r
′, s′) (5.3)

where e = (r, r′) and f = (s, s′) are the edges to neighboring nodes of r and s. The

above computation can be initialized with the base case k0R(Ga, Gb, r, s) = knode(r, s).

We can use this recursive expression to construct a dynamic programming table for

each pair of relationship graphs. We store values for all node pairs between the two

graphs and for all walk lengths up to p. The kernel we have thus defined can be used

to compare the local structure of two relationships graphs rooted at particular nodes

within those graphs.

We can use kpR to define a p-th order walk graph kernel kpG which compares the

global structure of two relationship graphs. Here we use VG to mean the set of all

nodes of graph G. This kernel is computed by summing kpR over all node pairs across

CHAPTER 5. GRAPH KERNELS IN SCENE MODELING 57

the two graphs:

kpG(Ga, Gb) =
∑
r∈VGa
s∈VGb

kpR(Ga, Gb, r, s) (5.4)

The running time complexity for computing kpG between two graphs is O(pdGdHnGnH)

where dG is the maximum node degree and nG is the total number of nodes in the

graphs [Harchaoui and Bach 2007]. As we show in Section 5.5.4, in practice these

evaluations are very fast.

The graph kernel we have presented can be interpreted as embedding the graphs

in a very high dimensional feature space and computing an inner product 〈Ga, Gb〉.
While inner products are widely useful for many applications, some applications such

as the Gaussian kernel K(Ga, Gb) = e−‖Ga−Gb‖2/σ operate on a distance metric instead

of an inner product. Given a positive-definite kernel, there are many possible distance

functions that can be defined over the feature space spanned by the kernel [Ramon

and Gärtner 2003]. For a p-th order walk graph kernel kpG, a simple corresponding

distance function is:

d(Ga, Gb) =
√
kpG(Ga, Ga)− 2kpG(Ga, Gb) + kpG(Gb, Gb)

5.3.4 Algorithm Details

Graph Kernel Normalization. Normalization of the walk graph kernel is used

to account for the fact that scenes containing many objects will tend to match better

against all other scenes by virtue of their broader coverage of the dataset of models

and relationships. For example, the relationship graph formed by a union of all the

scenes in the database would match well to every scene. To combat this problem,

we implement a normalization term by dividing the result of a graph kernel by the

maximum of the evaluation between each graph and itself. For each graph kernel kG

we have a normalized graph kernel k̂G:

k̂G(Ga, Gb) =
kG(Ga, Gb)

max (kG(Ga, Ga), kG(Gb, Gb))

CHAPTER 5. GRAPH KERNELS IN SCENE MODELING 58

This normalization ensures that a graph will always match itself with the highest

value of 1 and other graphs with values between 0 and 1.

Node Frequency Normalization. The importance of an object within a scene is

intrinsically affected by the number of occurrences of that object within the scene.

For instance, the existence of a book model in a scene is an important cue from

which we can infer the type of room the scene is likely representing. The existence of

hundreds more book models will naturally influence our understanding of the scene.

However, the relative importance of each additional book diminishes as it is in essence

an instance of an agglomeration. In order to represent this we introduce an occur-

rence frequency normalization factor for the node kernel evaluation following a term

weighting approach used for document retrieval normalization [Salton and Buckley

1988]. Concretely, for a node na in the set of nodes VG of a graph G:

σ(na) =
1∑

nb∈VG knode(na, nb)

This normalization factor scales the node kernel evaluation defined in Equation 5.1.

The computed value for na is equal to 1 if the node is unique and decreases to 0 with

more similar or identical nodes. Using this approach we avoid the problem of large

agglomerations of object instances, such as books in a library, drowning out other

interesting structure in a scene.

Parameter Selection. Our graph kernel, kpG, is parameterized by p, the length

of the walks taken. Different choices for p will capture scene features at different

resolutions, and it is unlikely that a single value of p will be the best kernel for any

given task. This is a very common problem in machine learning and several multiple

kernel learning techniques have been developed to allow learning tasks to benefit from

information provided by multiple kernels [Bach et al. 2004]. Although it is possible

for machine learning classifiers to directly make use of multiple kernels, it is very

convenient to define a single kernel that is a linear combination of kpG for different

values of p. We use the term basis kernels to refer to the individual kernels that are

CHAPTER 5. GRAPH KERNELS IN SCENE MODELING 59

summed to form the final kernel. Given any machine learning task, we can use cross-

validation to decide on good weights for each of the basis kernels. Here we formulate

a machine learning task that we will use to automatically learn the parameters.

Relevance feedback is a technique used by search engines to improve results. The

user selects relevant scenes from a candidate list of results, and the search engine at-

tempts to transform the feature space to favor results similar to ones the user marks as

relevant [Papadakis et al. 2008]. The input to our relevance feedback implementation

is a set of scenes selected by the user, each marked as either a good or bad response

to the query. Given a specific scene kernel, we train a soft margin support vector

machine classifier using the selected scenes as the training examples. We use the

sequential minimal optimization algorithm to train our SVM [Platt 1999]. Because

the SVM is only trained on the selected scenes this training is extremely fast; even

if the user selects 50 scenes the SVM optimization always took us less than 50ms.

We then use this SVM to rank all scenes in the database according to their signed

distance to the separating hyperplane.

To use relevance feedback to learn our kernel parameters we first need to develop a

training set. We suppose that we have N different user-designed queries (an example

query might be “scenes that contain interesting sconce arrangements”). For each

task, we assume users have gone through every scene in the corpus and evaluated

whether it is a good or bad response to the query.

We can use this dataset to evaluate the quality of our relevance feedback results for

a given set of parameters. For each modeling task we randomly pick samples from the

database, half from the positive class and half from the negative class. Given a fixed

set of kernel weights, we can compute the expected classification error of our SVM and

average it over the N modeling tasks. We compute this average classification error for

a large set of possible parameters, and choose the parameters with the lowest average

classification error. In addition to varying this over a large set of possible weights

for each basis kernel, we also search over different possible values of the soft margin

parameter C. Although we found this cross-validation approach to multiple kernel

learning to be sufficient for our purposes, it is also possible to directly optimize the

weights of the basis kernels as part of a modified SMO algorithm [Bach et al. 2004].

CHAPTER 5. GRAPH KERNELS IN SCENE MODELING 60

5.4 Dataset

In this chapter we use a subset of the Google 3D Warehouse dataset described in

Chapter 2 after limited human filtering has been applied. Specifically, we chose a

subset of scenes and had humans manually select all the scene graph nodes that cor-

respond to meaningful objects. For those nodes marked as meaningful, they were also

tagged with a small description such as the object’s category or subcategory (sim-

ilar to the “name” field on Google 3D Warehouse models). This filtering approach

mimics the methods used in computer vision to construct 2D image datasets such

as PASCAL, MSRC, and LabelMe [Russell et al. 2008]. All root nodes are consid-

ered meaningful, as they correspond to complete scenes that have been uploaded to

the database. We used this to acquire a set of scenes with approximately uniform

segmentation and tagging quality.

Using this per-model information we can convert our scenes into relationship

graphs. All nodes corresponding to models marked as meaningful by users become

nodes in the relationship graph. Scene graph parent-child relationship edges are added

between a node and its parent. If a node’s parent node does not correspond to a mean-

ingful model, we recursively move to the next parent until a node corresponding to

a meaningful model is found. Geometry-based relationship edges are then added as

described in Section 5.2, and the resulting relationship graphs are used as the input

to our algorithm.

Because we are using humans to process scenes, rather than using all our 3D

Warehouse scenes we focus on a subset that are relevant to a specific category of

queries. We consider all scenes that contain more than one object and have any

of the following tags: “kitchen”, “study”, “office”, “desk”, or “computer”. In total

we have chosen to use 277 such scenes with approximately 19000 models (including

different instances of the same geometry). Indoor room scenes are an interesting area

to study because their interior design contains structural patterns for our algorithm

to capture.

Although we have observed most Google 3D Warehouse scenes to be over-segmented,

CHAPTER 5. GRAPH KERNELS IN SCENE MODELING 61

the architecture is usually not well segmented. For scenes such as a house with mul-

tiple rooms, the architecture itself contains interesting substructure that is often not

captured in our scene graphs. While one might imagine several ways to automatically

perform this segmentation, the subset of Google 3D Warehouse scenes we are consid-

ering are at most as complicated as a single room and usually do not have complex

architectural substructures. Nevertheless, our algorithm can easily take advantage

of more detailed information about the architecture that may be provided by some

databases, such as computer-generated building layouts [Merrell et al. 2010].

5.5 Tools

Here we present scene modeling tools based on the graph kernel approach described

above.

5.5.1 Relevance Feedback

Recall that kpG is parameterized by p and different choices for p capture scene features

at different resolutions. As proposed in Section 5.3.4, we can use relevance feedback

to perform parameter selection and determine a good aggregate kernel that captures

features at different scales.

To build a training set we presented four different users with our scene database

and asked them to think of a scene modeling task of their choice. For example, they

might want to find scenes with interesting computer peripherals such as webcams

or fax machines, or find scenes with wall sconces that fit well in a study they are

modeling. They then classified each scene in the database as either being a good or

bad response to their task. Unlike the experiment describe in Section 4.3.4, we have

a comparatively small number of scenes so it is possible to enumerate the relevancy

of every possible result.

We use this training set for parameter selection. Our basis kernels are walk graph

kernels of length 0 to 4. We consider all possible linear combinations of these five

kernels with weights ranging from 0 to 1 at 0.1 increments. We also consider the

CHAPTER 5. GRAPH KERNELS IN SCENE MODELING 62

following values for the soft margin parameter C: {0.001, 0.01, 0.1, 1, 10, 100}. For

this test we used 6 positive and 6 negative examples, and averaged the classification

error over 10,000 randomly chosen training sets and over each of the four modeling

problems. The best set of parameters is shown in Table 5.2 and had an average

classification error of 20.9%. The varied nature of these coefficients suggests that

different settings of our graph kernel are capturing different features of the scenes.

C k0G k1G k2G k3G k4G

10 0.5 0 0.1 0.1 0.3

Table 5.2: Weighting used for combining graph kernels with different path lengths.

10%

15%

20%

25%

30%

35%

0 10 20 30 40 50 60

A
ve

ra
ge

 C
la

ss
if

ic
at

io
n

 E
rr

o
r

Number of Training Examples

Relevance Feedback Training Examples

Figure 5.4: Classification error using a support vector machine to distinguish between
relevant and irrelevant scenes as a function of the number of user-selected training
examples.

In Figure 5.4 we compare the classification error using the weighted kernel from

CHAPTER 5. GRAPH KERNELS IN SCENE MODELING 63

Table 5.2 as a function of the number of training examples used. Although the

classification error decreases steadily, it remains close to 12% even when 30 positive

and 30 negative training examples are used. This suggests that many of the queries

designed by our users contain challenging subtleties that are not easily captured by

our graph kernel.

Because the SVM ranks scenes based on confidence, the user is first presented

with suggestions that the algorithm determines are very likely to be relevant. In Fig-

ure 5.5 we show relevance feedback results using 4 training scenes and the coefficients

given in Table 5.2. Even with a small number of selected scenes the algorithm is able

to infer the user’s preferences. All of the top 18 results are relevant to the query.

Positive Examples Negative Examples

Figure 5.5: Search results using relevance feedback. Top: A user looking for scenes
with interesting computer peripherals selects two scenes they like and two scenes they
do not like from the database. Bottom: The top 18 results using a scene search guided
by the user’s selections.

At first glance relevance feedback may seem cumbersome — users must first issue

a query, classify multiple results, and finally ask for relevance feedback based on their

selections. However it is possible for search engines to passively use relevance feedback

methods by aggregating search history information from many previous users. For

CHAPTER 5. GRAPH KERNELS IN SCENE MODELING 64

example, if a user issues a common query that the engine has seen many times before,

click-through rates or model insertion rates could be used as a proxy to predict the

relevance or irrelevance of results.

5.5.2 Find Similar Scenes

One application of our scene kernel is to suggest scenes that are related to the one

the user is modeling, to allow them to easily find and import related content. We use

the aggregate graph kernel described in Table 5.2 to compute the similarity between

the chosen scene and all the scenes in the database. Scenes are ranked using this

similarity value in decreasing order.

Query Results

Figure 5.6: “Find Similar Scene” search results. Left: The query scene provided by
the user. Right: The top six scenes in the database that match the query. The best
match is shown on the left.

In Figure 5.6 we show the top-ranked results for five different queries. Our algo-

rithm returns scenes that share many structural similarities with the query scene. For

example, in the first scene many results contain a similar style of shelving. Likewise,

CHAPTER 5. GRAPH KERNELS IN SCENE MODELING 65

in the second scene the top results are all simple desk scenes with laptop computers.

These results also demonstrate the large amount of structure sharing used by artists

in Google 3D Warehouse. For example, in the fourth scene query, the top ranked re-

sult uses the exact same models on the top of the desk, while changing other aspects

of the furniture and layout.

5.5.3 Context-based Model Search

Using our framework, there is an intuitive mapping between a context-based search

for 3D models and our rooted-walk graph kernel (kpR). We implement such a search

by placing a virtual query node in the graph. The relationships that the desired

object should have with other objects in the scene are defined through a labeled set

of connecting query edges. Geometry, tags, and other node properties can optionally

be provided by the user to refine the query beyond just considering relationships to

other models in the scene. Figure 5.7 illustrates a query for an object that is in

contact with a desk.

Once we have placed the virtual node within the query scene’s relationship graph,

we then evaluate kpR between this virtual node and all other relationship graph nodes

in our scene corpus. The kpR evaluation for each node indicates how similar the

environment around that model is to the environment around the query node. We

use this evaluation to rank all models in the database.

The walk length parameter p in kpR controls the size of the contextual neighborhood

that is compared by the model context search. When p = 0, all models are ranked

by considering only the geometry, tags, or size provided by the user for the query

node. When p = 1, the algorithm additionally considers the geometry and tags of

the models connected to the query node by query edges (in Figure 5.7, this would

just be the desk model). Increasing to p = 2 and beyond provides an intuitive way

of visualizing the region of support considered by the context search.

In Figure 5.8 we show the results of two context-based queries. In both cases the

user is searching for models that would belong on top of the desk in their scene. A

query node was inserted into these scenes and connected to the desk node through

CHAPTER 5. GRAPH KERNELS IN SCENE MODELING 66

Study

Desk

Query

Chair

Monitor
Scene graph
parent-child
relationship

Surface contact
relationship

Figure 5.7: A model context search expressed by introducing a query node to a
relationship graph. The dotted edge represents the contact relationship that connects
the query node to the scene and defines its context. Multiple edges of different
relationship types can easily be introduced for a single query node.

a horizontal support relationship edge. We then evaluate kpR for walk length p = 3

between the query node and all other relationship graph nodes in the database to

determine model suggestions.

The results indicate how the existence of a computer and related objects on the

desk in the top scene produces computer peripheral and accessory suggestions. In

contrast, the bottom scene’s context induces results that are more appropriate for a

study desk. Also observe that in both cases all of the highly ranked results are at

least potentially relevant — only models that have been observed to be horizontally

supported by desks (or models geometrically similar to desks) can be highly ranked.

The context-based search algorithm described in Chapter 4 assumes all pairs of

CHAPTER 5. GRAPH KERNELS IN SCENE MODELING 67

Query Scene Suggested Models

Figure 5.8: Context-based model search results. Left: A user modeling a desk scene
issues a query for a model to be placed on the desk. Right: Highest ranked models
for each query. Note how the context provided by the models in the query scene
influences the categories of the suggestions.

objects are random independent events. In contrast, the graph kernel approach con-

siders the structural relationships between all objects in the scene. To illustrate the

difference between these two approaches, we modeled a desk scene with a bowl and

two cups, shown on the left side of Figure 5.9. Consider a user who wants to search

for other objects to place on this desk. We want to execute this query using both

methods.

There are some differences between the formulation of context search queries in

these algorithms that need to be resolved before a comparison can be made. The

graph kernel approach expresses the desired location as a relationship to existing

objects, while the approach from Chapter 4 expresses the location as a 3D point in

the scene. We have chosen a point 10cm above the center of the desk to correspond

to our algorithm’s “horizontal contact” relationship to the desk.

CHAPTER 5. GRAPH KERNELS IN SCENE MODELING 68

Query Scene Graph Kernel Method

Visual Memex Method

Figure 5.9: Left: The user asks for an object on the desk. Right: Results comparing
the results of the graph kernel method and the Memex method (Chapter 4).

In Figure 5.9, we show the results using both approaches on our database. Because

the graph kernel algorithm considers the structural relationships in the scene it returns

many plausible objects that have been observed on desks in the database, such as

lamps and speakers. On the other hand, the Memex algorithm considers all object

pairs independently. It returns objects such as sinks and mixers because these objects

are often found in the vicinity of bowls, cups and drawers — by making the assumption

that object occurrences are independent, it has been “fooled” into thinking that this

is a kitchen-like scene. By not considering the semantic relationships between objects,

the Memex algorithm is not able to determine that sinks are not commonly found on

top of desks — the graph kernel approach will only make such suggestions if there is

a scene in the database with a mixer or sink on top of a desk.

5.5.4 Performance

One nice property of graph kernels is that dynamic programming permits extremely

efficient evaluation. To test the performance of our algorithm we computed the walk

graph kernel k4G between all pairs of scenes in our database. The average graph to

graph kpG evaluation took 0.150ms. Using this average value it would take approxi-

mately 1.5s to exhaustively compare a query scene against a 10,000 scene database.

CHAPTER 5. GRAPH KERNELS IN SCENE MODELING 69

This experiment was run on a quad-core 2.53GHz Intel Xeon CPU. Note that this is

also the approximate cost of executing a 3D model context query — a subcomponent

of evaluating kpG between two scenes is to compute kpR between all possible node pairs.

Overall, we feel our algorithm is fast enough for interactive use on most databases.

5.6 Chapter Summary

We have presented a novel framework for characterizing the structural relationships in

scenes using a relationship graph representation. Our basis kernels compare the local

information contained in individual models and relationships, and the walk graph

kernel aggregates this information to compare the topological similarity between two

scenes. We have shown that our algorithm can be used for several scene modeling

tools, including suggesting similar scenes and context-based model search. A positive-

definite kernel is a very powerful tool, and by defining one between two scenes we gain

access to a rich body of machine learning techniques that have been developed. In

practice we have found scene suggestion to be a convenient tool for exploring design

alternatives. However its usefulness is most pronounced on large databases such as

Google 3D Warehouse, and the tool suffers on smaller databases such as the Scene

Studio database discussed in Chapter 2. Without a critical number of scenes there is

not enough variety within the different types of scenes for the discriminative power

of our relationship graph kernel to provide significant benefit.

Chapter 6

A Generative Model for 3D Scenes

6.1 Introduction

In this chapter, we will present an algorithm to generate new environments similar to a

set of input examples [Fisher et al. 2012]. Our pipeline is exemplified in Figure 6.1. A

user provides the system with examples illustrating the desired type of scene, and the

system returns a large set of synthesized results. Unlike previous tools, which focus

on low-level operations such as model search or scene retrieval, this tool simulates

the effects of a very large number of operations at once. Although considerably more

powerful, performing so many operations without the artist being involved at each

stage is very challenging and we will present several contributions that enable us to

generate plausible and diverse environments.

There are several criteria an example-based synthesis algorithm should meet.

First, it should generate plausible scenes; they should look believable to a casual

observer. Second, it should generate a variety of scenes; they should not be copies or

small perturbations of the examples. Third, users should only have to provide a few

examples, since they are time-consuming to create.

These goals are challenging to meet, and some stand in conflict with one another.

Generating a variety of scenes is difficult when the system can only draw data from

a few examples. Scenes can contain a large number of different objects, the full

range of which can be difficult to specify in a few examples. Just because the user

70

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 71

Input Scenes Synthesized Results

Figure 6.1: Example-based scene synthesis. Left: four computer desks modeled by
hand and used as input to our algorithm. Right: scenes synthesized using our algo-
rithm. Our algorithm generates plausible results from few examples, incorporating
object composition and arrangement information from a database of 3D scenes to
increase the variety of its results.

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 72

omitted some type of object in the examples, does that mean she does not want

it in her scenes? Some objects are connected via precise functional and geometric

relationships, while others are more loosely coupled. To generate plausible scenes,

an ideal example-based algorithm would infer these relationships from data without

additional user guidance.

The example-based scene synthesis method presented in this chapter meets the

above challenges through three main contributions. Our first contribution is a prob-

abilistic model for scenes. It consists of an occurrence model, which specifies what

objects should be in the generated scenes, and an arrangement model, which specifies

where those objects should be placed. The occurrence model uses a Bayesian network,

drawing on recent work in example-based shape synthesis [Kalogerakis et al. 2012].

The arrangement model uses a novel mixture of Gaussians formulation.

Our second contribution is a clustering algorithm that automatically discovers

interchangeable objects in a database of scenes and forms them into groups. We

call these groups contextual categories. A contextual category can contain a greater

variety of objects than the basic categories (i.e. “table,” “chair,” “lamp”) used by

most applications. To find these categories, our algorithm exploits the insight that

objects that occur in similar local neighborhoods in scenes (i.e. “on a plate,” “beside a

keyboard”) are likely to be considered interchangeable when building plausible scenes.

Using contextual categories, our algorithm can incorporate a wider variety of objects

in synthesized scenes.

Our third contribution is a method for learning the probabilistic models from a mix

of example scenes and scenes from a large database. In doing so, we treat the database

as a “prior” over possible scenes. This provides a wide variety of scene content, and

the examples guide that content toward a particular desired target. We allow the

user to control the strength of the database prior through simple parameters, trading

similarity to examples for increased diversity. Using these mixed models, our algorithm

can synthesize scenes with a greater variety of both objects and arrangements.

Our results demonstrate the utility of our method for synthesizing a variety of

scenes from as few as one sparsely populated example. Through a judgement study

with people recruited online, we found that approximately 80% of synthesized scenes

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 73

are of adequate quality to replace manually-created ones. This level of quality is more

than sufficient for a user to browse a sorted list and find synthesized scenes of interest.

We refer to our learned model as a schema. In psychology and learning theory,

a schema is a mental structure that represents knowledge about the world [Neisser

1967]. Similarly, our schemata are data structures that represent knowledge about a

particular type of environment.

Our learning algorithm relies upon having a static support hierarchy defined for

the input scenes. The results we will show all use the Scene Studio database described

in Chapter 2 as the backing scene database, and the examples are also generated using

our scene modeling program.

6.2 Related Work

Related work has tackled problems similar to example-based scene synthesis. While

our algorithm uses some of the same underlying techniques, none of these methods

alone are sufficient to meet our goals.

Component-based object modeling Recent work has demonstrated a graphical

model for individual objects (such as chairs, planes, and boats) that encodes the

cardinality, style, and adjacencies of object sub-components [Kalogerakis et al. 2012;

Chaudhuri et al. 2011]. This model can be trained on input objects of a particular

class and sampled to generate new objects that are recombinations of input object

components. This approach is well-suited for object synthesis, since objects in a

given class typically have few functional sub-components whose placement is well-

specified by mesh adjacency information. Scenes do not share these properties: they

can contain dozens of different, loosely-related objects, and each object is free to move

continuously on its supporting surface. Our algorithm uses a separate arrangement

model to capture the continuous spatial relationships between many possible objects.

The occurrence model determines which objects should go in a scene and is based

on the Bayesian network formalization used in Chaudhuri et al. [2011], with several

modifications to better support scene synthesis.

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 74

Evolutionary object modeling Another approach to object synthesis evolves a

set of diverse objects that is iteratively fit to a user’s preferences [Xu et al. 2012].

With this scheme, generated objects are always an interpolation of the initial input

set of objects. Thus, the algorithm cannot introduce any new object sub-components

that were not present in the input set. This restriction is acceptable for objects, since

they typically have a handful of functional subcomponents. Scenes can contain dozens

of loosely-related objects, however, so using this method on a few input scenes will

generate repetitive content. Since our algorithm extracts contextual categories and

learns mixed probabilistic models from a database of scenes, it can incorporate new

types of objects not found in the examples and increase the variety of synthesized

results.

Inverse procedural modeling Researchers have also synthesized objects from

examples by inferring a procedural model that might have generated those exam-

ples [Bokeloh et al. 2010]. This system searches for partial symmetries in the example

object geometry, cuts the objects into interlocking parts based on those symmetries,

and then generates a grammar that can synthesize new objects by stitching compati-

ble parts together. This method works well with objects that are defined by repeated,

regular sub-structures—a property that most scenes do not exhibit. Salient relation-

ships in scenes cut across levels in the scene graph hierarchy, so context-free grammars

are unlikely to model them well. In contrast, our probabilistic models for object oc-

currence and arrangement can learn salient existence and placement relationships

between any pair of objects.

Automatic furniture layout Outside the domain of object synthesis, methods

have recently been developed for optimizing the layout of furniture objects in interior

environments [Merrell et al. 2011; Yu et al. 2011]. These methods define an energy

functional representing the ‘goodness’ of a layout, and then use stochastic optimiza-

tion techniques such as simulated annealing to iteratively improve an initial layout.

While they can generate plausible and aesthetically pleasing furniture arrangements,

these methods do not completely synthesize scenes, since they require a user to specify

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 75

the set of furniture objects to be arranged. In contrast, our algorithm chooses what

objects exist in the scene using its occurrence model. These methods also require non-

example input: Yu et al. [2011] uses example layouts but requires important object

relationships to be marked, and Merrell et al. [2011] uses domain-specific principles

from interior design and requires a user in the loop. Our arrangement model, based

on Gaussian mixtures and Gaussian kernel density estimation, can be trained entirely

from data. It uses a heuristic for relationship salience to automate arrangement of

scenes with dozens of objects.

Open-world layout Closely-related recent work seeks to automatically generate

‘open-world’ layouts, which are layouts with an unspecified number of objects [Yeh

et al. 2012]. The underlying generative model is a probabilistic program, which is

compiled into a factor graph representation and sampled using a variant of Markov

Chain Monte Carlo. The algorithm succeeds at synthesizing interior environments,

such as coffee shops, with varying shapes and scales. However, the underlying proba-

bilistic program is written by hand and can only generate patterns that were expressed

in the code. In contrast, our algorithm learns its generative model from data and does

not require any programming ability on the part of the user.

6.3 Approach

We want to synthesize scenes from a few input examples. The fundamental challenge

is that scene synthesis is hard due to the number of possible configurations. Even

for a single type of scene with a modest number of objects, such as an office desk

scene, the restricted set of plausible configurations that we would like to synthesize is

large and very high-dimensional. Furthermore, a user who provides a few examples

can only express a small number of desired configurations, but the assumption that

they would like synthesized results to conform to only the objects and arrangements

in the examples is usually false. We need to address this combination of a large

output domain and a restricted set of inputs with an approach that avoids generating

repetitive results while retaining plausibility and similarity to the examples.

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 76

Our insight is that, much like users have diverse background knowledge from which

they draw to construct examples, we can turn to a large database of scenes in order

to “fill in the gaps” between the examples. The scene database provides many models

instantiated in plausible configurations which we exploit in two ways to improve the

diversity of our synthesized scenes. Firstly, we compute contextual categories by

using object neighborhoods in scenes to group together objects that are likely to

be considered interchangeable. These contextual categories then allow the synthesis

algorithm to use more objects in any given role. We describe a simple algorithm

to compute these categories using bipartite matching and hierarchical agglomerative

clustering. Secondly, we treat the scene database as a prior over scenes and train our

probabilistic model on both the examples and relevant scenes from the database. We

use a recently-developed similar-scene retrieval technique to choose scenes relevant

to the examples and introduce diversity without impacting plausibility. The user

can control the degree of mixing between the two data sources via intuitive blending

parameters.

For our investigation we use the Scene Studio database described in Chapter 2.4.

Each object is tagged with a basic category label such as “clock” or “bed.” Each

object is also rooted to a point on the surface of another object; the set of all such

“parent-child” relationships defines a static support hierarchy over the scene that our

algorithm exploits. Section 6.9 describes the results of our database construction

effort in more detail.

Our system begins by retrieving contextual categories from a large database of

scenes (Section 6.4). Given these categories, it then learns mixed models from both

the user provided examples and the scene database (Section 6.5). It first trains

the occurrence model, which describes what objects can be in synthesized scenes

(Section 6.6). It then trains the arrangement model, which describes where those

objects can be placed (Section 6.7). Finally, it samples from these probabilistic models

to synthesize new scenes (Section 6.8).

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 77

6.4 Contextual Categories

We would like our synthesis algorithm to be able to draw from a wide variety of objects

in order to increase the diversity of our scenes. Previous work addressing furniture

layout used predefined sets of basic functional categories, such as “chairs” [Merrell

et al. 2011; Yu et al. 2011]. For scene synthesis, such a categorization can be restric-

tive, leading to repetitive scenes. We note that many objects are interchangeable with

other objects not necessarily from the same basic category. For example, a contextual

category of “objects that belong on a plate in a kitchen” may contain many different

basic categories such as “apples,” “bread,” “cookies,” etc.

Our insight is that such interchangeable objects are frequently surrounded by

objects that are similar both in type and arrangement. We use the term neighbor-

hood to refer to the arranged collection of models around an object. This insight

suggests that neighborhood similarity can predict interchangeability to automatically

construct contextual categories.

Neighborhood similarity To group objects using the similarity of their neighbor-

hoods, we must first quantify neighborhood similarity. We reduce each object x to its

centroid point plus its basic category label Lx. Comparing two neighborhoods then

reduces to matching two labeled point sets, which is a well-studied problem in com-

puter vision and structural bioinformatics. Popular methods include techniques based

on geometric hashing [Wolfson and Rigoutsos 1997], bipartite matching [Diez and

Sellarès 2007], and finding maximum-weight cliques in association graphs [Torsello

et al. 2007].

Our approach is based on bipartite matching. To compare objects A and B, we

transform the database scenes in which they occur such that A and B are at the

origin and the normals of their supporting surfaces are aligned with ~z = [0, 0, 1]T . We

form the complete bipartite graph between the objects in these two scenes, where the

weight of each edge in the graph is:

k(a, b) = 1{La = Lb} ·G(|~a−~b|, σd) ·G(min(|~a|, |~b|), σn)

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 78

Here, 1{} is the indicator function, ~o is the vector-valued position of object o and

G(x, σ) = e−x
2/2σ2

is the unnormalized Gaussian function. This equation states that

objects should only match if they have the same basic category and if the distance

between them is small. The third term decreases the significance of matches that occur

far away from the objects that we are comparing (A and B). In our implementation,

σd = 15 cm and σn = 90 cm.

We solve for the maximum-weight matching M in the graph using the Hungarian

algorithm [Kuhn 1955]. Our neighborhood similarity function is then:

n(A,B) =1{isLeaf(A) = isLeaf(B)}·

G(
|A| − |B|

min(|A|, |B|)
, σs) ·

∑
(a,b)∈M

k(a, b)

where isLeaf(o) = true if object o is a leaf node in its scene’s static support hierarchy,

and |o| is the diagonal length of the bounding-box of object o. The first term states

that two objects are similar if they serve the same support role (i.e. they either

statically support other objects or do not). The second term compares the sizes of the

objects themselves, and the third term compares the similarity of their neighborhoods.

We use σs = 1.5.

We then discretize all possible rotations of B’s neighborhood about ~z and find the

orientation for which n(A,B) is strongest

n̄(A,B) = max
θ
n(A, rot(B,~z, θ))

and then normalize the result to be in the range [0, 1]

n̂(A,B) =
n̄(A,B)

max(n̄(A,A), n̄(B,B))

Clustering We cluster all objects in all database scenes using hierarchical agglom-

erative clustering (HAC) [Steinbach et al. 2000], where the merge score between two

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 79

clusters C1 and C2 is

Merge(C1, C2) = max
A∈C1,B∈C2

(1− λcat) · 1{LA = LB}+ λcat · n̂(A,B)

The influence of neighborhood similarity is controlled by λcat. When λcat = 0,

clustering only considers basic category labels and will recover these basic categories

exactly. As λcat increases, objects from different basic categories that occur in similar

neighborhoods are encouraged to merge together. For our database, λcat = 0.7 yielded

many useful categories; see Section 6.9 for examples. The merge score above is the

single linkage criterion for HAC [Murtagh 1984], which states that two clusters are

as similar as their most similar objects. Since it is susceptible to outliers, in practice

we use the 90th percentile rather than the maximum. We stop merging when the best

cluster merge score is less than a similarity threshold τ = 0.1.

Alignment Our synthesis algorithm requires all objects in a category to be aligned

in a common coordinate frame. We align our objects using both their neighborhood

similarity and their geometric features. We first choose an anchor object at random

and align the neighborhoods of all other objects to the anchor’s neighborhood using

the neighborhood similarity function n̂. This process alone can successfully align

objects with strong neighborhood cues, such as keyboards. To further refine an

alignment, we compute the sum of squared distances for all possible rotations, which

has been shown to be effective at aligning certain categories of 3D models [Kazhdan

2007]. We snap our neighborhood alignment to the nearest local minima of this inter-

object distance function. For some categories that are sensitive to changes in rotation,

such as computer speakers and alarm clocks, we manually inspect and correct the

inter-object alignments.

Figure 6.2 demonstrates our alignment process for two desks and two alarm clocks.

For desks, the optimal contextual neighborhood alignment is close to the correct

alignment, but is off by a small rotation. On the other hand, the optimal geometric

alignment corresponds to a 180-degree rotation of the correct alignment. We achieve

the best results by using the nearest local geometric minima to the global contextual

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 80

Best Geometric Alignment Local Geometric Alignment

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0 45 90 135 180 225 270 315 360

Su
m

 o
f

Sq
u

ar
e

d
 D

is
ta

n
ce

s

Angle of Rotation

Geometric vs. Neighborhood Alignment

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0 45 90 135 180 225 270 315 360

Su
m

 o
f

Sq
u

ar
d

 D
is

ta
n

ce
s

Angle of Rotation

Geometric vs. Neighborhood Alignment

Best Neighborhood AlignmentBest Geometric Alignment

Figure 6.2: We use both contextual and geometric information to align objects within
a category. On the left, we show the optimal alignment, using only our context-based
neighborhood comparison function. On the right, we show the geometric alignment
term as a function of rotation angle; smaller scores correspond to better alignments.
The red circle indicates the optimal alignment considering only the object’s geome-
try. The green circle indicates the optimal alignment using only the neighborhood
score. We achieve the best performance by combining both contextual and geometric
information when aligning categories.

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 81

optimum, shown in blue. For alarm clocks, geometric information provides almost

no information: to correctly align these two models, textural information must be

used. However, by using the local neighborhood information we can achieve very

good alignment between the two clocks.

Input Basic categories Contextual categories

Figure 6.3: Comparing basic and contextual categories. We show an input scene
and the synthesized results using basic and contextual categories. On the bottom we
show four of the relevant contextual categories generated by our clustering algorithm.
Contextual categories allow synthesis with a greater variety of plausible models.

Figure 6.3 shows some of our contextual categories. Later in this chapter, we will

show some of the advantages of using contextual categories for scene synthesis.

6.5 Learning Mixed Models

Creating many diverse scenes from a small number of examples is difficult even if

we draw upon contextual categories. Frequently, users intend examples they provide

to be rough guides of the type of scene they would like and may be missing many

details, which the user may not have recalled but has seen in the past. Our insight

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 82

is that a database of scenes can act as a prior over scenes and can be used to fill

in missing details or enrich the synthesized scenes. The degree to which this is a

desired behavior may vary depending on the user and task, so we would also like to

control how strong we want the influence of the prior to be by using intuitive mixing

parameters.

In Sections 6.6 and 6.7, we learn two models from a mixture of data provided

by the few examples and a larger scene database. We define these models here and

describe how to mix separate input data sources but defer discussion of the details of

each model to the relevant sections. The occurrence model O(S) is a function which

takes a scene S as input and returns a probability for the static support hierarchy of

the objects in the scene. The arrangement model A(o, S) is a function which takes

an object o positioned within a scene S and returns an unnormalized probability of

its current placement and orientation.

During synthesis, we cannot blindly draw information from the database: if the

examples depict bedrooms, we don’t want to draw from bathrooms introducing toilets

in our synthesized scenes. The need to isolate ‘semantically similar’ content from a

large database has been recognized in prior work on data-driven content generation

in computer graphics [Hays and Efros 2007]. During model training, we retrieve

scenes similar to the example scenes E using the graph kernel-based scene comparison

operator described in Chapter 5. To threshold the number of retrieved scenes we sort

them by similarity value and use only the results with more than 80% of the maximum

value, forming the relevant set of scenes R.

Our system then learns its probabilistic models from the scenes in both the exam-

ples E and the relevant set R. The extent to which each data source is emphasized

is determined by two mixing parameters λoccur and λarrange. For these parameters,

a value of 0 denotes 100% emphasis on E and a value of 1 denotes 100% emphasis on

R.

Mixing the arrangement model is straightforward: we train one model on R,

another model on E, and the linearly interpolate between them using λarrange. Sec-

tion 6.7 describes the procedure for training a single model.

Mixing the occurrence model is less trivial since it uses Bayesian networks which

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 83

cannot simply be interpolated. Instead, we use an enrichment approach where we

replicate each input scene many times to create a larger training set containing N

observations. Each scene in E is replicated dN(1−λoccur)
|E| e times and equivalently each

scene in R is replicated dNλoccur

|R| e times. The results in this chapter use N = 500.

The model is then learned as described in Section 6.6.

6.6 Occurrence Model

We learn from the replicated set of scenes described in Section 6.5 a model O(S) over

the static support hierarchy of a scene S. Our support hierarchy model is broken down

into two parts. First, we use a Bayesian network B(S) to model the distribution over

the set of objects that occur in a scene. Second, given a fixed set of objects we use a

simple parent probability table to define a function T (S) that gives the probability

of the parent-child connections between objects in a scene.

6.6.1 Object Distribution

Following previous work on learning probabilistic models for part suggestion in 3D

object modeling, we use a Bayesian network to represent our learned probability

distribution [Chaudhuri et al. 2011]. We can sample from this Bayes net to produce

plausible sets of objects that do not occur in the examples. Prior to performing

structure learning, we transform the network to reduce the number of free parameters

introduced, which is important when learning from a small number of examples. We

also constrain our Bayesian network to guarantee that the set of objects generated

can be connected together into a valid static support hierarchy.

We start by representing each input scene with a category frequency vector that

counts the number of times each category occurs in the scene. We consider these

vectors to be observations of discrete random variables over which we want to learn

a Bayesian network. To guarantee that our network generates plausible scenes, we

will define below a set of constraints that specify edges which must be present in the

learned network. Given these edge constraints, we use a standard algorithm to learn

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 84

= 1

Lab table Test tube rack Test tube Notebook Calculator
1 1 2 0 0
1 0 1 0 1
1 0 0 1 1

= 1

= 1

= 1

≥ 1

= 2

Parent Edge Boolean Edge Learned Edge

Figure 6.4: Bayesian structure learning example. We start with three input scenes and
their corresponding category frequency vectors. At the bottom we show a Bayesian
network learned from these vectors. The black edges are enforced by observed static
support relationships. Network booleanization splits the test tube variable into two
nodes and enforces the edge shown in red. In blue, we show one edge learned by our
structure inference algorithm that captures the positive correlation between multiple
test tubes and a test tube rack.

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 85

the structure of our Bayesian network following prior work on object modeling by

Chaudhuri et al. [2011] with the following modifications:

Support constraints Our Bayesian network should guarantee that for every gen-

erated object, there is another object that can support it. Thus we require that for

every category C, the variable representing that category must be conditional on the

variable for each parent category C ′ it has been observed on.

Booleanization Prior to learning, we transform our problem to better handle the

case where we have few input scenes. Each random variable in our network has a

maximum value that can be large if that category occurs many times. This makes

Bayesian network learning challenging, as it introduces many free parameters. We

address this problem by breaking each discrete random variable into a set of boolean

variables. If a category C occurred at most M times in an input scene, we introduce

M boolean variables (C ≥ 1), (C ≥ 2), ...(C = M). Higher count boolean variables

can only be true if lower counts are true, so we constrain our learning algorithm by

requiring that each node (C ≥ a) is a parent of (C ≥ a+ 1). After transforming our

problem into a set of boolean variables, we combine the set of booleanization-enforced

edges with the support constraints defined above and apply our structure learning

algorithm. Figure 6.4 shows an example of this learning process.

Input enrichment Bayesian structure learning algorithms can result in undesired

correlations when few unique examples are provided. To help combat this problem,

we use a perturbation method to add variety to our replicated scenes. We form

new scenes by selectively removing objects from each input scene. We define a de-

cay coefficient for each category e−αR(C) where R(C) is the fraction of input scenes

that contain C (the results in this chapter use α = 4). Ubiquitous categories have

small coefficients and are likely to be preserved, while infrequent categories have large

coefficients and are more likely to be removed. Previous work has used similar per-

turbation methods to improve the robustness of learning algorithms for OCR and for

speech recognition [Varga and Bunke 2003; Lawson et al. 2009].

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 86

6.6.2 Parent Support

To generate a static support hierarchy over a set of objects, we must also define a prob-

abilistic model over possible parent-child static support connections. Let Parents(C)

denote the set of categories that have been observed supporting a given category C in

any input scene. We make the assumption that an object’s support parent depends

only on the existence of each category in this set. We build a parent probability table

for each of the 2|Parents(C)| different states of existence of the parent categories. For

each observation of C in the input scenes, we look at the existence of each possible

parent and record the actual parent in the corresponding parent probability table. We

use this table to define the probability of any given parent-child support relationship.

The probability T (S) of a given support hierarchy arrangement in a scene S is taken

as the product of all its constituent support relationships according to this table.

6.6.3 Final Model

Given the components above, we can define the final probability of a given support

hierarchy as the product of its object occurrence model and parent support model:

O(S) = B(S)T (S)

where B(S) is the probability our learned Bayesian network assigns to the set of

objects in the scene, and T (S) is the probability of the parent-child support hierarchy

given the set of objects in the scene.

6.7 Arrangement Model

We must use the input scenes to learn, for each object category, the kinds of surfaces

it can be placed on, spatial locations where it can go, and directions it can face. This

is a challenging task because objects can have many valid configurations which are

determined by functional relationships with other objects. People can identify which

relationships are salient, but an example-based algorithm must infer this from data.

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 87

Previous object arrangement models do not meet our goals. Yu et al. [2011]

represents each position and orientation relationship with a single Gaussian. However,

a single Gaussian does not account for multiple valid configurations. Also, users must

specify which relationships are salient. Finally, their system does not address likely

supporting surfaces for objects, since it arranged furniture on a flat floor.

We represent position and orientation relationships between all pairs of object

categories using Gaussian mixture models. Gaussian mixtures can model multimodal

distributions, thus handling objects with multiple valid configurations. We also de-

scribe a simple but effective heuristic for determining relationship saliency using ob-

ject co-occurrence frequencies. Finally, we learn likely placement surfaces for objects

using a simple Gaussian kernel density estimation approach.

6.7.1 Spatial Placement

From a set of input scenes, we learn a model of how objects are spatially arranged

with respect to one another. Formally, we learn a probability distribution PC|C′ for

every pair of categories C and C ′. PC|C′ describes where category C objects tend

to occur in the coordinate frame of category C ′ objects. It is a four-dimensional

distribution over (x, y, z, θ), where [x, y, z] defines an object’s spatial position and θ

defines its rotation about the normal of its supporting surface.

To learn these distributions, we first extract training data from the input scenes.

To build robust models we need a large number of (x, y, z, θ) tuples, but the set of

input scenes may be very small. Consequently, we extract many jittered (x, y, z, θ)

samples from each object; 200 is more than enough, in our experience. We jitter

object positions by α ∼ N (0, 25 cm · I3) and orientations by ω ∼ N (0, 5◦).

We represent PC|C′ with a Gaussian mixture model, trained using the expectation-

maximization algorithm on the data described above. The number of Gaussians in

the mixture is a latent variable; we choose the value that maximizes the Akaike infor-

mation criterion [Akaike 1973]. This combats overfitting by favoring a low-complexity

model unless the added complexity significantly boosts the model’s likelihood. Fig-

ure 6.5 visualizes some of these learned models.

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 88

Pspeaker|desk

Pdining chair|tablePdesk chair|monitor

Pmouse|keyboard

Figure 6.5: Pairwise spatial distributions for object arrangement. Distributions are
visualized as points drawn from a learned mixture of Gaussians. The bounding boxes
for objects in the category the model is conditioned on are shown in red. Points have
been projected into the xy plane; the z and θ dimensions are not shown.

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 89

2.5 2.5 2.5

0 0 07.5 7.5 7.5

[m
]

[m
]

[m] [m]

Figure 6.6: Left: Map from supporting surfaces on a computer desk onto the 2D
surface placement probability density function. Right: probability density functions
for desktop computers and wall clocks.

These distributions should not all be treated equally; we would like to emphasize

‘reliable’ relationships that occur more frequently in the input scenes. Thus, we also

compute a set of pairwise weights wC|C′ , which we use in synthesis to indicate the

relative importance of each distribution. wC|C′ = f(C,C ′)30/n, where f(C,C ′) is the

frequency with which categories C and C ′ co-occur in the input scenes, and n is

the number of input scenes. As desired, this weighting scheme emphasizes frequent

relationships, where the definition of ‘frequent’ becomes more stringent with fewer

input scenes.

6.7.2 Surface Placement

Different objects are supported by surfaces with different physical properties, often

reflecting functional constraints: light switches and mice are found at particular eleva-

tions above the ground, and keyboards are unlikely to be placed inside a desk drawer.

To capture this knowledge for each category, we observe how objects in that category

are supported by other objects in a set of input scenes. For each support observation,

we record the height above ground and the area of the supporting surface in a surface

descriptor. We then treat these descriptors as independently sampled vectors in R2

and use kernel density estimation to construct a probability distribution over possible

supporting surfaces.

First, we perform mesh segmentation to extract planar support surfaces for all

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 90

objects in the scene database that statically support other objects. We use a sim-

ple greedy region growth algorithm which handles non-manifold input models and

robustly extracts planar and near-planar surfaces [Kalvin and Taylor 1996].

After segmentation, we compute surface descriptors for all segments that support

any other objects. Each descriptor is a point (
√

area, height) ∈ R2, where the square

root of area enforces consistent units between dimensions. We can estimate the un-

derlying probability density function using any kernel density estimation method [Sil-

verman 1986]. For each object category C, we approximate the function by summing

Gaussian kernels centered at the R2 point for each surface descriptor. The Gaussian

bandwidth is set using the normal distribution approximation: hC = 1.06σ̂n
(−1/5)
C ,

where σ̂ is the standard deviation of all surface descriptor observations and nC is

the number of observations in the category. This approximates the variability over

surface descriptor space using σ̂ while enlarging the bandwidth to account for less

certainty when fewer observations are available.

We call the estimated density functions UC(s); for a surface s, this function returns

the probability under our model that an object of category C should occur on s.

Figure 6.6 visualizes this function for a few object categories.

6.7.3 Final Model

Given the components described above, we can define the final arrangement model

as

A(o, S) = UC(surf(o, S)) ·
∑

o′∈S,o′ 6=o

wCo|Co′ · PCo|Co′ (o)

where surf(o, S) is the supporting surface of object o in scene S. Intuitively, this

distribution combines the probability of o’s surface placement with the probability of

its spatial placement according to all other objects in the scene.

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 91

6.8 Synthesis

Synthesizing a new scene is straightforward given the models learned in the previous

sections. First, we generate a new static support hierarchy that defines the objects in

the scene and their parent-child relationships. Then, we determine a plausible spatial

layout for the objects.

6.8.1 Static Support Hierarchy

The occurrence model O admits a very efficient sampling approach. We first use

forward sampling to sample from the Bayesian network learned in Section 6.6, which

generates a set of objects for the scene. To determine their parent-child support rela-

tionships, we independently assign parents to the objects in each category by sampling

from the appropriate parent probability table. If the scene contains multiple instances

of the sampled parent category, we choose an instance at random. This procedure

samples a valid parent for each object, but the overall set of parent-child relationships

may contain cycles. We use rejection sampling to generate a valid configuration, and

repeatedly sampling parent-child relationships until an acyclic assignment is found.

Next, we assign a specific model to each object in the generated hierarchy. For

each category, we compute a consistency probability : the frequency with which a

category occurs two or more times in an input scene with all objects using the same

model. We decide whether all objects from that category in our scene should use the

same model according to this probability. If not, we choose models from the category

at random.

This procedure can sometimes produce implausible scenes because some objects

might be asked to support more objects than can fit comfortably on their supporting

surfaces. To avoid this problem, for each object that is supporting children, we

compute the total surface area (after projection into the plane of their contact surface)

of all the supported children. If the total supported surface area is greater than the

total surface area supported by an instance of that object in the scene database, we

reject the scene and resample from the Bayesian network.

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 92

6.8.2 Object Layout

Given a synthesized support hierarchy, we must determine the exact position and

orientation of its constituent objects. This is challenging because we want the gen-

erated layout to respect both guidelines implicitly expressed in the examples as well

as physical constraints, such as objects not colliding. To arrange our objects, for

each object o in the scene we define a density function that describes o’s preferred

configurations:

D(o) = A(o) · L(o) · X (o) · H(o)

A is the arrangement model from Section 6.7. The other terms are defined as follows:

Collision Penalty (L) Objects in physically plausible arrangements do not inter-

penetrate. L(o) = 1 if o does not collide with any other objects in the scene, and 0

otherwise.

Proximity Penalty (X) The arrangement model A is often multimodal. The

modes may represent multiple configurations for a single object (such as a left or right-

handed computer mouse) or locations for multiple instances of the same type of object

(such as stereo speakers). In the latter case, multiple instances should not concentrate

around the same mode. We prevent this behavior with X (o) = 1 − G(d, µd), where

d is the distance from o to the nearest o′ such that Co′ = Co, and µd is the average

distance between the instances of Co observed in the examples.

Overhang Penalty (H) In some cases, o’s most likely location according to the

terms defined thus far may leave it hanging off the edge of its supporting surface. This

is not physically plausible. We address this problem with H(o), which returns the

percentage of o’s projected bounding box that is contained by its supporting surface.

The density function D we have defined typically has a small number of isolated

modes and is near zero almost everywhere else. To find a good initial layout, our

algorithm places each object one at a time by sampling from D. Objects are placed

by order of decreasing size, since large objects often constrain the placement of others.

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 93

Finally, the algorithm iteratively improves this initial layout via hill climbing.

Each iteration makes a small perturbation to the object configurations, as in prior

work on automatic furniture layout [Merrell et al. 2011; Yu et al. 2011]. Proposed

perturbations are accepted if they increase the total layout score,

∑
o∈S

D(o)

For all the results in this chapter, the algorithm stabilized within 100 iterations.

Input Scene λoccur = 0 λoccur = 0.5 λoccur = 1

Figure 6.7: Effects of varying the λoccur term. Left: a manually created input scene.
Right: results generated at three different values of λoccur. Even a sparsely populated
example can direct the algorithm to retrieve and incorporate relevant content from
the database.

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 94

Input Scene λarrange = 0 λarrange = 0.5 λarrange = 1

Figure 6.8: Effects of varying the λarrange term. Left: a manually created input scene.
Right: results generated at three different values of λarrange. With λarrange = 0, the
objects are only placed on the main desk surface, as in the desk from the input scene.

6.9 Results and Evaluation

To investigate the effectiveness of our method, we synthesize several types of scenes

under varying input conditions. We also conducted an experiment in which people

provided subjective judgments on the plausibility of synthesized scenes.

6.9.1 Synthesis Results

Figure 6.1 shows scenes synthesized from an input set of four computer desks using

λoccur = λarrange = 0.5. The scenes are similar in style to the original four examples

without being repetitive. The synthesized scenes use a wide variety of models not

found in the examples by drawing from the scene database. By using contextual

categories and mixing information from a related set of scenes, our algorithm can

insert plausible models not found in the input examples. For instance, the left two

generated scenes both contain an alarm clock in a plausible location and orientation

on the desk even though an alarm clock was not present in any of the input scenes.

In Figure 6.3, we compare the results of synthesizing using basic and contextual

categories. In both cases we set λoccur and λarrange to zero. When synthesizing using

basic categories, our algorithm can only introduce variety by replacing each object

with another model from the same basic category. Synthesizing using contextual

categories can increase the variety of results by replacing objects in one basic category

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 95

with objects from related basic categories. For example, using basic categories the

soda can on the desk will only be replaced with other soda cans. In contrast, using

contextual categories we draw from a broader set of object types including bottles.

In Figure 6.7 we show how the λoccur term controls mixing in the occurrence

model. The input is a single example with only a couple of objects. When λoccur = 0

we can only replace objects with other objects of the same category, resulting in

equally simple scenes. As we increase λoccur we incorporate more diversity from

similar scenes in the database. Relevant new object categories are integrated in

consistent arrangements with respect to the existing objects. At λoccur = 1, the only

contribution of the objects in the input scene is to determine the set of relevant scenes.

In the case of the two desk scenes, a difference of only two objects had a significant

impact on the type of environment that was synthesized. Note that the scenes in the

database are not categorized, nor was a ‘desired type of scene’ label provided with

the input example.

Figure 6.8 demonstrates how the λarrange term can be used to control mixing of

the arrangement model. The single input scene uses a desk with only one supporting

surface. Without mixing, the synthesized results do not use other valid supporting

surfaces present on the chosen desk models, leading to cluttering of some surfaces

and barrenness of others. By increasing the value of the λarrange term, we leverage

observations of model placements from the database to appropriately arrange objects

on all available supporting surfaces of the parent model, even if similar models were

not used in the user provided examples.

6.9.2 Human Evaluation

To evaluate whether our system consistently generates plausible scenes we ran a

online judgment study on three types of scenes: Gamer Desks, Study Desks, and

Dining Tables. Our hypothesis is that a human observer will consider a significant

fraction of the synthesized scenes to be as plausible as scenes created by hand.

For each of the three scene types, we created scenes under the following experi-

mental conditions:

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 96

1. Manually Created (Manual): We manually created four scenes; building each

scene took approximately 15-20 minutes for an experienced user of our scene

modeling tool.

2. Synthesized (Synth): Scenes generated by our system using a mixed model,

trained on the four Manual scenes plus relevant scenes retrieved from the

database. λoccur = λarrange = 0.25. We generated 50 scenes in this condi-

tion.

We then rendered images of all of these scenes. Within a given scene type, scenes

were rendered against the same background and using the same camera configuration.

We recruited 30 participants via Amazon Mechanical Turk. Participants were

required to be US residents to mitigate cultural influences on familiarity with different

scene types. Through a web interface, each participant was shown 51 scene images:

four from the Manual condition for each scene type, and 13 drawn at random from

the Synth condition for each scene type. Participants were shown images one at a

time in randomized order. Participants were asked to specify, on a 5-point Likert

scale, the plausibility of the scene (1 = “Completely random, implausible scene,” 3 =

“Somewhat plausible scene,” 5 = “Very plausible scene”). Rating a large set of more

than 50 images helped participants calibrate their responses.

Figure 6.9 shows a summary of the ratings obtained through this experiment.

Manual inspection of the data revealed no evidence of ‘freeloading’ or misbehaving

workers, so we did not filter the data prior to anaylsis. Eliciting subjective responses

from workers on Mechanical Turk is an inherently noisy process, but as expected,

the responses for Manual scenes are concentrated toward the high end of the rating

scale. In addition, the distribution of responses for Synth scenes closely matches the

distribution for Manual scenes. Manual scenes were rated higher, on average, than

Synth scenes for all scene types, and this difference is statistically significant (Mann-

Whitney U test, p < 0.05). However, the difference is a small one: across all scene

types, ratings for the top 80% of Synth scenes are not statistically distinguishable

from ratings for Manual scenes. This result suggests that on average, at least 80%

of synthesized scenes are not distinguishable from hand-created scenes by a casual

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 97

1 2 3 4 5

Di
ni

ng
 T

ab
le

s Manual

Synth

Ga
m

er
 D

es
ks Manual

Synth

O
ffi

ce
 D

es
ks Manual

Synth

3.83

3.50

4.27

3.98

4.03

3.51

Figure 6.9: Results of an online judgment study in which people evaluated the plau-
sibility of synthesized scenes (Synth) and manually created scenes (Manual) for three
scene types. Each row is a histogram for one scene type/condition pair; the area
of each box corresponds to the percentage of responses with that rating. Average
ratings are plotted as vertical lines.

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 98

observer. It also far exceeded our initial goal of having one third of the synthesis

results be of comparable plausibility to manually-created scenes.

6.9.3 Controllable Synthesis

A generative model is a very powerful tool that can be used in many different ways. Up

until now, our focus has mostly been on unconstrained sampling. But with graphical

models, it’s possible to control the sampling process to match different conditions

that the artist might want. In Figure 6.10 we show a simple example of controlled

synthesis. This type of control makes it easy to perform decoration or clutter tasks

that are otherwise really time-consuming, while still giving artists high-level control

over the generated scene.

6.10 Chapter Summary

We have presented a data-driven method for learning a probabilistic model for 3D

object arrangements from a small number of examples. We introduce the concept of

contextual categories and present an algorithm for computing them from a database

of scenes. The key to producing innovative variations given a very limited number

of training examples is to make use of the design knowledge present in a much large

database of scenes. Our approach is entirely example-driven and the artist is not

required to specify any design principles beyond what they implicitly express in the

examples. Our content generation system should be able to adapt to different envi-

ronments and styles present in different scene databases, helping artists mitigate the

problem of repeated content in these worlds, as well as decreasing the total time it

takes to develop rich and detailed environments.

Generative models support many different modeling tools. In this chapter we have

focused on synthesis, but many more tools can be developed such as content transfer

or content rearrangement. One use that has been explored in related work on object

modeling is data-driven part suggestion [Chaudhuri and Koltun 2010]. In this work,

the existing object parts are taken as observed evidence and the generative model

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 99

Input Scene
Constrained

Synthesis

Figure 6.10: Constrained synthesis. The input scenes are shown on the left. On the
right, we synthesize novel environments that are constrained to use the same objects
at the same position and orientation.

CHAPTER 6. A GENERATIVE MODEL FOR 3D SCENES 100

is queried to rank all parts not present in the object, which are then presented to

the users as suggested parts they might add. This part-based suggestion approach to

object modeling can be easily transferred to the case of scene modeling, and is just

one of many other possible design tasks that can be enabled by a generative model

defined over the artifact being designed.

Chapter 7

Discussion

Any project that involves the creation of serious amounts of digital content is not

accomplished by any one individual or with a single, all-encompassing tool. Virtual

worlds, large-scale video games, and digital films are all created through the collabo-

ration of a large number of individuals and with a unique and complex asset pipeline

composed of many different tools. Some of these tools have become ubiquitous and

shared across many pipelines, such as 3ds Max, and others are designed for a very

specific task and are not intended to survive beyond the lifetime of a single project.

The many tools we have developed in this dissertation, ranging from context-based

model suggestions to unsupervised scene synthesis, are intended to fit into this work-

flow. Unfortunately, such tool ecosystems are very complex and not easily compared

or evaluated, so we have instead evaluated our work in more isolated, task-specific

settings. Nevertheless, we feel that there are many real applications such as vir-

tual world design where scene modeling constitutes a sufficiently large portion of the

content-creation pipeline to support the development of scene modeling technology.

The tools that one day find their way into such pipelines may look quite different than

the ones presented in this dissertation, but we believe that this dissertation offers real

progress in this direction.

101

CHAPTER 7. DISCUSSION 102

7.1 Data-driven vs. Rule-based Systems

We have placed considerable emphasis on a data-driven approach to tool develop-

ment. We contrast this against systems that directly encode design principles; for

example, one approach to furniture layout works by directly specifying anthropomet-

ric constraints such as “A nightstand should be located between 0 and 12 inches to

the side of the bed” [Merrell et al. 2011]. Such tools have been shown to be effective

at certain tasks, and in practice the most effective tools are likely to use ideas from

both rule-based and data-driven approaches. We have chosen to focus on data-driven

tools primarily for three reasons:

• Domain generality — Each content creation application and its corresponding

tool chain is unique, and each application devotes different amounts of energy to

different pipeline stages. Because it is not possible to accurately predict which

domains are going to require our modeling tools, our tools need to be able to

easily adapt to different domains and inputs with wildly different styles and

properties. Data-driven approaches excel at this task: all that is required is a

collection of data from the corresponding domain. Although a fully data-driven

tool may make “childish” mistakes by failing to account for basic domain-specific

knowledge, a data-driven tool can serve as an effective and adaptable foundation

on top of which such expert knowledge can be encoded.

• Ease-of-use — While rule-based systems can be effective at capturing the

most important design principles of a domain, they are also challenging to

design because in many domains design principles may not exist or may be very

difficult to specify. Rule-specification in complex environments often requires

considerable trial and error, consulting domain experts, and skill at both rule

programming and artistic evaluation. Data-driven systems have the potential

to overcome these challenges: the input can be specified purely by example,

without the need to codify and program domain rules. Data-driven tools can

also easily adapt to changing patterns without the need to understand which

rules need to be modified to effect the desired changes.

CHAPTER 7. DISCUSSION 103

• Data-mining and knowledge extraction — Some patterns in modeling

tasks are very clear from only a few examples: it takes only a few observa-

tions to learn that keyboards and mice often occur together. Yet many other

patterns are seemingly subtle and it is hard to pick out the signal from the noise.

This is true across many disciplines and data-mining tasks, yet one thread re-

mains clear: patterns that are quite subtle given only a small amount of data

often become easily delineated once the amount of available data grows large

enough, even when using seemingly näıve algorithms. For 3D scenes, we are

clearly not yet at the “big data” threshold: in comparison to other domains,

LabelMe contains over 200,000 images, Google Images serves over a billion im-

ages, and Google N-grams contains over one trillion tokens. Despite this, we

feel that now is the time to start developing the technology to learn scene de-

sign patterns from data; the tools can only improve as progressively more data

becomes available.

7.2 Weaknesses of Data-driven Scene Modeling

Throughout the development of our tools, we have encountered several areas that

were significant stumbling blocks for our data-centric approach. Perhaps the strongest

weakness is cases where design patterns do not repeat, or for which very few examples

exist or are needed. Consider an artist who wants to add ambiance to a 30th century

nursery room by designing a new board game for the children to play. If only one

or two instances of this board game are going to exist in the world, it is not likely

data-driven approaches are going to be able to effectively learn this design pattern.

Seemingly relevant suggestions, such as pieces from Chess or Checkers, may prove

undesired. Of course, if the game has repeating substructures, or there is a need

for a large number of instances of the game, the example-based synthesis approach

described in Chapter 6 could prove very useful to the artist assigned this task.

Another weakness we have observed in our data-driven modeling tools is archi-

tecture. It is very difficult to segment architecture into meaningful, interchangeable

components. Analyzing architecture requires sophisticated structural understanding

CHAPTER 7. DISCUSSION 104

and it is very challenging to connect different types of architecture together. Further-

more, most digital architectural constructions are designed to be visually pleasing but

not structurally sound. It is common for architecture in games, whether of a building

or a spaceship, to contain many flaws such as inter-penetrating geometry, as long as

these areas are inaccessible or well hidden. For all these reasons, we have focused our

tools on assisting with the arrangement of easily manipulated objects. Still, there are

several situations, such as bookshelves that are integrated into the walls of a library,

where the distinction between object arrangement and architecture becomes blurred.

7.3 Scene Modeling Software

As discussed in Chapter 2, current modeling software such as Google SketchUp cre-

ates scenes that are not ideal for data extraction. As scene modeling tasks and tools

become more common, scene modeling programs will likely make more of an effort

to help artists maintain a functional segmentation of their scene and better track the

relationships between these objects. This will make the limited manual segmenta-

tion and tagging we performed unnecessary and is extremely useful for enabling user

interaction in applications such as virtual worlds.

The benefits of having scenes exemplifying how specific models are used also sug-

gest novel paradigms for scene modeling toolkits and 3D model collections such as

Google 3D Warehouse. Artists uploading a new 3D model could be asked to con-

textualize it by placement at appropriate locations within scenes thus demonstrating

common contact surfaces and nearby objects. Contextualized 3D models can be pro-

cessed using methods such as ours and may be used for any number of scene modeling

tasks. In some ways, these model-specific examples may prove even more useful than

complete environments: users contextualizing a specific model such as a computer

monitor are likely to focus on positioning it relative to aspects of the environment

that are most relevant, mitigating the need to guess which object relationships are

important to the design patterns being learned.

CHAPTER 7. DISCUSSION 105

7.4 Future Work

There are many exciting avenues of research that can be built upon the work described

in this dissertation. We look at three specific directions: alternative sources of design

patterns, understanding higher-order structures in scenes, and understanding the

function of objects.

Alternative data sources. We have focused all our tools on learning patterns

from 3D scene databases such as Google 3D Warehouse or virtual worlds. However,

the information found in these scenes can be found in many other datasets. While

a photograph of a computer desk contains different types of information than a 3D

scene, there is significant overlap: learning basic facts such as what categories of

objects constitute a computer desk can be done just as easily from photographs as

from scenes. Likewise, sentences such as “put the toaster on the kitchen counter”

contain information about the expected relationships between categories. We first

need to better understand the information overlap between text, images, and 3D

scenes, and then we can look at ways to transfer knowledge between these different

modalities. This is especially important given that at present 2D image datasets and

text corpora are significantly larger and more developed than 3D scene databases.

Higher-order structure. Even the more advanced tools we present, such as the

generative model described in Chapter 6, focus on learning patterns between indi-

vidual objects. This is appropriate for many design patterns. However, many large

environments eventually contain so many objects that the relationships are best un-

derstood at the level of collections of objects. Such hierarchical patterns are quite

common: restaurants are composed of booths which are composed of place settings

which are composed of forks, plates and knives. Taken to the extreme, worlds (both

real and virtual) are composed of a very complex hierarchy of entities such as nations,

cities, skyscrapers, floors, offices, filing cabinets, and stacks of paper. In this disser-

tation we have explored only the lowest levels of this hierarchy. Understanding how

to effectively learn higher-level structure from data enables the development of more

powerful modeling tools. Artists might manipulate intelligent collections of entities

CHAPTER 7. DISCUSSION 106

such as dragging a “5.1 speaker system” from one living room to another, and expect

the corresponding components to transfer to viable locations and orientations within

the new environment. Many important tasks involved in creating virtual worlds, such

as designing intelligent agents and animations for dynamic environments, can be seen

in a new light when the world is expressed at a level that is richer and more complex

than an unorganized collection of objects.

Understanding object function. Geometric information reflects a fairly restricted

type of information about an object. Although it is sufficient to render the object,

much of the information pertaining to how the object can be used or how the ob-

ject interacts with other objects is lost. You can insert a DVD into a DVD player

and expect it to decode and transmit the signal to a TV, but trying to learn these

functional aspects of a DVD player from even the most precise geometric reconstruc-

tion of the DVD player is not feasible. Many of the important relationships between

objects are related to their function — picture frames are located at or above eye

level because they need to be easily visible, while TV remotes need to be within

arms reach of the couch people are sitting on to watch the TV. Understanding object

function can greatly improve the object categorization described in Chapter 6. Un-

fortunately, scene databases that encode only geometry and texture make it difficult

to learn the function of objects. To acquire functional knowledge, we need to look

to other sources. One one hand we might extract this knowledge from a text corpus

that contains sentences such as “heat the pizza in the oven”. On the other hand, we

might learn object function by observing users interact with objects in virtual worlds

such as Second Life or even the real world. The possibilities for innovation in all these

areas are large.

Chapter 8

Conclusion

Few virtual environments achieve the richness in object density and diversity present

in the real world. Numerous experiments with virtual reality demonstrate that en-

vironments that lack this complexity fail to convey a sense of immersion [Bowman

and McMahan 2007]. In applications such as video games and films, this can weaken

the overall experience including the narrative and character development because

participants have trouble becoming fully engaged. This lack of detail may occur for

any number of reasons: graphics hardware may be unable to achieve high framerates

when too many objects are present, or the time and cost of constructing such detailed

environments may be prohibitive. The goal of this dissertation is to work towards

lowering the barrier to creating these environments in terms of time and cost.

To achieve this goal we have developed tools that improve the scene modeling

process by learning design patterns from a scene database. In Chapter 2, we start

by showing how to transform existing databases, such as Google 3D Warehouse, into

a format that is amenable to knowledge extraction tasks. This includes filtering the

scene graph to achieve good segmentation and propagating text information to ac-

quire good semantic labels. We also developed a new scene database with very good

segmentation and labeling which we use to test our tools. In Chapter 3, we provide

our algorithm for estimating the similarity between two objects in isolation by com-

paring properties such as name, tags, geometry, and texture, which is an important

subcomponent of the arrangement-comparison techniques we present. In Chapter 4,

107

CHAPTER 8. CONCLUSION 108

we developed a tool that suggests models at a given location in an environment by

using kernel density estimation over the set of object co-occurrences observed in the

database: a model is a good suggestion if it is reinforced by many observations in

the database. In Chapter 5, we show how to transform scene graphs into relation-

ship graphs that encode semantic relationships between objects, and how to compare

two such relationship graphs using a graph kernel. We use this relationship graph

kernel to support scene retrieval and suggestion, which can help artists rapidly find

useful subcomponents or inspiration for their current environment. On one hand,

these search and suggestion tools demonstrate that it is already possible to achieve

good results when using data-driven tools on existing, real-world datasets. On the

other hand, these tools still adhere to the standard object-by-object method of scene

construction.

To develop tools that understand scene structure at a higher level, we need a

very reliable way to transfer knowledge about observations between scenes. Towards

this end, in Chapter 6 we show how to partition all objects in a scene collection

into contextual categories which are sets of objects whose neighborhoods are largely

interchangeable and allow for better generality when learning from examples. Finally,

we use these categories to develop a generative model for 3D scenes. These generative

models are learned from examples and encode a sophisticated understanding of a

specific design pattern which enables very powerful modeling tools. Our generative

models require very few examples and are consequently easy for artists to build; they

make use of a much larger collection of scenes to fill in information missing from the

small number of examples. Using such a model artists can perform operations which

intelligently operate on large collections of objects at once.

One common observation throughout our work has been that human perception

is very fast when compared against the time it takes to model environments by hand.

Although data-driven tools can sometimes fail to consistently respect certain design

principles, the time it takes to perceptually evaluate a candidate scene is orders

of magnitude faster than the time it takes to create a scene from scratch. This

means that even tools where only a small percentage of the results are desired by

the artist have the potential to be useful. This is a very compelling motivation

CHAPTER 8. CONCLUSION 109

for all our tools: we want to transition scene modeling from consisting of a long

series of time-consuming interface manipulation tasks into a series of easy visual

selection tasks. Because most humans have a lifetime of experience processing visual

information, this will not only make scene modeling faster but also more accessible

to casual users who do not want to invest the considerable time needed to learn

complex modeling interfaces. One day these types of tools will dominate the process

of modeling large environments, and will only become better as progressively more

data becomes available. Moving forward with our scene modeling research, our focus

is on designing tools that both have a high degree of automation which makes them

fast and easy to use, while also allowing for a high degree of control, which makes it

easy to produce high quality environments.

BIBLIOGRAPHY 110

Bibliography

Akaike, H. 1973. Information theory and an extension of the maximum likelihood

principle. In Second International Symposium on Information Theory, vol. 1, 267–

281.

Bach, F. R., Lanckriet, G. R. G., and Jordan, M. I. 2004. Multiple kernel

learning, conic duality, and the smo algorithm. In Proceedings of the 21st interna-

tional conference on machine learning, ACM, New York, NY, USA, ICML ’04.

Bagley, S., and Altman, R. 1995. Characterizing the microenvironment sur-

rounding protein sites. Protein Science 4, 4, 622–635.

Bokeloh, M., Wand, M., and Seidel, H.-P. 2010. A connection between

partial symmetry and inverse procedural modeling. In ACM SIGGRAPH 2010

papers, ACM, New York, NY, USA, SIGGRAPH ’10, 104:1–104:10.

Borgwardt, K., Ong, C., Schönauer, S., Vishwanathan, S., Smola, A.,

and Kriegel, H. 2005. Protein function prediction via graph kernels. Bioinfor-

matics 21 , 47–56.

Bowman, D., and McMahan, R. 2007. Virtual reality: how much immersion is

enough? Computer 40, 7, 36–43.

Brants, T., Popat, A., Xu, P., Och, F., and Dean, J. 2007. Large lan-

guage models in machine translation. In Proceedings of the 2007 Joint Conference

on Empirical Methods in Natural Language Processing and Computational Natural

Language Learning (EMNLP-CoNLL), Association for Computational Linguistics,

858–867.

Chaudhuri, S., and Koltun, V. 2010. Data-driven suggestions for creativity

support in 3D modeling. ACM Transactions on Graphics 29 (December), 183:1–

183:10.

BIBLIOGRAPHY 111

Chaudhuri, S., Kalogerakis, E., Guibas, L., and Koltun, V. 2011. Proba-

bilistic reasoning for assembly-based 3D modeling. ACM Transactions on Graphics

30, 4.

Chen, X., Golovinskiy, A., and Funkhouser, T. 2009. A benchmark for 3D

mesh segmentation. In ACM SIGGRAPH 2009 papers, ACM, 73.

Cristianini, N., and Shawe-Taylor, J. 2000. An introduction to support vector

machines: and other kernel-based learning methods. Cambridge University Press.

Deng, J., Berg, A. C., and Fei-Fei, L. 2011. Hierarchical semantic indexing

for large scale image retrieval. Computer Vision and Pattern Recognition, IEEE

Computer Society Conference on 0 , 785–792.

Diez, Y., and Sellarès, J. A. 2007. Efficient colored point set matching under

noise. In Proceedings of the international conference on Computational science and

its applications, 26–40.

Feist, M. 2000. On in and on: An investigation into the linguistic encoding of

spatial scenes. UMI, Ann Arbor, Michigan.

Fellbaum, C., et al. 1998. WordNet: An electronic lexical database. MIT press

Cambridge, MA.

Fisher, M., and Hanrahan, P. 2010. Context-based search for 3D models. ACM

Transactions on Graphics 29 (December), 182:1–182:10.

Fisher, M., Savva, M., and Hanrahan, P. 2011. Characterizing structural

relationships in scenes using graph kernels. In ACM SIGGRAPH 2011 papers,

SIGGRAPH ’11.

Fisher, M., Ritchie, D., Savva, M., Funkhouser, T., and Hanrahan, P.

2012. Example-based synthesis of 3d object arrangements. ACM Transactions on

Graphics (TOG) 31, 6, 135.

BIBLIOGRAPHY 112

Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal,

A., Rusinkiewicz, S., and Dobkin, D. 2004. Modeling by example. In ACM

Transactions on Graphics, vol. 23, ACM, 652–663.

Gal, R., and Cohen-Or, D. 2006. Salient geometric features for partial shape

matching and similarity. ACM Transactions on Graphics 25, 1, 150.

Galleguillos, C., Rabinovich, A., and Belongie, S. 2008. Object catego-

rization using co-occurrence, location and appearance. In CVPR, 1–8.

Gartner, T., Flach, P., and Wrobel, S. 2003. On graph kernels: Hardness

results and efficient alternatives. In Proceedings of the 16th Annual Conference on

Learning Theory, 129–143.

Goldfeder, C., and Allen, P. 2008. Autotagging to improve text search for 3D

models. In JCDL ’08: Proceedings of the 8th ACM/IEEE-CS Joint Conference on

Digital Libraries, ACM, New York, NY, USA, 355–358.

Gupta, A., Efros, A., and Hebert, M. 2010. Blocks world revisited: Image un-

derstanding using qualitative geometry and mechanics. Computer Vision–ECCV ,

482–496.

Habegger, B., and Debarbieux, D. 2006. Integrating Data from the Web

by Machine-Learning Tree-Pattern Queries. On the Move to Meaningful Internet

Systems , 941–948.

Harchaoui, Z., and Bach, F. 2007. Image classification with segmentation graph

kernels. In CVPR, 1–8.

Hays, J., and Efros, A. A. 2007. Scene completion using millions of photographs.

ACM Transactions on Graphics (SIGGRAPH 2007) 26, 3.

Henrich, A., and Morgenroth, K. 2003. Supporting collaborative software

development by context-aware information retrieval facilities. In Proceedings of the

14th International Workshop on Database and Expert Systems Applications, IEEE

Computer Society, Washington, DC, USA, DEXA ’03, 249–.

BIBLIOGRAPHY 113

Horn, B. 1984. Extended gaussian images. Proceedings of the IEEE 72, 12, 1671–

1686.

Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y., and Ramani, K.

2005. Three-dimensional shape searching: state-of-the-art review and future trends.

Computer-Aided Design 37, 5, 509–530.

Kalogerakis, E., Chaudhuri, S., Koller, D., and Koltun, V. 2012. A

probabilistic model for component-based shape synthesis. ACM Transactions on

Graphics 31, 4.

Kalvin, A., and Taylor, R. 1996. Superfaces: Polygonal mesh simplification

with bounded error. Computer Graphics and Applications, IEEE 16, 3, 64–77.

Kashima, H., Tsuda, K., and Inokuchi, A. 2004. Kernels for graphs. Kernel

methods in computational biology , 155–170.

Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2003. Rotation in-

variant spherical harmonic representation of 3D shape descriptors. In Proceedings

of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing,

Eurographics Association, 156–164.

Kazhdan, M. 2007. An approximate and efficient method for optimal rotation

alignment of 3D models. IEEE Transactions on Pattern Analysis and Machine

Intelligence 29, 7, 1221 –1229.

Kokare, M., Chatterji, B., and Biswas, P. 2003. Comparison of similarity

metrics for texture image retrieval. In TENCON 2003. Conference on convergent

technologies for Asia-Pacific region, vol. 2, IEEE, 571–575.

Kuhn, H. 1955. The hungarian method for the assignment problem. Naval research

logistics quarterly 2, 1-2, 83–97.

Lawson, A., Linderman, M., Leonard, M., Stauffer, A., Pokines, B.,

and Carlin, M. 2009. Perturbation and pitch normalization as enhancements

BIBLIOGRAPHY 114

to speaker recognition. In Acoustics, Speech and Signal Processing, 2009. ICASSP

2009. IEEE International Conference on, IEEE, 4533–4536.

Lazebnik, S., Schmid, C., and Ponce, J. 2006. Beyond bags of features: Spatial

pyramid matching for recognizing natural scene categories. In CVPR, vol. 2, 2169

– 2178.

Lee, B., Srivastava, S., Kumar, R., Brafman, R., and Klemmer, S. 2010.

Designing with interactive example galleries. In Proceedings of the 28th interna-

tional conference on Human factors in computing systems, ACM, 2257–2266.

Levandowsky, M., and Winter, D. 1971. Distance between sets. Nature 234,

5323, 34–35.

Mahé, P., Ueda, N., Akutsu, T., Perret, J.-L., and Vert, J.-P. 2004. Ex-

tensions of marginalized graph kernels. In 21st international conference on machine

learning, ACM, New York, NY, USA, ICML ’04, 70–77.

Malisiewicz, T., and Efros, A. A. 2009. Beyond categories: The visual memex

model for reasoning about object relationships. In NIPS.

Medin, D., and Schaffer, M. 1978. Context theory of classification learning.

Psychological review 85, 3, 207–238.

Merrell, P., Schkufza, E., and Koltun, V. 2010. Computer-generated res-

idential building layouts. ACM Transactions on Graphics 29 (December), 181:1–

181:12.

Merrell, P., Schkufza, E., Li, Z., Agrawala, M., and Koltun, V. 2011.

Interactive furniture layout using interior design guidelines. In ACM SIGGRAPH

2011 papers, 87:1–87:10.

Min, P. 2004. A 3D model search engine. Princeton University.

Murtagh, F. 1984. Complexities of hierarchic clustering algorithms: state of the

art. Computational Statistics Quarterly 1, 2, 101–113.

BIBLIOGRAPHY 115

Neisser, U. 1967. Cognitive Psychology. Appleton-Century-Crofts, New York.

Novotni, M., and Klein, R. 2003. 3D Zernike descriptors for content based

shape retrieval. In 8th ACM symposium on solid modeling and applications, ACM,

216–225.

Papadakis, P., Pratikakis, I., Trafalis, T., Theoharis, T., and Peranto-

nis, S. 2008. Relevance feedback in content-based 3D object retrieval: A compar-

ative study. Computer-Aided Design and Applications Journal 5, 5, 753–763.

Paraboschi, L., Biasotti, S., and Falcidieno, B. 2007. 3D scene comparison

using topological graphs. Eurographics Italian Chapter, Trento (Italy), 87–93.

Platt, J. 1999. Fast training of support vector machines using sequential minimal

optimization. In Advances in Kernel Methods, MIT press, 185–208.

Rabinovich, A., Vedaldi, A., Galleguillos, C., Wiewiora, E., and Be-

longie, S. 2007. Objects in context. IEEE 11th International Conference on

Computer Vision, 1–8.

Ramon, J., and Gärtner, T. 2003. Expressivity versus efficiency of graph kernels.

In 1st International Workshop on Mining Graphs, Trees and Sequences, 65–74.

Rosch, E. 1973. Natural categories. Cognitive psychology 4, 3, 328–350.

Russell, B., and Torralba, A. 2009. Building a database of 3d scenes from user

annotations. CVPR, 2711–2718.

Russell, B., Torralba, A., Murphy, K., and Freeman, W. 2008. LabelMe:

a database and web-based tool for image annotation. International Journal of

Computer Vision 77, 1, 157–173.

Salton, G., and Buckley, C. 1988. Term-weighting approaches in automatic

text retrieval. In Information Processing and Management, 513–523.

Shawe-Taylor, J., and Cristianini, N. 2004. Kernel methods for pattern anal-

ysis. Cambridge University Press.

BIBLIOGRAPHY 116

Shechtman, E., and Irani, M. 2007. Matching local self-similarities across images

and videos. In CVPR, 1–8.

Shilane, P., Min, P., Kazhdan, M., and Funkhouser, T. 2004. The Princeton

shape benchmark. In Shape Modeling International.

Silverman, B. 1986. Density estimation for statistics and data analysis, vol. 26.

Chapman & Hall/CRC.

Steinbach, M., Karypis, G., and Kumar, V. 2000. A comparison of document

clustering techniques. In KDD workshop on text mining, vol. 400, 525–526.

Sundar, H., Silver, D., Gagvani, N., and Dickinson, S. 2003. Skeleton based

shape matching and retrieval.

Torralba, A., 2010. The context challenge. http://web.mit.edu/torralba/www/

carsAndFacesInContext.html.

Torsello, A., Albarelli, A., and Pelillo, M. 2007. Matching relational

structures using the edge-association graph. In 14th International Conference on

Image Analysis and Processing, 775 –780.

Tung, T., and Schmitt, F. 2005. The augmented multiresolution Reeb graph

approach for content-based retrieval of 3D shapes. International Journal of Shape

Modeling 11, 1, 91–120.

van Rijsbergen, C., Robertson, S., and Porter, M. 1980. New models

in probabilistic information retrieval. British Library Research and Development

Report No. 5587 .

Varga, T., and Bunke, H. 2003. Generation of synthetic training data for an

hmm-based handwriting recognition system. In Document Analysis and Recogni-

tion, 2003. Proceedings. Seventh International Conference on, IEEE, 618–622.

Wolfson, H., and Rigoutsos, I. 1997. Geometric hashing: an overview. Com-

putational Science Engineering 4, 4, 10 –21.

http://web.mit.edu/torralba/www/carsAndFacesInContext.html
http://web.mit.edu/torralba/www/carsAndFacesInContext.html

BIBLIOGRAPHY 117

Xu, Y., and Kemp, C. 2010. Constructing spatial concepts from universal primi-

tives. Proceedings of the 32nd Annual Conference of the Cognitive Science Society ,

1–6.

Xu, K., Stewart, J., and Fiume, E. 2002. Constraint-based automatic placement

for scene composition. In Graphics Interface 2002, 25–34.

Xu, K., Zhang, H., Cohen-Or, D., and Chen, B. 2012. Fit and diverse: Set

evolution for inspiring 3d shape galleries. ACM Transactions on Graphics 31, 4.

Yeh, Y.-T., Yang, L., Watson, M., Goodman, N. D., and Hanrahan, P.

2012. Synthesizing open worlds with constraints using locally annealed reversible

jump mcmc. ACM Transactions on Graphics 31, 4.

Yu, L.-F., Yeung, S.-K., Tang, C.-K., Terzopoulos, D., Chan, T. F.,

and Osher, S. J. 2011. Make it home: automatic optimization of furniture

arrangement. In ACM SIGGRAPH 2011 papers, 86:1–86:12.

Matthew Fisher

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Pat Hanrahan) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Scott Klemmer)

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Barbara Tversky)

Approved for the University Committee on Graduate Studies

	Abstract
	Acknowledgments
	1 Introduction
	1.1 Virtual Worlds
	1.2 The Basic Scene Modeling Pipeline
	1.2.1 3D Model Collections
	1.2.2 Modeling Interface

	1.3 Modeling Tools
	1.4 Comparing Arrangements
	1.5 Dissertation Road Map

	2 Datasets
	2.1 Ideal Examples
	2.2 Google 3D Warehouse
	2.3 Scene Processing
	2.3.1 Segmentation
	2.3.2 Tagging
	2.3.3 Summary

	2.4 Scene Studio

	3 Model Comparison
	3.1 Attribute Lists
	3.2 Comparing Text
	3.3 Comparing Geometry
	3.4 Comparing Materials
	3.5 Model Kernel

	4 A Visual Memex for Model Search
	4.1 Spatial Context in Computer Vision
	4.2 Context Search Algorithm
	4.2.1 Observations
	4.2.2 Spatial Relationships
	4.2.3 Object Similarity
	4.2.4 Model Ranking

	4.3 Results
	4.3.1 Context Search vs. Keyword Search
	4.3.2 Adapting to Context
	4.3.3 Multiple Supporting Objects
	4.3.4 User Evaluation
	4.3.5 Failure Cases

	4.4 Chapter Summary

	5 Graph Kernels in Scene Modeling
	5.1 Previous Work
	5.1.1 Scene Comparison
	5.1.2 Graph Kernels
	5.1.3 Spatial Relationships

	5.2 Representing Scenes as Graphs
	5.3 Graph Comparison
	5.3.1 Node Kernel
	5.3.2 Edge Kernel
	5.3.3 Graph Kernel
	5.3.4 Algorithm Details

	5.4 Dataset
	5.5 Tools
	5.5.1 Relevance Feedback
	5.5.2 Find Similar Scenes
	5.5.3 Context-based Model Search
	5.5.4 Performance

	5.6 Chapter Summary

	6 A Generative Model for 3D Scenes
	6.1 Introduction
	6.2 Related Work
	6.3 Approach
	6.4 Contextual Categories
	6.5 Learning Mixed Models
	6.6 Occurrence Model
	6.6.1 Object Distribution
	6.6.2 Parent Support
	6.6.3 Final Model

	6.7 Arrangement Model
	6.7.1 Spatial Placement
	6.7.2 Surface Placement
	6.7.3 Final Model

	6.8 Synthesis
	6.8.1 Static Support Hierarchy
	6.8.2 Object Layout

	6.9 Results and Evaluation
	6.9.1 Synthesis Results
	6.9.2 Human Evaluation
	6.9.3 Controllable Synthesis

	6.10 Chapter Summary

	7 Discussion
	7.1 Data-driven vs. Rule-based Systems
	7.2 Weaknesses of Data-driven Scene Modeling
	7.3 Scene Modeling Software
	7.4 Future Work

	8 Conclusion
	Bibliography

