
Improved Techniques for Training Single-Image GANs

Tobias Hinz1, Matthew Fisher2, Oliver Wang2, and Stefan Wermter1

1 Knowledge Technology, University of Hamburg
2 Adobe Research

Abstract. Recently there has been an interest in the potential of learning genera-
tive models from a single image, as opposed to from a large dataset. This task is of
practical significance, as it means that generative models can be used in domains
where collecting a large dataset is not feasible. However, training a model capable
of generating realistic images from only a single sample is a difficult problem. In
this work, we conduct a number of experiments to understand the challenges of
training these methods and propose some best practices that we found allowed us
to generate improved results over previous work in this space. One key piece is that
unlike prior single image generation methods, we concurrently train several stages
in a sequential multi-stage manner, allowing us to learn models with fewer stages
of increasing image resolution. Compared to a recent state of the art baseline,
our model is up to six times faster to train, has fewer parameters, and can better
capture the global structure of images.

1 Introduction

Generative Adversarial Networks (GANs) [13] are capable of generating realistic images
[6] that are often indistinguishable from real ones in limited domains [27]. The resulting
models can be used for many different tasks, such as unconditional and conditional
image synthesis [26,19], image inpainting [10], and image-to-image translation [22,50].
However, these GANs are trained on large datasets, typically consisting of tens of
thousands of images. Training generative models on such large datasets can be time-
consuming and expensive.

In some cases, it might be preferable to train a generative model on a very small
number of images or, in the limit, on a single image. This is useful if we want to obtain
variations of a given image, work with a very specific image or style, or only have access
to very little training data. The recently proposed SinGAN [38] introduces a GAN that is
trained on a single image for tasks such as unconditional image generation and image
harmonization. In this work, we start with this approach as a baseline and conduct a
number of experiments to see how we can improve training single image GANs.

We find that exactly how multi-stage and multi-resolution training is handled is
critical. In particular, training only one stage at a given time limits interactions between
different stages, and propagating images instead of feature maps from one generator
stage to the next negatively affects the learning process. Conversely, training all stages
end-to-end causes overfitting in the single image scenario, where the network collapses to
generating only the input image. We experiment with this balance, and find a promising
compromise, training multiple stages in parallel with decreased learning rates, and find
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that this improves the learning process, leading to more realistic images with less training
time. Furthermore, we show how it is possible to directly trade-off image quality for
image variance, where training more stages in parallel means a higher global image
consistency at the price of less variation.

We also conduct experiments over the choice of rescaling parameters, i.e. how we
decide at which image resolution to train at each stage. We observe that the quality
of the generated images, especially the overall image layout, quickly degrades when
there are not enough training stages on images with small resolution. Since the receptive
field of the discriminator stays the same throughout training, lower stages with smaller
resolutions are important for the overall image layout, while higher stages with larger
resolution are important for the final image texture and color. We find that we only need
relatively few training stages with high-resolution images in order to still generate images
with the correct texture. As a consequence, we put a higher weight on smaller resolution
images during training while using fewer of the stages to train on high-resolution images
which improves the synthesized image quality.

Finally, since our model trains several stages in parallel, we can introduce a task-
specific fine-tuning stage which can be performed on any trained model. For several
tasks, such as e.g. image harmonization, we show that after training an initial model, it
is possible to fine-tune it on a given specific image to further improve results. This fine-
tuning shows benefits with as few as 500 additional training iterations and is therefore
very fast (less than two minutes on our hardware).

Combining these proposed architecture and training modifications enables us to
generate realistic images with fewer stages and significantly reduced overall training time
(20-25 minutes versus 120-150 minutes in the original SinGAN work). To summarize,
our main contributions are:

1. we train several stages in parallel and through this can trade-off the variance in
generated images vs. their conformity to the original training image;

2. we do not generate images at intermediate stages but propagate the image features
directly from one stage to the next;

3. we improve the rescaling approach for multi-stage training, which enables us to
train on fewer stages than before;

4. we introduce a fine-tuning phase which can be used on pre-trained models to obtain
optimal results for specific images and tasks.

2 Related Work

Learning the statistics and distribution of patches of a single image has been known to
provide a powerful prior for various vision tasks since the empirical entropy of patches
inside a single image is smaller than the empirical entropy of patches inside a distribution
of images [52]. By using this prior, many tasks such as inpainting [43,46], denoising
[53], deblurring [37], retargeting [34,35], and segmentation [11] can be solved with
only a single image. In particular, image super-resolution [44,20,12,40,4] and editing
[7,9,15,36,42,33] from a single image have been shown to be successful and a large body
of work focuses specifically on this task. Furthermore, recent work shows that training a
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model on a single image with sufficient self-supervision and data augmentation can be
enough to learn powerful feature extraction layers [1].

However, approaches that train GAN models on single images are still relatively rare.
Most existing GAN approaches for single images do not use natural images, but instead
train only on texture images [23,49,5,30]. At this time, two GAN models that are trained
on a single ‘natural’ image, have been proposed, namely SinGAN [38] and InGAN
[39]. Both of these approaches are based on a bidirectional similarity measure for image
summarization which can be used for tasks such as retargeting, image synthesis, and
automatic cropping [41].

The work most relevant to our approach is SinGAN [38] which trains a generative
model to perform unconditional image generation on only a single image. As the em-
pirical entropy of patches inside a small part of an image is less than across different
parts, it is useful to learn statistics of image patches across different image scales [3].
Therefore, SinGAN trains both the generator and the discriminator over multiple stages,
corresponding to different image resolutions. Each stage is trained individually and
previous stages are kept fixed when higher stages are trained. The output at each stage is
an image which is then given as input to the next higher stage. While SinGAN trains each
stage in isolation, keeping the generators at all lower stages fixed, our experiments found
that we can get improved results by training several, but not all, stages simultaneously.

Another single, natural image approach InGAN [39] follows a somewhat similar
training procedure to learn the internal patch statistics of an image. However, InGAN’s
focus is retargeting and it cannot perform other tasks such as unconditional image genera-
tion. Furthermore, unlike SinGAN and our model, InGAN’s generator and discriminator
architectures stay fixed during training.

3 Methodology

We now describe our findings in more detail, starting with the training of a multi-stage
architecture, followed by best practices we found for scaling learning rate and image
resolutions at different stages during training.

Multi-stage Training It is clear that multi-scale image generation is of critical
importance [38], however, there are many ways in which this can be realized. SinGAN
only trains the current (highest) stage of its generator and freezes the parameters of all
previous stages. ProGAN [25] presents a progressive growing scheme that adds levels
with all weights unfrozen, and more recently [24,26] train the entire pyramid jointly.

In this work, we investigate whether the model can be trained end-to-end, rather
than with training being fixed at intermediate stages, even in the single image task.
However, we find that training all stages leads to overfitting (see Figure 4), i.e. the
generator only generates the original training image without any variation or diversity.
Reducing the learning rate at lower stages during training somewhat alleviates this
problem, but does not solve it entirely. Instead, we develop a novel progressive growing
technique that trains multiple, but not all, stages concurrently while simultaneously using
progressively smaller learning rates at lower stages. Since we train several stages of our
model concurrently for a single image we refer to our model as ‘Concurrent-Single-
Image-GAN’ (ConSinGAN).
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Fig. 1. Overview of our model. We start training at ‘Stage 0’ with a small generator and small
image resolution. With increasing stages both the generator capacity and image resolution increase

Training ConSinGAN starts on a coarse resolution for a number of iterations, learning
a mapping from a random noise vector z to a low-resolution image (see “Generator:
Stage 0” in Figure 1). Once training of stage n has converged, we increase the size of
our generator by adding three additional convolutional layers. In contrast to SinGAN,
each stage gets the raw features from the previous stage as input, and previous layers are
not fixed. We add a residual connection [17] from the original upsampled features to the
output of the newly added convolutional layers (see “Generator: Stage 1” in Figure 1).
We repeat this process N times until we reach our desired output resolution.

Like SinGAN we also add additional noise to the features at each stage [22,51]
to improve diversity. In our default setting, we jointly train the last three stages of a
generator (see “Generator: Stage N” in Figure 1), meaning the final three blocks of three
convolutional layers. While it is possible to train more than three stages concurrently,
we observed that this rapidly leads to severe overfitting (Figure 4).

We use the same patch discriminator [22] architecture and loss function as the original
SinGAN. This means that the receptive field in relation to the size of the generated image
gets smaller as the number of stages increases, meaning that the discriminator focuses
more on global layout at lower resolutions and more on texture at higher resolutions.
In contrast to SinGAN we do not increase the capacity of the discriminator at higher
stages, but use the same number of parameters at every stage. As a consequence, we
initialize the discriminator for a given stage n with the weights of the discriminator of
the previous stage n+ 1, whereas SinGAN increases the discriminator’s capacity every
four stages and has to initialize the weights randomly at these stages. At a given stage n,
we optimize the sum of an adversarial and a reconstruction loss:

min
Gn

max
Dn
Ladv(Gn, Dn) + αLrec(Gn). (1)
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Ladv(Gn, Dn) is the WGAN-GP adversarial loss [14], while the reconstruction loss is
used to improve training stability (α = 10 for all our experiments). For the reconstruction
loss the generator Gn gets as input a downsampled version (x0) of the original image
(xN ) and is trained to reconstruct the image at the given resolution of stage n:

Lrec(Gn) = ||Gn(x0)− xn||22. (2)

The discriminator is always trained in the same way, i.e. it gets as input either a generated
or a real image and is trained to maximiseLadv. Our generator, however, is trained slightly
differently depending on the final task.

Task Specific Generator Training For each task we use the original (downsampled)
image xn for the reconstruction lossLrec. The input for the adversarial lossLadv, however,
depends on the task we train for. For unconditional image generation (and as was done
in SinGAN for all tasks), the input to the generator is simply a randomly sampled noise
vector for Ladv.

Fig. 2. Visualization of the harmoniza-
tion augmentations techniques for im-
ages we use as input for the generator

However, we found that if the desired task is
known beforehand, better results can be achieved
by training with a different input format. For ex-
ample, for image harmonization, we can instead
train using the original image with augmentation
transformations applied as input. The intuition for
this is that a model that is used for image harmo-
nization does not need to learn how to generate realistic images from random noise, but
rather should learn how to harmonize different objects and color distributions into the
image background. To simulate this task, we apply random combinations of augmenta-
tion techniques to the original image xN at each iteration, sampled from the following
methods: additive noise, color transforms, cutout holes into the image filled with a
random color (see Figure 2). The generator then gets the augmented image as input and
needs to transform it back to an image that should resemble the original distribution,
which is trained through the adversarial loss.

Learning Rate Scaling The space of all learning rates for each stage is large and
has a big impact on the final image quality. At any given stage n, we found that instead
of training all stages (n, n − 1, n − 2, ...) with the same learning rate, using a lower
learning rate on earlier stages (n− 1, n− 2, ...) helps reduce overfitting. If the learning
rate at lower stages is too large (or too many stages are trained concurrently), the model
generator quickly collapses and only generates the training image (Figure 4). Therefore,
we propose to scale the learning rate η with a factor δ. This means that for generator
Gn stage n is trained with learning rate δ0η, stage n− 1 is trained with a learning rate
δ1η, stage n− 2 with δ2η, etc. In our experiments, we found that setting δ = 0.1 gives a
good trade-off between image fidelity and diversity (see Figure 4 and Figure 5).

Improved Image Rescaling Another critical design choice is around what kind of
multiscale pyramid to use. SinGAN originally proposes to downsample the image x by a
factor of rN−n for each stage n where r is a scalar with default value 0.75. As a result,
eight to ten stages are usually needed to generate images with a resolution of 250 width
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or height. When the images are downsampled more aggressively (e.g. r = 0.5) fewer
stages are needed, but the generated images lose much of their global coherence.

We observe that this is the case when there are not enough stages at low resolution
(roughly fewer than 60 pixels at the longer side). When training on images with a
high resolution, the global layout is already “decided” and only texture information is
important since the discriminator’s receptive field is always 11× 11. Consequently, to
achieve a certain global image layout we need a certain number of stages (usually at least
three) at low resolution, but we do not need many stages a high resolution. We adapt
the rescaling to not be strictly geometric (i.e. xn = x0 × rN−n), but instead to keep the
density of low-resolution stages higher than the density of high-resolution stages:

xn = xN × r((N−1)/log(N))∗log(N−n)+1 for n = 0, ..., N − 1 (3)

For example, with the original rescaling method and a rescaling scalar r = 0.55 we get
six stages with resolutions 25× 34, 38× 50, 57× 75, 84× 112, 126× 167, 188× 250.
In contrast to this, using our rescaling method with r = 0.55 leads to six stages with
resolutions 25× 34, 32× 42, 42× 56, 63× 84, 126× 167, 188× 250.

To summarize our main findings, we produce feature maps rather than images at each
stage, we train multiple stages concurrently, we propose a modified rescaling pyramid,
and we present a task-specific training variation.

4 Implementation

We next describe the key parts of our implementation, and refer to the supplementary
material for further details.1 We first rescale the input image so that its longer side has
a resolution of 250 pixels for stage N and its shorter side a resolution of 25 pixels for
stage 0. Each stage of our generator consists of three convolutional layers, with 64 filters
per layer and a filter size of 3× 3. The discriminator uses the same architecture, i.e. three
convolutional layers with 64 filters and filter size 3× 3.

At any given time, we train the last three stages of the model with the learning
rate scaling δ = 0.1. Each stage is trained for 2,000 iterations with an initial learning
rate of η = 0.0005 which gets reduced by a factor of 10 after 1600 iterations in each
stage. We optimize the networks with the ADAM optimizer [28]. For unconditional
image generation, we find that training without batch normalization (BN) [21] speeds up
training considerably without negatively affecting the convergence. For other tasks we
find that BN is still useful, however, we only use it in the generator.

We use the Leaky ReLU (LReLU) activation function [32]. When BN is not used,
we observe that the parameter LReLUα which sets the negative slope in the LReLU
does have some impact on the convergence and the final results for different tasks.
For all unconditional image generation tasks we set LReLUα = 0.05, while setting
LReLUα = 0.3 for other tasks such as image harmonization.

Training one of our models takes about 20-30 minutes on an NVIDIA GeForce
GTX 1080Ti. On the other hand, training the SinGAN model takes on average 120-140
minutes on the same hardware.

1 Our implementation is available here: https://github.com/tohinz/ConSinGAN

https://github.com/tohinz/ConSinGAN
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Input Random Samples

Fig. 3. Example of unconditionally generated images showing complex global structure generated
by ConSinGAN, trained on a single image shown in the left column

5 Results

We evaluate ConSinGAN on unconditional image generation and image harmonization
in detail. For space reasons we focus on these two applications but note that all other ap-
plications presented by SinGAN are also possible with ConSinGAN. We show examples
of other tasks in the supplementary material.

5.1 Unconditional Image Generation

In this task, images are generated from a randomly sampled latent vector. Since our
architecture is completely convolutional we can change the size of the input noise vector
to generate images of various resolutions at test time. Figure 3 shows an overview of
results from our method on a set of challenging images that require the generation
of global structures for the images to seem realistic. We observe that ConSinGAN
is successfully able to capture these global structures, even if we modify the image
resolution at test time. For example, in the Stonehenge example, we can see how “stones”
are added when the image width is increased. Similarly, our model adds additional
“layers” to the aqueduct image when the image height is increased.

Ablation We conduct an ablation study to examine the interplay between the learning
rate scaling and the number of concurrently trained stages (Figure 4) and to evaluate
how varying the scaling δ (section 3) for the learning rate of lower stages affects training
(Figure 5). As we can see in Figure 4, training with a δ = 0.1 leads to diverse images
for almost all settings, with the diversity slightly decreasing with a larger number of
concurrently trained stages. When training with δ = 0.5, however, we quickly observe a
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Number of Concurrently Trained Stages Number of Concurrently Trained Stages
1 2 3 4 5 6 1 2 3 4 5 6

δ = 0.1 δ = 0.5

Fig. 4. Effect of the learning rate scale δ and the number of concurrently trained stages for a model
with six stages. Images are randomly selected.

large decrease in image diversity even when only training two stages concurrently. As
such, the number of concurrently trained stages and the learning rate scaling parameter δ
give a trade-off between diversity and fidelity of the generated images.

Figure 5 visualizes how the variance in the generated images increases with decreas-
ing δ for a model with three concurrently trained stages. For example, when we look
at the top left example (Marina Bay Sands), we observe that for a δ = 0.5 the overall
layout of the image stays the same, with minor variations in, e.g., the appearance of the
towers. However, with a δ = 0.1, the appearance of the towers changes more drastically
and sometimes even additional towers are added to the generated image. The same is
true for the other examples, e.g. observe the differences in the layout of the bridge in the
top right example. Unless otherwise mentioned, all illustrated examples and all images
used for the user study where generated by models for which we trained three stages
concurrently with δ = 0.1.

Baseline comparisons We compare our model to the original SinGAN [38] paper in
Figure 6. For the SinGAN model, we show the results of both the default rescaling method

Input Generated Images Input Generated Images

δ
=

0
.5

δ
=

0
.1

δ
=

0
.5

δ
=

0
.1

Fig. 5. Effect of the learning rate scale δ during training of ConSinGAN
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with 8-10 stages, with our rescaling method with 5-6 stages, and all our modifications,
trained with 5-6 stages. In the first example (Mount Rushmore) we can observe that
SinGAN struggles to model recurring structures (faces) in the images it generates. This
is the case for both numbers of stages during training, with slightly better results when
training for the full eight stages. In the second example (Leaning Tower of Pisa) we
again observe a loss of global structure independent of the number of stages trained. Our
multi-stage training helps ensure a more consistent global structure.

Input Generated Images
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Fig. 6. Comparison of images generated by Sin-
GAN and ConSinGAN

Figure 7 further highlights the advan-
tages of our approach by showing a de-
tailed comparison of the kinds of images
each model generates after being trained
on a given number of stages with the new
or old rescaling technique. Each column
depicts four randomly sampled images
from each model. We can see the posi-
tive effect of the rescaling technique for
both models, regardless of the number of
trained stages. Furthermore, we can see
that our model retains better global coher-
ence in both cases.

Quantitative evaluation The Fréchet
Inception Distance (FID) [18] compares
the distribution of a pre-trained network’s
activations between a sets of generated
and real images. Prior work proposed the
Single Image FID (SIFID) metric to eval-
uate generation quality [38]. SIFID is an
adaptation of the FID to the single image
domain and compares the statistics of the
network’s activations between two indi-
vidual images (generated and real). In our
experiments, we found that SIFID exhibits very high variance across different images
(scores ranged between 1e−06 to 1e01) without a clear distinction of which was “better”
or “worse”. In this work, we focus mostly on qualitative analyses and user studies for
our evaluation but also report SIFID for comparison.

To quantitatively evaluate our model, we performed evaluations on two datasets. The
first dataset is the same as the one used by SinGAN, consisting of 50 images from several
categories of the ‘Places’ dataset [48]. However, many of these images do not exhibit a
global layout or structure. Therefore, we also construct a second dataset, where we take
five random samples from each of the ten classes of the LSUN dataset [45]. This dataset
contains classes such as “church” and “bridge” which exhibit more global structures. We
train both the SinGAN model and our model for each of the 50 images in both datasets
and use the results for our evaluation. As we can see in Table 1 and Table 2 our model
was trained on fewer stages on all images and was also faster during training.
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ConSinGAN - Number of Trained Stages SinGAN [38] - Number of Trained Stages
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Fig. 7. Detailed comparison of the effect of the number of trained stages and rescaling method
during training. Images are randomly selected

Image Diversity First, we evaluate the diversity in our images compared to the original
SinGAN model using the measure as SinGAN: for a given training image we calculate
the average of the standard deviation of all pixel values along the channel axis of 100
generated images. Then, we normalize this value by the standard deviation of the pixel
values in the training image. On the data from the ‘Places’ dataset, SinGAN obtains a
diversity score of 0.52, while our model’s diversity is similar with a score of 0.50. When
we increase the learning rate on lower stages by setting δ = 0.5 instead of the default
δ = 0.1 we observe a lower diversity score of 0.43 as the model learns a more precise
representation of the training image (see Figure 5 for a visualization). On the LSUN
data, SinGAN obtains a much higher diversity score of 0.64. This is due to the fact that it
often fails to model the global structure of the training image and the resulting generated
images differ greatly from the training image. Our model, on the other hand, obtains a
diversity score of 0.54 which is similar to the score on the ‘Places’ dataset and indicates
that our model can indeed learn the global structure of even complex images.

User Study: ‘Places’ We follow the same evaluation procedure as previous work
[22,38,47] to compare our model with SinGAN on the same training images that were
used previously in [38]. Users were shown our generated image and its respective training
image for one second each and were asked to identify the real image. We reproduced the
user study from the SinGAN paper with our own trained SinGAN and ConSinGAN mod-
els. As we can see in Table 1 our model achieves results similar to the SinGAN model
(in the original work, SinGAN reports a confusion of 21.45% with their models/images).
However, our model is trained on fewer stages and with fewer parameters and our model
obtains a better SIFID score of 0.06, compared to SinGAN’s 0.09. Furthermore, the
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Table 1. Results of our user study and SIFID on images from the Places dataset.

Model Confusion ↑ SIFID ↓ Train Time # Stages # Params

ConSinGAN 16.0%± 1.4% 0.06± 0.03 24 min 5.9 ∼660,000
SinGAN 17.0%± 1.5% 0.09± 0.07 152 min 9.7 ∼1,340,000

images generated by ConSinGAN often still exhibit a better global structure, but one
second is not enough time for users to identify this.

User Study: ‘LSUN’ Since the images from the LSUN dataset are much more challenging
than the images from the ‘Places’ dataset we do not compare the generated images
against the real images, but instead compare the images generated by SinGAN to the
ones generated by ConSinGAN. We generate 10 images per training image, resulting
in 500 generated images each from SinGAN and ConSinGAN. We use the generated
images to compare the models in two different user studies.

In both versions, the participants see the two images generated by the two models
next to each other and need to judge which image is better. We do not enforce a time
limit, so participants can look at both images for as long as they choose. The difference
between the two versions of the user study is how we sample the generated images. In the
first version (“random”) we randomly sample one image from the set of generated images
of SinGAN and ConSinGAN each. This means that the two images likely come from
different classes (e.g. ‘church’ vs. ‘conference room’). In the second version (“paired”)
we sample two images that were generated from the same training image. We perform
both user studies using Amazon Mechanical Turk, with 50 participants comparing 60
pairs of images for each study.

Table 2 shows how often users picked images generated by one model or the other
for each of the two settings. We can see that users prefer the images generated by
ConSinGAN in both settings and that, again, our model achieves a better SIFID score
than SinGAN. This is the case even though our model only trains on six stages, has fewer
parameters than SinGAN, and takes less time to train. The images from the LSUN data
vary in difficulty and global structure. This might be the reason why our model performs
even better in the paired setting since this setting guarantees that we always compare
the two models on images of the same difficulty. In the random setting, however, it can
happen that we compare a SinGAN model from an ‘easy’ image with a ConSinGAN
model from a ‘difficult’ image.

Table 2. Results of our user studies and SIFID on images from the LSUN dataset.

Model Random ↑ Paired ↑ SIFID ↓ Train Time # Stages # Params

ConSinGAN 56.7%± 1.9% 63.1%± 1.8% 0.11± 0.06 20 min 5.9 ∼660K
SinGAN 43.3%± 1.9% 36.9%± 1.8% 0.23± 0.15 135 min 9.1 ∼1.0M
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SinGAN [38] ConSinGAN
Original Naive 8-10 Stages 3 Stages 3 Stages Fine-tuned

Fig. 8. Image harmonization with SinGAN and ConSinGAN

Overall, our experiments show that the modifications we made in ConSinGAN allow
for the generation of more believable images, especially when they exhibit some degree
of global structure, with less training time and a smaller model in general.

5.2 Image Harmonization

We now show our results on several image harmonization examples. We compare our
results to SinGAN and Deep Painterly Harmonization [31] for high-resolution images.

Training Details We train the ConSinGAN with the same hyperparameters for all
images without any fine-tuning of hyperparameters for the different images. The general
architecture is the same as for the unconditional image generation, however, we only
train the model for exactly three stages per image. During the general training we
train for 1,000 iterations per stage and we randomly sample from some different data
augmentation techniques to obtain a “new” training image at each iteration as described
in section 3. When we fine-tune a model on a given specific image (last column in all
figures) we use a model trained on the general style image and use the target image
directly as input (instead of the style image with random augmentation transformations)
and then train the model for an additional 500 iterations.

Comparison with SinGAN Figure 8 shows comparisons between SinGAN and
ConSinGAN on the image harmonization task. The first two columns of each figure
show the original image we trained on and the naive cut-and-paste image that is the input
to our trained model. The next three images show the results of a trained SinGAN model,
where the first two are the results of a fully trained model. We insert the naive image at
all stages of the model and choose the two best results, while the third image is the result
when we train SinGAN on only three stages. The final two columns show the results of
the ConSinGAN. Training the ConSinGAN model takes less than 10 minutes for a given
image when the coarse side of the image has a resolution of 250 pixels. Fine-tuning a
model on a specific image takes roughly 2-3 minutes. In contrast to this, training the
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ConSinGAN
Original Naive DPH [31] 4 Stages Fine-tuned

Fig. 9. Image harmonization comparison with Deep Painterly Harmonization (DPH) and ConSin-
GAN on high resolution images

SinGAN model takes roughly 120 minutes as before, since we need to train the full
model, even if only some of the later stages are used at test time.

We can see that the ConSinGAN performs similarly or better to SinGAN, even
though we only need to train the ConSinGAN for 3 stages. The ConSinGAN also
generally introduces fewer artifacts into the harmonized image, while SinGAN often
changes the surface structure of the added objects. See for example the first row, where
SinGAN adds artifacts onto the car, while ConSinGAN keeps the original objects much
more consistent, while still adapting it to the overall image style. When we fine-tune
the ConSinGAN model on specific images we can get even more interesting results.
For example, the car gets absorbed much more by the colors of the overall background,
compared to the results of SinGAN or the ConSinGAN which was not fine-tuned.

The bottom two rows of Figure 8 show results when we add colorful objects to black-
and-white paintings. When training SinGAN on only three stages like ConSinGAN it
usually fails completely to harmonize the objects at test time. Even the images harmo-
nized after training on 8-10 stages SinGAN often still contain some of the original colors,
while the ConSinGAN manages to completely transfer the objects to black-and-white
versions. Again, further fine-tuning the ConSinGAN on the specific images leads to an
even stronger “absorption” of the objects into the original image in most cases.

Comparison with DPH Figure 9 shows comparisons between the ConSinGAN,
adapted to harmonize high-resolution images, and the results by Deep Painterly Har-
monization (DPH) [31]. The images have a resolution of roughly 700 pixels on the
longer side, as opposed to the images with 250 pixels used by the SinGAN examples. In
order to produce these high-resolution images, we add another stage to our ConSinGAN
architecture. This means that we now train on four stages, instead of three stages as
before, otherwise the training procedure stays the same. Since we use images with a
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high-resolution, training time increases to roughly 30-40 minutes per image. Again, we
use the same architecture, hyperparameters, and training method for each image. This
is in contrast to many style-transfer approaches and also DPH, which have additional
hyperparameters such as the style and content weight which need to be fine-tuned for a
specific style image for optimal results.

We can see that, while the outputs of ConSinGAN usually differ from the outputs of
DPH, they are still realistic and visually pleasing. This is even the case when our model
has never seen the naive copy-and-paste image at train time, but only uses it at test time.
In contrast to this, DPH requires as input the style input, the naive copy-and-past input,
and the mask which specifies the location of the copied object in the image. DPH is then
trained for this specific combination to obtain pleasing results, whereas our model sees
the copy-and-paste image only at test time, but not at training time.

Again, fine-tuning our model sometimes leads to even better results, but even the
model trained only with random image augmentations performs well. While our training
time is quite long, we only need to train our model once for a given image and can then
add different objects at different locations of the image at test time. This is not possible
with DPH, which requires to be retrained whenever the copied object changes.

6 Conclusion

Finally, Figure 10 shows some examples where our model fails to learn the global layout
of the image. We see that the model still learns many of the features that are present
in the original training example. However, it is not able to structure them in a way that
reflects the global layout of the original image. Instead, the order of the individual “parts”
of the object get “shuffled” around (top two rows) or we have floating pieces that are not
connected when they should be (bottom row).

Input Generated Images

Fig. 10. Example of failure cases of ConSinGAN

We introduced ConSinGAN, a GAN
inspired by a number of best practices dis-
covered for training single image GANs.
Our model is trained on sequentially in-
creasing image resolutions, to first learn
the global structure of the image, before
learning texture and stylistic details later.
Compared to other models, our approach
allows for control over how closely the in-
ternal patch distribution of the training im-
age is learned by adjusting the number of
concurrently trained stages and the learn-
ing rate scaling of lower stages. Through
this, we can decide how much diversity
we want to observe in the images generated with the trained model. We show that our
approach can be trained on a single image and can be used for tasks such as unconditional
image generation and image harmonization. Our model generates more globally coherent
results and is smaller and more efficient to train than previous models.
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A Unconditional Generation

Figure 11 shows more examples of unconditional image generation for both ConSinGAN
and SinGAN [38]. Our ConSinGAN models were trained on six stages while the SinGAN
models were trained with the default scaling factor of 0.75 for eight – ten stages per
image. Despite this we can see that the ConSinGAN is capable of modeling the global
image layout better than SinGAN in most cases. Training a ConSinGAN model takes
roughly 20-25 minutes on our hardware (NVIDIA GeForce GTX 1080Ti), while training
a SinGAN model takes roughly 2 hours.

B Unconditional Generation at Arbitrary Sizes

Figure 12 and Figure 13 show results of unconditional image generation with different
aspect ratios and resolutions. Scaling in the horizontal direction usually works better for
both models. Scaling in the vertical direction is much more challenging for both models,
however, the ConSinGAN handles this better than the SinGAN.
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Input ConSinGAN SinGAN [38]

Fig. 11. Unconditional image generation with ConSinGAN and SinGAN. All ConSinGAN models
were trained on six stages, all SinGAN models were trained on eight – ten stages. We can see how
ConSinGAN is able to model the global image structure better in most cases, despite being trained
on fewer stages than SinGAN
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Input ConSinGAN SinGAN [38]

Fig. 12. Unconditional image generation with ConSinGAN and SinGAN. We show images were
we scale the input noise map by a factor of two along each side and along both sides. The
ConSinGAN models were trained on six stages, while the SinGAN models were trained on eight –
ten stages
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Input ConSinGAN SinGAN [38]

Fig. 13. Unconditional image generation with ConSinGAN and SinGAN. We show images were
we scale the input noise map by a factor of two along each side and along both sides. The
ConSinGAN models were trained on six stages, while the SinGAN models were trained on eight –
ten stages
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C Number of Concurrently Trained Stages and Learning Rate
Scaling

Figure 14 shows more visualizations of the interplay between the learning rate scaling δ
and the number of concurrently trained stages. Again, we observe that image diversity
decreases with increasing δ and increasing number of concurrently trained stages, leading
to complete overfitting when trained end-to-end.

D Comparison of Original and Improved Rescaling Method

Figure 15 and Figure 16 show more examples of how the image quality develops with an
increasing number of stages for the original and our improved rescaling method. Note
that the ConSinGAN starts to generate realistic images after already 5-6 stages while the
SinGAN usually needs more than 7 stages.
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Number of Concurrently Trained Stages Number of Concurrently Trained Stages
1 2 3 4 5 6 1 2 3 4 5 6

δ = 0.1 δ = 0.5

Fig. 14. Interplay between learning rate scaling δ and the number of concurrently trained stages
for models that were trained on a total of six stages on different images. We can see how the image
diversity usually decreases with increasing δ or increasing number of concurrently trained stages.
All images are randomly sampled
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ConSinGAN, Number of Trained Stages SinGAN [38], Number of Trained Stages
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Fig. 15. Comparison between our updated and the original rescaling method. We can see that both
models benefit from the updated rescaling method and can generate realistic images with fewer
stages. All images are randomly sampled
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ConSinGAN, Number of Trained Stages SinGAN [38], Number of Trained Stages
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Fig. 16. Comparison between our updated and the original rescaling method. We can see that both
models benefit from the updated rescaling method and can generate realistic images with fewer
stages. All images are randomly sampled
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SinGAN [38] ConSinGAN
Original Naive 8 – 10 Stages 3 Stages Fine-tuned

Fig. 17. Comparison of ConSinGAN and SinGAN on image /supp-harmonization. Our model
often produces better results despite being trained on fewer stages

E Image Harmonization

Figure 17 and Figure 18 show further comparisons between SinGAN and ConSinGAN
on the image harmonization task. We can see that ConSinGAN often performs better
despite being trained on fewer stages than SinGAN. SinGAN is also not able to transform
color objects into black-and-white images, while this is no problem for ConSinGAN.
Figure 19, Figure 20, and Figure 21 show more comparisons between ConSinGAN and
Deep Painterly Harmonization (DPH) [31] on image harmonization tasks of images
with higher resolution. Note that DPH needs the target image and mask as input for its
algorithm, while ConSinGAN is trained with randomly augmented images and only sees
the target image at test time (except for the fine-tuned case).
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SinGAN [38] ConSinGAN
Original Naive 8 – 10 Stages 3 Stages Fine-tuned

Fig. 18. Comparison of ConSinGAN and SinGAN on image supp-harmonization. Our model often
produces better results despite being trained on fewer stages
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ConSinGAN
Original Naive DPH [31] 4 Stages Fine-tuned

Fig. 19. Comparison of ConSinGAN and Deep Painterly Harmonization (DPH) on high-resolution
image harmonization. Images from DPH taken from their official Github implementation. In
contrast to DPH, our model does only see the naive image during training if we fine-tune it (last
column), but not for our general training procedure (fourth column)
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ConSinGAN
Original Naive DPH [31] 4 Stages Fine-tuned

Fig. 20. Comparison of ConSinGAN and Deep Painterly Harmonization (DPH) on high-resolution
image harmonization. Images from DPH taken from their official Github implementation. In
contrast to DPH, our model does only see the naive image during training if we fine-tune it (last
column), but not for our general training procedure (fourth column)
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ConSinGAN
Original Naive DPH [31] 4 Stages Fine-tuned

Fig. 21. Comparison of ConSinGAN and Deep Painterly Harmonization (DPH) on high-resolution
image harmonization. Images from DPH taken from their official Github implementation. In
contrast to DPH, our model does only see the naive image during training if we fine-tune it (last
column), but not for our general training procedure (fourth column)
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F Images From User Studies

Figure 22 and Figure 23 show the images that were used in the two user studies on the
‘Places’ and ‘LSUN’ data sets respectively.

G Image Editing

Figure 24 shows some examples of the image editing task with SinGAN and ConSinGAN.
We trained the full SinGAN model (9 and 11 stages respectively) and chose the best
results. The ConSinGAN was trained on only six stages and with only 1,000 iterations
per stage, as opposed to 2,000 iterations per stage at the SinGAN. We can observe
that both models have strengths and weaknesses. SinGAN is usually better at merging
background objects (e.g. the sky in the stone image) but also introduces many artifacts,
e.g. it changes the texture of the stone in many cases even in places where no editing
took place. Furthermore, its texture is very repetitive when large ares are changed, e.g.
the leaves in the changed areas of the tree.

ConSinGAN, on the other hand, does not change the structure in areas that are not
edited and exhibits none of the repetitiveness in the features. However, it sometimes
fails to merge the background as successfully as SinGAN does, see e.g. again the sky in
the stone image. We can also see that ConSinGAN tends to adhere more closely to the
layout of the edited image and mainly rounds and smooths the edges along edited areas.
SinGAN changes more of the image which can sometimes look more realistic, but might
not always be desired if the changes were done carefully and the artist wants the model
to adhere to his changes as exactly as possible. Also note that we did not experiment
with any hyperparameters for ConSinGAN for the image editing task and it might be
possible to achieve better results by finding better hyperparameters.
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Input [48] ConSinGAN SinGAN [38] Input [48] ConSinGAN SinGAN [38] Input [48] ConSinGAN SinGAN [38]

Fig. 22. Images from the ‘Places’ data set used in our user study



Improved Techniques for Training Single-Image GANs 33

Input [45] ConSinGAN SinGAN [38] Input [45] ConSinGAN SinGAN [38] Input [45] ConSinGAN SinGAN [38]

Fig. 23. Images from the ‘LSUN’ data set used in our user study
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SinGAN [38] ConSinGAN
Original Naive 9 / 11 Stages 6 Stages Fine-tuned

Fig. 24. Editing images with SinGAN and ConSinGAN. Note that the SinGAN model is trained
on 9 – 11 stages, while ConSinGAN is only trained for 6 stages
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H Other Approaches We Explored

Multiple Discriminators at Each Stage Similar to other work, e.g. InGAN [39],
we tried using several discriminators at each stage. This can potentially be helpful for
tasks such as unconditional image generation at different resolutions (see Figure 12
and Figure 13). To test this we adapted our model so that the generator is trained with
multiple discriminators at each stage. We generate images at different fixed resolutions,
e.g. by scaling the width and height of the input noise map by factors 0.5, 1.0, 1.5, and
2.0. As a result, the generator generates several images at each iteration which are used
as inputs for several discriminators (one for each resolution).

Each of the generators is trained on only one specific resolution where the ‘real’
image is a rescaled version of the original image. We observed that this does indeed
often lead to improved results for the unconditional generation of various resolutions.
However, for other applications, the results were inconsistent – sometimes it improved
things, sometimes it did not. Since training several discriminators at each stage increases
the training time considerably we decided to not use this approach in the default settings
of our method.

Adaptive Number of Training Iterations at Each Stage At the moment, each stage
is trained for a pre-defined number of iterations, e.g. 2,000 iterations for unconditional
image generation and 1,000 iterations for image harmonization. We believe it is unlikely
that each stage has to learn the same amount of information, especially since each stage
is initialized with the weights of the previous stage. It should therefore, in theory, be
possible to train each stage only for as long as necessary, thereby potentially reducing
the training time even more. We tried this by measuring how much the generated image
changes during the training of each stage (similar to what [27] did in Fig. 8) and to
stop training a given stage when it does not change the output of a given image much
compared to previous iterations. Again, this approach sometimes led to good results with
reduced training iterations, but the results were inconsistent. However, we believe that
this is a worthwhile direction and better approaches might make it possible to achieve
good results with considerably fewer iterations on some (all) stages of training.

Further Improve Global Image Layout We also tried several other approaches to
further improve the global image layout, especially from complex images. One idea is to
add a second task for the discriminator, so that it not only has to decide whether a given
image patch is real or not, but also where in a given image the patch is located (roughly).
We implemented this by adding a “location loss” to the discriminator so that it also had
to predict the location of a given image patch. To prevent overfitting we split the input
image into nine equal rectangles (3× 3) and the discriminator had to predict (for the real
image only) where a given image patch is from. The generator was then trained to fool
the discriminator into both predicting that the image patches of the generated images are
real and to being able to correctly predict their location, too.

Our second approach was to add a second discriminator with increased receptive
field to the higher stages. The idea is that this second discriminator could then still
judge the global layout (and not only texture/style) even at higher resolutions. To reduce
the computational burden we did not increase the convolutional filter as such, but used
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dilated convolutions instead. However, training still takes longer since we have to train a
second discriminator at higher stages.

Both approaches had mixed results, with the added discriminator with dilated convo-
lutions overall performing better than the location loss. The location loss often did not
clearly improve the global layout and sometimes led to reduced diversity in the generated
images. On the other hand, using an additional discriminator with dilated convolutions
on higher stages often did actually improve the global consistency, but on average the
improvements were not big enough to warrant the extra training time. We still feel that
these, or similar, avenues should be further studied, since enforcing better global layout
in this manner might enable us to train on even fewer stages, thereby negating the more
expensive training and possibly even speeding up the overall training time.

Data Augmentation To increase the diversity in the generated images we experi-
mented with applying basic augmentation techniques to the original training image. At
each iteration we applied simple transformations such as horizontal mirroring, taking
a random crop (consisting of at least 95% of the original image), slight rotation (±5
degrees), slight zooming, etc. However, this considerably worsened the final results in
our tests, since the discriminator was apparently not able to learn a good image represen-
tation and the generated images showed several artifacts (uneven textures/surfaces, no
straight lines, etc). Improving/fine-tuning the used augmentation techniques or finding
a more appropriate (sub-)set of augmentation techniques for this task might improve
results.

Different Normalization Approaches and Activation Functions We also experi-
mented with different normalization approaches, both for the input image/noise and for
the network architecture. Our generator gets as input either the original training image
(normalized to a range [−1, 1]) for the reconstruction loss and noise sampled from a
random normal distribution (N (0, 1)) for the unconditional image generation. As such,
the input to our generator comes from two slightly different distributions. We tried both
normalizing the input image so that it more closely resembles a normal distribution
and sampling the noise so that it follows more closely the image distribution (e.g. by
sampling from U(−1, 1). However, both approaches did not improve the image quality
or training progress and the training does, in fact, not seem to suffer from the two slightly
different input distributions.

We also tried using other normalization techniques besides batch normalization in
the network architecture. We tried both layer normalization [2] and pixel normalization
[25], where layer normalization did not improve the results and pixel normalization
made the results considerably worse. In the end we were able to completely remove
any normalization layers for the unconditional image generation, which had the positive
benefit of further speeding up the training. We also experimented with other activation
functions besides leaky ReLU [32], such as ELU [8], SELU [29], and PRELU [16].
PRELU usually led to similar or better results, but also slowed down training since it
introduces an additional parameter. Both ELU and SELU had negative effects on the
final result and in the end we kept the leaky ReLU activation function, since it works
almost as well as PRELU but does not slow down the training.
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Input ConSinGAN SinGAN [38]

Fig. 25. Results when the models fail to learn the global image layout. The SinGAN models were
trained on eight – ten stages, the ConSinGAN models were trained on three – five stages. Note
that increasing the number of stages and/or the learning rate scaling δ for the ConSinGAN models
improves the learned image layout

I Failure Cases

Figure 25 shows examples of trained models that did not learn a correct global layout of
the training image. Note that the SinGAN models were trained for the full eight – ten
stages, while the ConSinGAN models were only trained for three – five stages. Increasing
the number of trained stages to the default of six for the ConSinGAN increases the image
quality.

J Optimization and Implementation Details

Optimization At each stage we optimize our model for 2,000 iterations (uncondi-
tional image generation) or 1,000 iterations (image harmonization and editing). We use
the WGAN-GP loss [14] with a gradient penalty weight of 0.1. The learning rate starts
with η = 0.0005 at each stage for both the generator and the discriminator and gets
multiplied with 0.1 after 80% of iterations steps at each stage. Optimization is done with
Adam [28] with β1 = 0.5 and β2 = 0.999. We train three stages concurrently with a
learning rate scaling of δ = 0.1 for the lower stages.

During each iteration we first perform three gradient steps on the discriminator.
We found that we could speed up training by only performing one gradient update on
the generator during each iteration, but scaling it by a factor of 3. The scalar for the
reconstruction loss in the generator is α = 10.0. We use the leaky ReLU activation with
a negative slope of 0.05 for image generation and 0.3 for image harmonization. We do
not use batch normalization for unconditional image generation, but found it useful in the
generator (but not the discriminator) for other tasks. Our discriminator and each stage of
our generator consists of three convolutional layers with 64 filters. Both the discriminator
and the generator have two additional layers taking an image (or the noise mask) as
input and extracting features, and mapping features to images (generator) or loss space
(discriminator) respectively. Training takes around 20-25 minutes for unconditional
image generation and 10 minutes for image harmonization for a 250× 250 pixel image
on an NVIDIA GeForce GTX 1080Ti.
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