
Share With Thy Neighbors: Single-View
Reconstruction by Cross-Instance Consistency

Tom Monnier1 Matthew Fisher2 Alexei A. Efros3 Mathieu Aubry1

1LIGM, Ecole des Ponts, Univ Gustave Eiffel 2Adobe Research 3UC Berkeley

Fig. 1: Single-View Reconstruction by Cross-Instance Consistency.
(left) Given a collection of single-view images from an object category, we
learn without additional supervision an autoencoder that explicitly generates
shape, texture, pose and background. (right) At inference time, our approach
reconstructs high-quality textured meshes from raw single-view images.

Abstract. Approaches to single-view reconstruction typically rely on
viewpoint annotations, silhouettes, the absence of background, multiple
views of the same instance, a template shape, or symmetry. We avoid
all of these supervisions and hypotheses by leveraging explicitly the
consistency between images of different object instances. As a result, our
method can learn from large collections of unlabelled images depicting
the same object category. Our main contributions are two approaches to
leverage cross-instance consistency: (i) progressive conditioning, a training
strategy to gradually specialize the model from category to instances in
a curriculum learning fashion; (ii) swap reconstruction, a loss enforcing
consistency between instances having similar shape or texture. Critical
to the success of our method are also: our structured autoencoding
architecture decomposing an image into explicit shape, texture, pose,
and background; an adapted formulation of differential rendering, and;
a new optimization scheme alternating between 3D and pose learning.
We compare our approach, UNICORN, both on the diverse synthetic
ShapeNet dataset - the classical benchmark for methods requiring multiple
views as supervision - and on standard real-image benchmarks (Pascal3D+
Car, CUB-200) for which most methods require known templates and
silhouette annotations. We also showcase applicability to more challenging
real-world collections (CompCars, LSUN), where silhouettes are not
available and images are not cropped around the object.

Keywords: unsupervised learning, single-view reconstruction

ar
X

iv
:2

20
4.

10
31

0v
1

 [
cs

.C
V

]
 2

1
A

pr
 2

02
2

2 T. Monnier et al.

1 Introduction

One of the most magical human perceptual abilities is being able to see the 3D
world behind a 2D image – a mathematically impossible task! Indeed, the ancient
Greeks were so incredulous at the possibility that humans could be “hallucinating”
the third dimension, that they proposed the utterly implausible Emission Theory
of Vision [9] (eye emitting light to “sense” the world) to explain it to themselves.
In the history of computer vision, single-view reconstruction (inferring 3D from a
single 2D image, or SVR) has had an almost cult status as one of the holy grail
problems [17, 18, 38]. Recent advancements in data-driven deep learning methods
have dramatically improved results in this area [6, 12, 30]. However, the best
methods still require costly supervision, such as multi-view posed images [28, 36].
Despite efforts to remove such requirements, the works with the least supervision
still rely on two signals limiting their applicability: (i) silhouettes and (ii) strong
priors such as symmetries [22], known template shapes [10,42], or the absence
of background [49]. Although crucial to achieve reasonable results, priors like
silhouette and symmetry limit applicability and reconstruction quality: silhouette
annotations for real images are often coarse [5] and wrong symmetry predictions
yield unrealistic reconstructions [49]. We propose a data-driven alternative to
priors, silhouette annotations and multi-view supervision, which we demonstrate
to be competitive for diverse datasets. Table 1 summarizes the comparison
between our approach and selected prior works.

Method Supervision Synthetic data Real data Output

[6, 12,30,45]F 3D ShapeNet 7 3D

[26,52]F MV, C, S ShapeNet 7 3D

[5,28,36,43]F MV, C, S ShapeNet 7 3D, T
[57] MV, C, S 7 Bird, Car, Horse 3D, T

[20, 41]F MV, S ShapeNet 7 3D, C

[23, 43,44]F CK, S 7 Pascal 3D
[5,22] CK, S, P(†) 7 Bird, Car, Plane 3D, T
[16] CK, P(†) ShapeNet Bird, Car 3D, T
[10] S, P(♦, †) 7 Bird, Car, Moto, Shoe 3D, T, C
[42] S, P(♦, †) 7 Animal, Car, Plane 3D, T, C
[27] S, P(↔, †) 7 Animal, Car, Moto 3D, T, C
[48] S, P(‡) 7 Vase 3D, T, C
[49] P(�, l, †) 7 Face D, T, C
[15] P(�, ∅) Toy ShapeNet 7 3D, C
Ours None ShapeNet Animal, Car, Moto 3D, T, C

Table 1: Comparison with selected works. For each method, we outline the
supervision and priors used (Multi-Views, Camera pose, Camera estimate or
Keypoints, Silhouette, Priors like ♦ template shape, † symmetry, ‡ solid of
revolution, ↔ semantic consistency, � no/limited background, l frontal view, ∅
no texture), which data it has been applied to and the corresponding outputs
(3D, Depth, Texture, Camera pose). We mark category-agnostic models with F.

Single-View Reconstruction by Cross-Instance Consistency 3

(a) Progressive conditioning (b) Swap reconstruction

Fig. 2: Leveraging cross-instance consistency. (a) Progressive conditioning
amounts to gradually increasing, in a multi-stage fashion, the size of the condition-
ing latent spaces, here associated to shape zsh and texture ztx. (b) We explicitly
share the shape and texture models across neighboring instances by swapping
their characteristics and applying a loss to associated swap reconstructions.

More precisely, we learn in an analysis-by-synthesis fashion a network that
predicts for each input image a 3D shape parametrized as a deformation of an
ellipsoid, a texture map, a camera viewpoint, and a background image. Our main
insight to remove the hypotheses and supervisions required by other methods
is to leverage consistency across different instances. First, we design a training
procedure, progressive conditioning, which encourages the model to share elements
between images by strongly constraining the variability of shape, texture and
background at the beginning of training and progressively allowing for more
diversity (Figure 2a). Second, we introduce a swap reconstruction loss, which
explicitly enforces neighboring instances from different viewpoints to share the
same shape or texture model (Figure 2b). Note that compared to works using
symmetry priors to constrain the reconstruction of unseen parts [5, 10, 15,22,27,
42,48,49], these simple yet effective techniques are data driven and not specialized
to any particular object or dataset.

We also provide two technical insights that we found critical to learn our model
without viewpoint and silhouette annotations: (i) a new optimization strategy
which alternates between learning a set of pose candidates with associated
probabilities and learning all other components using the most likely candidate,
and (ii) a differentiable rendering formulation inspired by layered image models [21,
32] which we found to perform better than the classical SoftRasterizer [28].

We validate our approach on the standard ShapeNet [4] benchmark, real-image
SVR benchmarks (Pascal3D+ Car [50], CUB-200 [47]) as well as more complex
real-world datasets (CompCars [53], LSUN Motorbike and Horse [54]). In all
scenarios, we demonstrate high-quality and realistic textured 3D reconstructions.

4 T. Monnier et al.

Summary. We present UNICORN, an UNsupervised framework using cross-
Instance COnsistency for 3D ReconstructioN. Our main contributions are:
– the first fully unsupervised SVR system, demonstrating state-of-the-art tex-

tured 3D reconstructions for both generic object shapes and real images, and
not requiring hypothesis or supervision beyond a categorical image collection.

– two data-driven techniques to enforce cross-instance consistency: cross-instance
consistency: progressive conditioning (Fig. 2a) and swap reconstruction (Fig. 2b).

Code and models are available at imagine.enpc.fr/~monniert/UNICORN.

2 Related work

In this section, we first review deep single-view reconstruction methods. We then
present the mesh-based differential renderers we build upon. Finally, we discuss
curriculum learning techniques to which our progressive conditioning is related.

Deep Single-View Reconstruction (SVR). There is a clear trend to remove
supervision from deep SVR pipelines to directly learn 3D from raw 2D images,
which we summarize in Table 1 and discuss below.

A first group of methods uses strong supervision, either paired 3D and
images or multiple views of the same object. Direct 3D supervision is successfully
used to learn voxels [6], meshes [45], parametrized surfaces [12] and implicit
functions [30, 51]. The first methods using silhouettes and multiple views of the
same instance initially require camera poses and are also developed for diverse 3D
shape representations: [43,52] opt for a voxel representation, [5,26,28] introduce
mesh-based differentiable renderers, and [36] adapts implicit representations.
Works like [20,41] then introduce techniques to remove the assumption of known
poses. Except for [57], which successfully leverages GAN-generated images [11,24],
these works are typically limited to synthetic datasets.

A second group of methods aims at removing the need for 3D or multi-view
supervision. This is very challenging and they hence focus on learning 3D from
images of a single category. Early works [23, 44] infer geometry by estimating
camera poses with keypoints and minimizing the silhouette reprojection error.
The ability to predict textures is first incorporated by CMR [22] which, in addition
to keypoints and silhouettes, uses symmetry priors. [16] improves upon CMR and
develops a framework for images with camera annotations that does not require
silhouettes. Two works managed to further avoid the need for keypoints or camera
estimates but at the cost of additional dataset-specific hypothesis: [15] shows
results on synthetic images with textureless objects, [49] models 2.5D objects
like faces with limited background and viewpoint variation. Finally, recent works
only require object silhouettes but also make additional hypotheses: [10, 42] use
known template shapes, [27] assumes access to an off-the-shelf system predicting
part semantics, and [48] specifically targets solids of revolution.

We build on the insights from these works, but we do not use camera estimates,
keypoints, silhouettes, nor strong dataset-specific priors, and demonstrate results
for both diverse shapes and real-image collections. To the best of our knowledge,
we present the first generic SVR system learned from raw image collections.

http://imagine.enpc.fr/~monniert/UNICORN/

Single-View Reconstruction by Cross-Instance Consistency 5

Mesh-based differentiable rendering. We represent 3D models as meshes
with parametrized surfaces, as introduced in AtlasNet [12] and advocated by [42].
We optimize the mesh geometry, texture and camera parameters associated to
an image using differentiable rendering. Loper and Black [29] introduce the first
generic differentiable renderer by approximating derivatives with local filters,
and [26] proposes an alternative approximation more suitable to learning neural
networks. Another set of methods instead approximates the rendering function
to allow differentiability, including SoftRasterizer [28,37] and DIB-R [5]. We refer
the reader to [25] for a comprehensive study. We build upon SoftRasterizer [28],
but modify the rendering function to better learn without silhouette information.

Curriculum learning. The idea of learning networks by “starting small” dates
back to Elman [8] where two curriculum learning schemes are studied: (i) increas-
ing the difficulty of samples, and (ii) increasing the complexity of the model. We
respectively coin them curriculum sampling and curriculum modeling for differ-
entiation. Known to drastically improve the convergence speed [2], curriculum
sampling is widely adopted across various applications, such as representation
learning [39], optical flow estimation [19] and natural language processing [1].
On the contrary, curriculum modeling is less studied although crucial to various
methods. For example, [45] learns to perform SVR in a coarse-to-fine manner by
increasing the number of mesh vertices, and [31] clusters images by aligning them
with transformations that progressively increase in complexity. Notably, [31] quan-
titatively shows that such procedure dramatically improves results by avoiding
bad local minima. In this work, we propose a new form of curriculum modeling
dubbed progressive conditioning which also enables us to avoid bad local minima.

3 Approach

Our goal is to learn a neural network that reconstructs a textured 3D object
from a single input image. We assume we have access to a raw collection of
images depicting objects from the same category, without any further annotation.
We propose to learn 3D in an analysis-by-synthesis fashion, by learning to
autoencode images in a structured way as depicted in Figure 3. In this section,
we first introduce our structured autoencoder (Section 3.1). We then present how
we learn models consistent across instances (Section 3.2). Finally, we discuss one
more technical contribution necessary to the learning of our model: an alternate
optimization strategy for joint 3D and pose estimation (Section 3.3).

Notations. We use bold lowercase for vectors (e.g., a), bold uppercase for images
(e.g., A), double-struck uppercase for meshes (e.g., A), calligraphic uppercase
for the main modules of our system (e.g., A), lowercase indexed with generic
parameters θ for networks (e.g., aθ), and write a1:N the ordered set {a1, . . . , an}.

3.1 Structured autoencoding

Overview. Our approach can be seen as a structured autoencoder: it takes an
image as input, computes parameters with an encoder, and decodes them into

6 T. Monnier et al.

Fig. 3: Structured autoencoding. Given an input, we predict parameters that
are decoded into 4 factors (shape, texture, pose, background) and composed to
generate the output. Progressive conditioning is represented with .

explicit and interpretable factors that are composed to generate an image. We
model images as the rendering of textured meshes on top of background images.
For a given image I, our model thus predicts a shape, a texture, a pose and a
background which are composed to get the reconstruction Î, as shown in Figure 3.
More specifically, the image I is fed to a convolutional encoder network eθ which
outputs parameters eθ(I) = {zsh, ztx,a, zbg} used for the decoding part. a is a 9D
vector including the object pose, while the dimension of the latent codes zsh, ztx

and zbg will vary during training (see Sec. 3.2). In the following, we describe the
decoding modules using these parameters to build the final image by generating
a shape, adding texture, positioning it and rendering it over a background.

Shape deformation. We follow [42] and use the parametrization of AtlasNet [12]
where different shapes are represented as deformation fields applied to the unit
sphere. We apply the deformation to an icosphere slightly stretched into an
ellipsoid mesh E using a fixed anisotropic scaling. More specifically, given a
3D vertex x of the ellipsoid, our shape deformation module Szsh

is defined by
Szsh

(x) = x + sθ(x, zsh), where zsh is a shape code and sθ is a Multi-Layer
Perceptron (MLP) modeling a deformation field. Applying this displacement to
all the ellipsoid vertices enables us to generate a shaped mesh S = Szsh

(E). We
found that using an ellipsoid instead of a raw icosphere was very effective in
encouraging the learning of objects aligned w.r.t. the canonical axes. Learning
surface deformations is often preferred to vertex-wise displacements as it enables
mapping surfaces, and thus meshes, at any resolution. For us, the mesh resolution
is kept fixed and such a representation is a way to regularize the deformations.

Texturing. Following the idea of CMR [22], we model textures as an image UV-
mapped onto the mesh through the reference ellipsoid. More specifically, given a
texture code ztx, a convolutional network tθ is used to produce an image tθ(ztx),
which is UV-mapped onto the sphere using spherical coordinates to associate a
2D point to every vertex of the ellipsoid, and thus to each vertex of the shaped
mesh. We write Tztx

this module generating a textured mesh T = Tztx
(S).

Single-View Reconstruction by Cross-Instance Consistency 7

(a) Background overfits the input (b) 3D object overfits the input

Fig. 4: Overfitting issues. An SVR system learned by raw photometric autoen-
coding is prone to overfitting through (a) the background model or (b) the
object model. We alleviate the issue with cross-instance consistency.

Affine transformation. To render the textured mesh T, we define its position
w.r.t. the camera. In addition, we found it beneficial to explicitly model an
anisotropic scaling of the objects. Because predicting poses from raw photometry
comparison is hard, we predict K 6D poses candidates, defined by rotations r1:K

and translations t1:K , and associated probabilities p1:K . This involves learning
challenges we tackle with a specific optimization procedure described in Sec. 3.3.
At inference, we select the pose with highest probability. We combine the scaling
and the most likely 6D pose in an affine transformation module Aa. More precisely,
Aa is parametrized by a = {s, r, t}, where s, r, t ∈ IR3 respectively correspond
to the three scales of an anisotropic scaling, the three Euler angles of a rotation
and the three coordinates of a translation. A 3D point x on the mesh is then
transformed by Aa(x) = rot(r)diag(s)x + t where rot(r) is the rotation matrix
associated to r and diag(s) is the diagonal matrix associated to s. Our module is
applied to all points of the textured mesh T resulting in a posed mesh P = Aa(T).

Rendering with background. The final step of our image formation process is
to render the mesh over a background image. The background image is generated
from a background code zbg by a convolutional network bθ. A differentiable
module Bzbg

renders the posed mesh P over this background image bθ(zbg)

resulting in a reconstructed image Î = Bzbg
(P). We perform rendering through

soft rasterization of the mesh. Because we observed that learning geometry from
raw photometry with the standard SoftRasterizer [28,37] was hard, we propose
two key changes: a layered aggregation of the projected faces and an alternative
occupancy function. We provide details in our supplementary material.

3.2 Unsupervised learning with cross-instance consistency

We propose to learn our structured autoencoder without any supervision, by
synthesizing 2D images and minimizing a reconstruction loss. Due to the uncon-
strained nature of the problem, such an approach typically overfits the input
images (e.g ., Fig. 4a and Fig. 4b). While previous works leverage silhouettes
and strong dataset-specific priors to mitigate this issue, we instead propose two
unsupervised data-driven techniques, namely progressive conditioning (a training
strategy) and swap reconstruction (a training loss). We thus optimize the shape,

texture and background by minimizing for each image I reconstructed as Î:

L3D = Lrec(I, Î) + λswapLswap(I) + λregLreg, (1)

8 T. Monnier et al.

where λswap and λreg are scalar hyperparameters, and Lrec, Lswap and Lreg are
respectively the reconstruction, swap reconstruction, and regularization losses,
described below. In all experiments, we use λswap = 1 and λreg = 0.01. Note
that we optimize pose prediction using a slightly different loss in an alternate
optimization scheme described in Section 3.3.

Reconstruction and regularization losses. Our reconstruction loss has two
terms, a pixel-wise squared L2 loss Lpix and a perceptual loss [56] Lperc, an L2

loss on the relu3 3 layer of a pre-trained VGG16 network [40], similar to [49].
While pixel-wise losses are common for autoencoders, we found it crucial to add
a perceptual loss to learn textures that are discriminative for our pose estimation.
Note that we tried SSIM [46] as perceptual distance which also improved learning
but yielded slightly worse results. Our full reconstruction loss can be written
Lrec(I, Î) = Lpix(I, Î) + λpercLperc(I, Î) and we use λperc = 10 in all experiments.
While our deformation-based surface parametrization naturally regularizes the
shape, we observe it can fall into bad minima where the surface has folds and
miss-oriented parts. Following prior works [5, 10, 28, 55], we thus add a small
regularization term Lreg = Lnormal + Llap consisting of a normal consistency
loss [7] Lnormal and a Laplacian smoothing loss [33] Llap.

Progressive conditioning. The goal of progressive conditioning is to encourage
the model to share elements (e.g . shape, texture, background) across instances
to prevent overfitting. Inspired by the curriculum learning philosophy [8, 31,45],
we propose to do so by gradually increasing the latent space representing the
shape, texture and background. Intuitively, restricting the latent space implicitly
encourages maximizing the information shared across instances. For example,
a latent space of dimension 0 (i.e., no conditioning) amounts to learning a
global representation that is the same for all instances, while a latent space of
dimension 1 restricts all the generated shapes, textures or backgrounds to lie
on a 1-dimensional manifold. Progressively increasing the size of the latent code
during training can be interpreted as gradually specializing from category-level to
instance-level knowledge. Because common neural network implementations have
fixed-size inputs, we implement progressive conditioning by masking out, stage-by-
stage, a decreasing number of values of the latent code. Figure 2a illustrates the
procedure with an example where we can observe the progressive specialization
to particular instances: reactors gradually appear/disappear, textures get more
accurate. All our experiments share the same 4-stage training strategy where the
latent code dimension is increased at the beginning of each stage and the network
is then trained until convergence. We use dimensions 0/2/8/32 for the shape
code, 2/8/32/128 for the texture code and 4/16/64/128 for the background code.
We provide result examples for each stage in our supplementary material.

Swap reconstruction. The idea behind swap reconstruction is to explicitly
enforce consistency between different instances. Our key assumption is that
neighboring instances with similar shape or texture exist in the dataset. If
such neighbors are correctly identified, switching their shape or texture in our
generation process should give similar reconstruction results. We hence propose

Single-View Reconstruction by Cross-Instance Consistency 9

to swap characteristics from neighboring instances and apply our reconstruction
loss on the associated reconstructions. Intuitively, this process can be seen as
mimicking a multi-view supervision without actually having access to multi-view
images by finding neighboring instances in well-designed latent spaces. Figure 2b
illustrates the process with an example.

More specifically, let {zsh, ztx,a, zbg} be the parameters predicted by our
encoder for a given input training image I, let Ω be a memory bank stor-
ing the images and parameters of the last M instances processed by the net-
work. We write Ω(m) = {I(m), z(m)

sh , z(m)
tx ,a(m), z(m)

bg } each of these M instances and
associated parameters. We first select the closest instance from the memory
bank Ω in the texture (respectively shape) code space using the L2 distance,
mt = argminm ‖ztx−z(m)

tx ‖2 (respectively ms = argminm ‖zsh−z(m)

sh ‖2). We then

swap the codes and generate the reconstruction Î(mt)
tx (respectively Î(ms)

sh) using

the parameters {z(mt)

sh , ztx,a
(mt), z(mt)

bg } (respectively {zsh, z
(ms)
tx ,a(ms), z(ms)

bg }). Fi-

nally, we compute the reconstruction loss between the images I(mt) and Î(mt)
tx

(respectively I(ms) and Î(ms)

sh). Our full swap loss can thus be written:

Lswap(I) = Lrec(I(mt), Î(mt)
tx) + Lrec(I(ms), Î(ms)

sh). (2)

Note that we recompute the parameters of the selected instances with the current
network state, to avoid uncontrolled effects of changes in the network state.

To prevent latent codes from specializing by viewpoint, we additionally split
the viewpoints into V bins w.r.t. the rotation angle, sample uniformly a target
viewpoint bin for each input instance and look for the nearest instances only in
the subset of instances within the target viewpoint bin. In all experiments, unless
mentioned otherwise, we use V = 4 and a memory bank of size M = 1024.

3.3 Alternate 3D and pose learning

Because predicting 6D poses is hard due to self-occlusions, we follow prior
works [10, 15, 20, 42] and predict multiple pose candidates and their likelihood.
However, we identified failure modes in the standard optimization framework
(detailed in our supplementary material) and instead propose a new optimiza-
tion that alternates between 3D and pose learning. More specifically, given an
input image I, we predict K pose candidates {(r1, t1), . . . , (rK , tK)}, and their
associated probabilities p1:K . We render the model from the different poses,
yielding K reconstructions Î1:K . We then alternate the learning between 2 steps:
(i) the 3D-step where shape, texture and background branches of the network are
updated by minimizing L3D using the pose associated to the highest probability,
and (ii) the P-step where the branches of the network predicting candidate poses
and their associated probabilities are updated by minimizing:

LP =
∑
k pkLrec(I, Îk) + λuniLuni, (3)

where Lrec is the reconstruction loss described in Sec. 3.2, Luni is a regularization
loss on the predicted poses and λuni is a scalar hyperparameter. More precisely,

10 T. Monnier et al.

we use Luni =
∑
k |p̄k − 1/K| where p̄k is the averaged probabilities for candidate

k in a particular training batch. Similar to [15], we found it crucial to introduce
this regularization term to encourage the use of all pose candidates. In particular,
this prevents a collapse mode where only one pose candidate is used. Note that
we do not use the swap reconstruction loss which is not relevant for viewpoints.
In all experiments, we use λuni = 0.02.

Inspired by the camera multiplex of [10], we parametrize rotations with
the classical Euler angles (azimuth, elevation and roll) and rotation candidates
correspond to offset angles w.r.t. reference viewpoints. Since in practice elevation
has limited variations, our reference viewpoints are uniformly sampled along the
azimuth dimension. Note that compared to [10], we do not directly optimize a
set of pose candidates per training image, but instead learn a set of K predictors
for the entire dataset. We use K = 6 in all experiments.

4 Experiments

We validate our approach in two standard setups. Our model is first quantitatively
evaluated on the classical ShapeNet benchmark where competing methods use
multiple views as supervision. Then, we compare it to state-of-the-art methods
on standard real-image benchmarks and demonstrate its applicability to more
complex datasets. Finally, we present an ablation study.

4.1 Quantitative evaluation on the ShapeNet benchmark

We compare our approach to state-of-the-art methods using multi-views, view-
points and silhouettes as supervision. Our method is instead learned without
supervision, on categorical image collections, i.e., we train a model per class. For
fair comparison, we train the best supervised method, DVR [36], in this setting.

We adhere to community standards [26,28,36] and use the rendering and splits
from [26] of the ShapeNet dataset [4]. It corresponds to a subset of 13 classes of
3D objects, each object being rendered into a 64× 64 image from 24 viewpoints
uniformly spaced along the azimuth dimension. We evaluate results using the
standard Chamfer-L1 distance [30, 36]. Compared to competing methods having
access to the ground-truth viewpoint during training, we predict it for each input
image in addition to the 3D shape. This yields to shape/pose ambiguities and
misalignment errors. We thus post-process the predicted shapes with the rigid
Iterative Closest Point (ICP) [3] to align them w.r.t. the ground-truth shapes.
For fair comparison, we evaluate the best supervised method, DVR [36], using
this ICP post-processing.

We report our quantitative results and compare to the state-of-the-art methods
in Table 2. We split the table in twogroups based on whether the method is
category-specific (i.e. one model per class) or category-agnostic (i.e. one single
model for all classes). We also indicate the use of the ICP alignment for evaluation.
Our approach achieves results that are on average slightly worse but comparable
to the state-of-the-art methods supervised with multiple views and viewpoint

Single-View Reconstruction by Cross-Instance Consistency 11

Supervision None MV + C + S

Method Ours DVR? DVR? DVR SoftRas
Cat. specific 3 3 3 - -

ICP eval 3 3 - - -

airplane 0.136 0.139 0.151 0.190 0.149
bench 0.208 0.223 0.232 0.210 0.241
cabinet 0.218 0.235 0.257 0.220 0.231
car 0.213 0.189 0.198 0.196 0.221
chair 0.286 0.224 0.249 0.264 0.338
display 0.286 0.216 0.281 0.255 0.284
lamp 0.661 0.346 0.386 0.413 0.381
phone 0.152 0.125 0.147 0.148 0.131
rifle 0.119 0.109 0.131 0.175 0.155
sofa 0.248 0.191 0.218 0.224 0.407
speaker 0.353 0.291 0.321 0.289 0.320
table 0.301 0.269 0.283 0.280 0.374
vessel 0.252 0.202 0.220 0.245 0.233

mean 0.264 0.212 0.236 0.239 0.266

Table 2: Comparisons on ShapeNet [4]. Fol-
lowing standard practices [30, 36], we report
the Chamfer-L1 distance, best results are high-
lighted in each group. We mark methods we ran
ourselves using official implementations (?).

Fig. 5: Qualitative com-
parisons. We compare our
results to DVR [36] and Sof-
tRasterizer [28] for different
ShapeNet [4] categories.

annotations. For some categories, it even yields slightly better performance. This
is a strong result: it shows that our system learned on raw images generates 3D
reconstructions comparable to the ones obtained from methods using geometry
cues like silhouettes and multiple views. Note that for the lamp category, our
method yields much worse results. We believe this is due mainly to the rotation
invariance of many lamps, making our viewpoint estimation ambiguous.

We visualize and compare the quality of our 3D reconstructions in Figure 5.
The first 3 examples correspond to examples advertised in DVR [36], the last
2 corresponds to examples we selected. Our method generates textured meshes
of high-quality across all these categories. The geometry obtained is sharp and
accurate, and the predicted texture mostly corresponds to the input image.

4.2 Qualitative results on real images

Pascal3D+ Car and CUB-200 benchmarks. We compare our approach to
state-of-the-art SVR methods applied on real-image datasets, where multiple view
annotations are not available. All competing methods use silhouette supervision
and output meshes that are symmetric. CMR [22] additionally use keypoints,
UCMR [10] and [42] starts learning from a given template shape of the category;
we do not use any of these and directly learn from raw images.

We strictly follow the community standards [10, 22, 42]. We use the standard
train/test splits of Pascal3D+ Car [50] and CUB-200 [47], respectively yielding
5000/220 images for Pascal3D+, and 6000/6000 images for CUB-200. Images
are square-cropped around the object using the ground-truth bounding box and

12 T. Monnier et al.

(a) Pascal3D+ Car [50]

(b) CUB-200 [47]

Fig. 6: Qualitative comparisons. We show our reconstruction results for Pas-
cal3D+ Car (top) and CUB-200 (bottom). For each benchmark, we compare to
prior works: CMR [22] (top left), IMR [42] (top right), UCMR [10] (bottom).

resized to 64× 64. Note that competing methods additionally use an off-the-shelf
segmentation algorithm [13] to obtain foreground masks, which we do not use.

We qualitatively compare our approach to the state of the art for Pascal3D+
Car (Figure 6a) and CUB-200 (Figure 6b) benchmarks. All the examples shown
are results advertised in the corresponding papers. For each input image, we show
the textured mesh rendered from the predicted viewpoint (left) and a different
viewpoint (right). For our car results, we additionally show the mesh with a
synthetic texture to emphasize the correspondences found. Our approach yields
results that outperform all prior works both in terms of geometric accuracy and
overall realism. Although the textures obtained in [42] are more accurate, this is
explained by the parametrization used where textures are modeled as a flow of
the image pixels, which has a clear limitation, for example unseen texture parts
are not realistic.

Real-word datasets. Motivated by 3D-aware image synthesis methods learned
in-the-wild [34, 35], we investigate whether our approach can be applied to real-
world datasets where silhouettes are not available and images are not methodically
cropped around the object. We adhere to standards from the 3D-aware image

Single-View Reconstruction by Cross-Instance Consistency 13

(a) CompCars [53] (b) LSUN Motorbike and Horse [54]

Fig. 7: Real-world dataset results. From left to right, we show for each input,
the output image, the predicted mask, a correspondence map, and the mesh
rendered from the predicted viewpoint and 2 other viewpoints. Note that for
LSUN Horse, masks and correspondences are accurate but the geometry quality
is low and outlines our approach limitations (see text). Best viewed digitally.

synthesis community [34, 35] and apply our approach to 64 × 64 images of
CompCars [53]. In addition, we provide results for the more difficult scenario of
LSUN images [54] for motorbikes and horses. Because many LSUN images are
noise, we filter the datasets as follows: we manually select 16 reference images
with different poses, find the nearest neighbors from the first 200k images in a
pre-trained ResNet-18 [14] feature space, and keep the top 2k for each reference
image. We repeat the procedure with flipped reference images yielding 25k images.

Our results are shown in Figure 7. For each input image, we show from
left to right: the output image, the predicted mask, a correspondence map,
and the 3D reconstruction rendered from the predicted viewpoint and 2 other
viewpoints. Although our approach is trained to synthesize images, these are
all natural by-products. While the quality of our 3D car reconstructions is high,
the reconstructions obtained for LSUN images lack some realism and accuracy
(especially for horses), thus outlining a limitation of our approach. We hypothesize
this is mainly due to (i) the lack of front/back views in the data and (ii) the
much more complex and diverse shapes the horse category involves. However,
our segmentation and correspondence maps emphasize our system ability to
accurately localize the object and find correspondences, without any supervision
even when 3D reconstruction is not accurate.

4.3 Ablation study

We analyze the influence of progressive conditioning (PC) and swap reconstruction.
We run experiments without each component and compare with the full model.
In the following, we use M = 256.

First, we perform the ablation study on a subset of ShapeNet [4] and report
results in Table 3. When Lswap is removed, the results are slightly worse for

14 T. Monnier et al.

Model Full w/o w/o
Lswap PC

plane 0.140 0.159 0.143
bench 0.205 0.256 0.204
car 0.222 0.263 0.223
chair 0.297 0.466 0.626

mean 0.216 0.286 0.299

Table 3: Ablation on
ShapeNet [4].

Fig. 8: Ablation on CompCars [53]. For each in-
put, we show the mesh rendered from two viewpoints.

all categories, showing the swap reconstruction is important to the accuracy
of the predicted geometry. When PC is removed, results are on par with the
full model for planes, benches and cars, but much worse for chairs. Chairs have
more complex shapes than other categories and our system falls into a bad local
minimum where the object model overfits the input. Note that results in Tab. 2
correspond to a larger memory bank and are slightly better, thus emphasizing
the influence of the memory bank size.

Second, we compare our method and its ablations on real images from
CompCars [53] and visualize reconstruction examples in Figure 8. For each
input image, we show the textured mesh rendered from the predicted viewpoint
(left) and a different viewpoint (right). When Lswap is removed, we observe that
the reconstruction quality from the predicted viewpoint remains high, but the one
from another viewpoint decreases dramatically. Indeed, the swap reconstruction
explicitly enforced the unseen reconstructed parts to be consistent with other
instances. When PC is removed, we observe a clear case of overfitting where the
reconstruction rendered from a different viewpoint does not correspond to a car.

5 Conclusion

We presented UNICORN, an unsupervised SVR method which, in contrast to all
prior works, learns from raw images only. We demonstrated it yields high-quality
results for diverse shapes as well as challenging real-world image collections. This
was enabled by two key contributions aiming at leveraging consistency across
different instances: our swap reconstruction loss and progressive conditioning
training strategy. We believe our work includes both an important step forward
for unsupervised SVR and the introduction of a valuable conceptual insight.

Acknowledgements

We thank François Darmon for inspiring discussions; Robin Champenois, Romain
Loiseau, Elliot Vincent for feedback on the manuscript; and Michael Niemeyer,
Shubham Goel for details on the evaluation. This work was supported in part
by ANR project EnHerit ANR-17-CE23-0008, project Rapid Tabasco, gifts from
Adobe and HPC resources from GENCI-IDRIS (2021-AD011011697R1).

Single-View Reconstruction by Cross-Instance Consistency 15

References

1. Bengio, S., Vinyals, O., Jaitly, N., Shazeer, N.: Scheduled Sampling for Sequence
Prediction with Recurrent Neural Networks. In: NIPS (2015) 5

2. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: ICML
(2009) 5

3. Besl, P., McKay, N.D.: A method for registration of 3-D shapes. TPAMI 14(2)
(1992) 10

4. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese,
S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F.: ShapeNet: An Information-
Rich 3D Model Repository. arXiv:1512.03012 [cs] (2015) 3, 10, 11, 13, 14, 18,
19

5. Chen, W., Gao, J., Ling, H., Smith, E.J., Lehtinen, J., Jacobson, A., Fidler, S.:
Learning to Predict 3D Objects with an Interpolation-based Differentiable Renderer.
In: NeurIPS (2019) 2, 3, 4, 5, 8, 24

6. Choy, C.B., Xu, D., Gwak, J., Chen, K., Savarese, S.: 3D-R2N2: A Unified Approach
for Single and Multi-view 3D Object Reconstruction. In: ECCV (2016) 2, 4

7. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular
meshes using diffusion and curvature flow. In: SIGGRAPH (1999) 8

8. Elman, J.L.: Learning and development in neural networks: The importance of
starting small. Cognition (1993) 5, 8

9. Finger, S.: Origins of neuroscience: a history of explorations into brain function.
Oxford University Press (1994) 2

10. Goel, S., Kanazawa, A., Malik, J.: Shape and Viewpoint without Keypoints. In:
ECCV (2020) 2, 3, 4, 8, 9, 10, 11, 12, 18, 21, 22

11. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative Adversarial Nets. In: NIPS (2014) 4

12. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: AtlasNet: A Papier-
Mâché Approach to Learning 3D Surface Generation. In: CVPR (2018) 2, 4, 5, 6,
18

13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017) 12
14. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition.

In: CVPR (2016) 13, 18
15. Henderson, P., Ferrari, V.: Learning single-image 3D reconstruction by generative

modelling of shape, pose and shading. IJCV (2019) 2, 3, 4, 9, 10, 21, 22
16. Henderson, P., Tsiminaki, V., Lampert, C.H.: Leveraging 2D Data to Learn Textured

3D Mesh Generation. In: CVPR (2020) 2, 4
17. Hoiem, D., Efros, A.A., Hebert, M.: Geometric Context from a Single Image. In:

ICCV (2005) 2
18. Hoiem, D., Efros, A.A., Hebert, M.: Putting Objects in Perspective. IJCV (2008) 2
19. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0:

Evolution of Optical Flow Estimation with Deep Networks. In: CVPR (2017) 5
20. Insafutdinov, E., Dosovitskiy, A.: Unsupervised Learning of Shape and Pose with

Differentiable Point Clouds. In: NIPS (2018) 2, 4, 9, 21
21. Jojic, N., Frey, B.J.: Learning Flexible Sprites in Video Layers. In: CVPR (2001) 3,

24
22. Kanazawa, A., Tulsiani, S., Efros, A.A., Malik, J.: Learning Category-Specific Mesh

Reconstruction from Image Collections. In: ECCV (2018) 2, 3, 4, 6, 11, 12
23. Kar, A., Tulsiani, S., Carreira, J., Malik, J.: Category-Specific Object Reconstruction

from a Single Image. In: CVPR (2015) 2, 4

16 T. Monnier et al.

24. Karras, T., Laine, S., Aila, T.: A Style-Based Generator Architecture for Generative
Adversarial Networks. In: CVPR (2019) 4

25. Kato, H., Beker, D., Morariu, M., Ando, T., Matsuoka, T., Kehl, W., Gaidon, A.:
Differentiable Rendering: A Survey. arXiv:2006.12057 [cs] (2020) 5

26. Kato, H., Ushiku, Y., Harada, T.: Neural 3D Mesh Renderer. In: CVPR (2018) 2,
4, 5, 10

27. Li, X., Liu, S., Kim, K., De Mello, S., Jampani, V., Yang, M.H., Kautz, J.: Self-
supervised Single-view 3D Reconstruction via Semantic Consistency. In: ECCV
(2020) 2, 3, 4

28. Liu, S., Li, T., Chen, W., Li, H.: Soft Rasterizer: A Differentiable Renderer for
Image-based 3D Reasoning. In: ICCV (2019) 2, 3, 4, 5, 7, 8, 10, 11, 19, 23

29. Loper, M.M., Black, M.J.: OpenDR: An Approximate Differentiable Renderer. In:
ECCV 2014, vol. 8695 (2014) 5

30. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
Networks: Learning 3D Reconstruction in Function Space. In: CVPR (2019) 2, 4,
10, 11, 18

31. Monnier, T., Groueix, T., Aubry, M.: Deep Transformation-Invariant Clustering.
In: NeurIPS (2020) 5, 8, 19

32. Monnier, T., Vincent, E., Ponce, J., Aubry, M.: Unsupervised Layered Image
Decomposition Into Object Prototypes. In: ICCV (2021) 3, 24

33. Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Laplacian mesh optimization. In:
GRAPHITE (2006) 8

34. Nguyen-Phuoc, T., Li, C., Theis, L., Richardt, C., Yang, Y.L.: HoloGAN: Unsu-
pervised learning of 3D representations from natural images. In: ICCV (2019) 12,
13

35. Niemeyer, M., Geiger, A.: GIRAFFE: Representing Scenes as Compositional Gen-
erative Neural Feature Fields. In: CVPR (2021) 12, 13, 18

36. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable Volumetric
Rendering: Learning Implicit 3D Representations without 3D Supervision. In:
CVPR (2020) 2, 4, 10, 11, 18, 19

37. Ravi, N., Reizenstein, J., Novotny, D., Gordon, T., Lo, W.Y., Johnson, J., Gkioxari,
G.: Accelerating 3D Deep Learning with PyTorch3D. arXiv:2007.08501 [cs] (2020)
5, 7

38. Saxena, A., Min Sun, Ng, A.: Make3D: Learning 3D Scene Structure from a Single
Still Image. TPAMI (2009) 2

39. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: A unified embedding for face
recognition and clustering. In: CVPR (2015) 5

40. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale
Image Recognition. In: ICLR (2015) 8

41. Tulsiani, S., Efros, A.A., Malik, J.: Multi-view Consistency as Supervisory Signal
for Learning Shape and Pose Prediction. In: CVPR (2018) 2, 4

42. Tulsiani, S., Kulkarni, N., Gupta, A.: Implicit Mesh Reconstruction from Unanno-
tated Image Collections. arXiv:2007.08504 [cs] (2020) 2, 3, 4, 5, 6, 9, 11, 12, 21,
22

43. Tulsiani, S., Zhou, T., Efros, A.A., Malik, J.: Multi-view Supervision for Single-view
Reconstruction via Differentiable Ray Consistency. In: CVPR (2017) 2, 4

44. Vicente, S., Carreira, J., Agapito, L., Batista, J.: Reconstructing PASCAL VOC.
In: CVPR (2014) 2, 4

45. Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2Mesh: Generating
3D Mesh Models from Single RGB Images. In: ECCV (2018) 2, 4, 5, 8

Single-View Reconstruction by Cross-Instance Consistency 17

46. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image Quality Assessment: From
Error Visibility to Structural Similarity. IEEE Transactions on Image Processing
(2004) 8

47. Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., Perona, P.:
Caltech-UCSD Birds 200. Tech. rep., California Institute of Technology (2010) 3,
11, 12

48. Wu, S., Makadia, A., Wu, J., Snavely, N., Tucker, R., Kanazawa, A.: De-rendering
the World’s Revolutionary Artefacts. In: CVPR (2021) 2, 3, 4

49. Wu, S., Rupprecht, C., Vedaldi, A.: Unsupervised Learning of Probably Symmetric
Deformable 3D Objects from Images in the Wild. In: CVPR (2020) 2, 3, 4, 8

50. Xiang, Y., Mottaghi, R., Savarese, S.: Beyond PASCAL: A benchmark for 3D object
detection in the wild. In: WACV (2014) 3, 11, 12

51. Xu, Q., Wang, W., Ceylan, D., Mech, R., Neumann, U.: DISN: Deep Implicit Surface
Network for High-quality Single-view 3D Reconstruction. In: NeurIPS (2019) 4

52. Yan, X., Yang, J., Yumer, E., Guo, Y., Lee, H.: Perspective Transformer Nets: Learn-
ing Single-View 3D Object Reconstruction without 3D Supervision. In: NeurIPS
(2016) 2, 4

53. Yang, L., Luo, P., Loy, C.C., Tang, X.: A large-scale car dataset for fine-grained
categorization and verification. In: CVPR (2015) 3, 13, 14, 20

54. Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: LSUN: Construction
of a Large-scale Image Dataset using Deep Learning with Humans in the Loop.
arXiv:1506.03365 [cs] (2016) 3, 13

55. Zhang, J.Y., Yang, G., Tulsiani, S., Ramanan, D.: NeRS: Neural Reflectance Surfaces
for Sparse-view 3D Reconstruction in the Wild. In: NeurIPS (2021) 8

56. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The Unreasonable
Effectiveness of Deep Features as a Perceptual Metric. In: CVPR (2018) 8

57. Zhang, Y., Chen, W., Ling, H., Gao, J., Zhang, Y., Torralba, A., Fidler, S.: Image
GANs meet Differentiable Rendering for Inverse Graphics and Interpretable 3D
Neural Rendering. In: ICLR (2021) 2, 4

18 T. Monnier et al.

Supplementary Material for
Share With Thy Neighbors: Single-View

Reconstruction by Cross-Instance Consistency

In this supplementary document, we first provide implementation details (Ap-
pendix A), including network architectures, design choices and training details.
Then, we present additional model insights related to progressive conditioning,
swap reconstruction and 3D/pose optimization (Appendix B). Finally, we describe
our custom differentiable rendering function (Appendix C).

A Implementation details

A.1 Modeling

Network architecture. We use the same neural network architecture for all
experiments. The encoder is composed of a CNN backbone followed by separate
Multi-Layer Perceptron (MLP) heads, each head predicting a rendering parameter
namely shape code zsh, texture code ztx, background code zbg, scale s, rotations
r1:K ,translations t1:K , and pose probabilities p1:K . More specifically, we follow
prior works in SVR [10,12,30,36] and use a ResNet-18 [14] as backbone. Each
MLP has the same architecture with three hidden layers of 128 units and ReLU
activations. The last layer of the MLP heads for shape, texture and background
codes is initialized to zero to avoid discontinuity when increasing the size of
the latent codes. The final activation of the MLP heads for scale, rotation, and
translation is a tanh function and the output is scaled and shifted to predefined
constants in order to control their range (see Table 4 for selected ranges). The
learnable parts of the decoder are the shape deformation network sθ and the two
CNN generators tθ and bθ which respectively output 64× 64 images for texture
and background. The MLP modeling the deformations has the same architecture
as the other MLPs (three hidden layers, 128 units, ReLU activations). The CNN
generators share the same architecture which is identical to the generator used
in GIRAFFE [35]. We refer the reader to [35] for details.

Other design choices. In all experiments, the predefined anisotropic scaling
used to deform the icosphere into an ellipsoid is [1, 0.7, 0.7]. In Table 4, we
detail other design choices that are specific to all categories of ShapeNet [4]
(second column) or all real-image datasets (third column). This notably includes
a predetermined global scaling of the ellipsoid, a camera defined by a focal length
f or a field of view (fov), as well as scaling, translation and rotation ranges.

A.2 Training

In all experiments, we use a batch size of 32 images of size 64× 64 and Adam
optimizer with a constant learning rate of 10−4. The training corresponds to

Single-View Reconstruction by Cross-Instance Consistency 19

Design type ShapeNet Real-image

ellipsoid scale 0.4 0.6
camera f = 3.732 fov = 30◦

sx/sy/sz 1± 0.5 1± 0.3
tx/ty 0± 0.5 0± 0.3
tz (depth) 2.732 2.732± 0.3
ra (azimuth) [0◦, 360◦] [0◦, 360◦]
re (elevation) 30◦ [−10◦, 30◦]
rr (roll) 0◦ [−30◦, 30◦]

Table 4: Design choices. Following standard practices [28, 36] on ShapeNet [4],
we keep the default rendering values used to generate the images for the focal
length f , the distance to the camera tz and the elevation re. For real images, we
keep the classical value of 2.732 for the distance to the camera tz and use a field
of view (fov) of 30◦. Note that we did not finetune these parameters, they were
selected once through visual comparisons on a toy example.

4 stages where latent code dimensions are increased at the beginning of each
stage and the network is then trained until convergence. We use dimensions
0/2/8/32 for the shape code, 2/8/32/128 for the texture code, and 4/16/64/128
for the background code if any. In line with the curriculum modeling of [31], we
found it beneficial for the first stage to gradually increase the model complexity:
we first learn to position the fixed ellipsoid in the image, then we allow the
ellipsoid to be deformed, and finally we allow scale variabilities. In particular,
we found this procedure prevents the model to learn prototypical shapes with
unrealistic proportions. In the following, we describe other training details specific
to ShapeNet [4] benchmark and real-image datasets.

ShapeNet dataset. We use the same training strategy for all categories. We
train the first stage for 50k iterations, and each of the other stage for 250k
iterations, where one iteration corresponds to either a 3D-step or a P-step of
our alternate optimization. We do not learn a background model as all images
are rendered on top of a white background. However, we found that our system
learned in such synthetic setting was prone to a bad local minima where the
predicted textures have white regions that accommodate for wrong shape pre-
diction. Intuitively, this is expected as the system has no particular signal to
distinguish white background regions from white object parts. To mitigate the
issue, we constrain our texture model as follows: (i) during the first stage, the
predicted texture image is averaged to yield a constant texture, and (ii) during
the other stages, we occasionally use averaged textures instead of the real ones.
More specifically, we sample a Bernoulli variable with probability p = 0.2 at each
iteration and average the predicted texture image in case of success. We found
this simple procedure to work well to resolve such shape/texture ambiguity.

Real-image datasets. We use the same training strategy for all real-image
datasets. We train each stage for roughly 500k iterations, where one iteration

20 T. Monnier et al.

either corresponds to a 3D-step or a P-step of our alternate optimization. Learning
our structured autoencoder in such real-image scenario, without silhouette nor
symmetry constraints, is very challenging. We found our system sometimes falls
into a bad local minima where the texture model is specialized by viewpoints, e.g .
dark cars always correspond to a frontal view and light cars always correspond to
a back view. To alleviate the issue, we encourage uniform textures by occasionally
using averaged textures instead of the real ones during rendering, as done on
the ShapeNet benchmark. More specifically, we sample a Bernoulli variable with
probability p = 0.2 at each iteration and average the predicted texture image in
case of success. We observed that it was very effective in practice, and we also
found it helped preventing the object texture from modeling background regions.

B Model insights

B.1 Progressive conditioning

Figure 9 shows the results obtained on CompCars [53] at the end of each stage
of the training. Given an input image (leftmost column), we show for each
training stage the predicted outputs. From left to right, they correspond to a
side view of the shape, the texture image and the background image. We can
observe that all shape, texture and background models gradually specialize to
the instance represented in the input. In particular, this allows us to start with
a weak background model to avoid overfitting and to end up with a powerful
background model to improve the reconstruction quality. Also note how all the
texture images are aligned.

Fig. 9: Progressive conditioning on CompCars [53]. Given an input image
(leftmost column), we show for each training stage, from left to right, a side view
of the predicted shape, the texture image and the background image.

Single-View Reconstruction by Cross-Instance Consistency 21

B.2 Swap reconstruction

When computing the swap reconstructions, we explicitly find neighbors that
have a viewpoint different from the predicted viewpoint. More specifically, for a
given input, we compute the angle between the predicted rotation matrix and all
rotation matrices of the memory bank. Following standard conventions, such an
angle lies in [0◦, 180◦]. Then, we select a target angle range as follows: we split the
range of angles [20◦, 180◦] into a partition of V uniform and continuous bins, and
we uniformly sample one of V angle ranges. Finally, we look for neighbors in the
subset of instances having an angle within the selected range. In all experiments,
we use V = 4.

We use a total angle range of [20◦, 180◦] instead of [0◦, 180◦] to remove
instances that have a similar pose. Note that we first tried to find neighbors of
different poses without further constraint (which amounts to using V = 1) but we
found that learned latent codes are specialized by viewpoints, e.g . front / back
view images corresponding to a shape mode with unrealistic side views, and side
view images corresponding to a shape mode with unrealistic front / back views.

B.3 Joint 3D and pose learning

We analyze prior works on joint 3D and pose learning, illustrated in Figure 10, and
compare them with our proposed optimization scheme, illustrated in Figure 11.
Prior optimization schemes can be split in two groups: (i) learning through
the minimal error reconstruction [20], and (ii) learning through an expected
error [10,15,42].

(a) Optimization in [20] (b) Optimization in [10,15,42]

Fig. 10: Prior optimizations for joint 3D/pose learning.

In [20], all reconstructions associated to the different pose candidates are
computed and both 3D and poses are updated using the reconstruction yielding
the minimal error (see Figure 10a). We identified two major issues. First, because
the other poses are not updated for a given input, we observed that a typical

22 T. Monnier et al.

failure case corresponds to a collapse mode where only a single pose (or a small
subset of poses) is used for all inputs. Indeed, there is no particular constraint
that encourages the use of all pose candidates. Second, inference is not efficient
as the object has to be rendered from all poses to find the correct object pose.

In [10,15,42], 3D and poses are updated using an expected reconstruction loss
(see Figure 10b). While this allows to constrain the use of all pose candidates
with a regularization on the predicted probabilities, we identified one major
weakness common to these frameworks. Because the 3D receives gradients from
all views, we observed a typical failure case where the 3D tries to fit the target
input from all pose candidates yielding inaccurate texture and geometry. We
argue such behaviour was not observed in previous works as they typically use
a symmetry prior which prevents it from happening. Note that [10] proposes
to directly optimize for each training image a set of parameters corresponding
to the pose candidates. This procedure not only involves memory issues as the
number of parameters scales linearly with the number of training images, but also
inference problems for new images. To mitigate the issue, they propose to use
the learned poses as ground-truth to train an additional network that performs
pose estimation given a new image.

In contrast, our proposed alternate optimization, illustrated in Figure 11,
leverages the best of both worlds: (i) 3D receives gradients from the most likely
reconstruction, and (ii) all poses are updated using an expected loss. In practice,
we alternate the optimization every new batch of inputs, and we define one
iteration as either a a 3D-step or a P-step.

(a) 3D-step (b) P-step

Fig. 11: Our alternate 3D / pose optimization. Compared to prior works,
we propose an optimization that alternates between 2 steps. (a) We update the
3D using the most likely pose candidate (3D-step). (b) We update the pose
candidates and associated probabilities using the expected loss (P-step).

Single-View Reconstruction by Cross-Instance Consistency 23

C Differentiable rendering

Our output images correspond to the soft rasterization of a textured mesh on top
of a background image. We observed that learning geometry from raw photometry
with the standard SoftRasterizer [28] was hard and propose two key changes. In
the following, given a mesh M and a background B, we describe our rendering
function R producing the image Î = R(M,B). We first present SoftRasterizer
formulation, then introduce our modifications. In the following, we write pixel-
wise multiplication with � and the division of image-sized tensors corresponds
to pixel-wise division.

SoftRasterizer formulation. Given a 2D pixel location i, the influence of a
face j is modeled by an occupancy function:

OSR(i, j) = sigmoid
(ν(i, j)

σ

)
, (4)

where σ is a temperature, ν(i, j) is the signed Euclidean distance between pixel i
and projected face j. Let us call L− 1 the maximum number of faces intersecting
the ray associated to a pixel and sort, for each pixel, the intersecting faces by
increasing depth. Image-sized maps for occupancy O`, color C` and depth D` are
built associating to each pixel the `-th intersecting face attributes. Background
is modeled as an additional maps such that OL = 1,CL = B and DL = dbg is
a constant, far from the camera. The SoftRasterizer’s aggregation function CSR

merges them to render the final image Î:

CSR(O1:L,C1:L,D1:L) =

L∑
`=1

O` � exp(D′`/γ)∑
k Ok � exp(D′k/γ)

�C`, (5)

where γ is a temperature parameter, D′` = dfar−D`

dfar−dnear
and dnear, dfar correspond

to near/far cut-off distances. This formulation hence relies on 5 hyperparameters
(σ, γ, dnear, dfar, dbg) and default values are σ = γ = 10−4, dnear = 1, dfar = 100

and
dfar−dbg

dfar−dnear
= ε = 10−3.

The formulation introduced in Equation (5) has one main limitation: gradients
don’t flow well through O1:L obtained by soft rasterization, and thus vertex
positions cannot be optimized by raw photometric reconstruction. The simple
case of a single face on a black background gives:

Î =
O1 � eD

′
1/γ

O1 � eD
′
1/γ + eε/γ

�C1 ≈
O1 � eD

′
1/γ

O1 � eD
′
1/γ
�C1 = C1, (6)

for almost all O1,D
′
1. Indeed, considering x, η > 0, we have xe(ε+η)/γ � eε/γ iif

x � e−η/γ. Even in the extreme case where η = ε = 10−3 (i.e. the object is
close to dfar), this holds for all x � e−10 ≈ 4 × 10−5! We found that tuning γ
was not sufficient to mitigate the issue, one would have to tune γ, dnear, dfar, dbg

simultaneously to enable the optimization of the vertex positions.

24 T. Monnier et al.

Our layered formulation. Inspired by layered image models [21,32], we propose
to model the rendering of a mesh as the layered composition of its projected
face attributes. More specifically, given occupancy O1:L and color C1:L maps, we
render an image Î through the classical recursive alpha compositing:

C(O1:L,C1:L) =
L∑
`=1

[L∏
k<`

(1−Ok)
]
�O` �C`. (7)

This formulation has a clear interpretation where color maps are overlaid on top of
each other with a transparency corresponding to their occupancy map. Note that
we choose to drop the explicit depth dependency as all 3D coordinates (including
depth) of a vertex already receive gradients by 3D-to-2D projection. Our layered
aggregation used together with the SoftRasterizer’s occupancy function OSR

results in face inner-borders that are visually unpleasant. We thus instead use
the occupancy function introduced in [5] defined by:

O(i, j) = exp(min(0,
ν(i, j)

σ
)). (8)

Compared to OSR, this function yields constant occupancy of 1 inside the faces.
In addition to its simplicity, our differential renderer has two main advantages
compared to SoftRasterizer. First, gradients can directly flow through occupancies
O1:L and the vertex positions can be updated. Second, our formulation involves
only one hyperparameter (σ) instead of five, making it easier to use.

	Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency

