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Figure 1: Examples of objects in the dataset.

Abstract
The registration of surfaces with non-rigid deformation, especially non-isometric deformations, is a challenging problem. When
applying such techniques to real scans, the problem is compounded by topological and geometric inconsistencies between
shapes. In this paper, we capture a benchmark dataset of scanned 3D shapes undergoing various controlled deformations
(articulating, bending, stretching and topologically changing), along with ground truth correspondences. With the aid of this
tiered benchmark of increasingly challenging real scans, we explore this problem and investigate how robust current state-
of-the-art methods perform in different challenging registration and correspondence scenarios. We discover that changes in
topology is a challenging problem for some methods and that machine learning-based approaches prove to be more capable of
handling non-isometric deformations on shapes that are moderately similar to the training set.

CCS Concepts
• Theory of computation → Computational geometry; • Computing methodologies → Mesh geometry models; Shape anal-
ysis;
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1. Introduction

Estimating the correspondence between two 3D shapes is a funda-
mental problem in Computer Graphics and Computational Geome-
try. Shape correspondence is closely related to surface registration;
where shape correspondence aims to identify corresponding points
or regions between two or more shapes, surface registration aims
to find a transformation to bring one shape into the same global co-
ordinate system a sanother shape. One of the applications of surface
registration is to facilitate 3D model retrieval; after alignment it be-
comes easier to compare shapes since the correspondence between
their elements is known. Shape correspondence is also necessary
in common applications such as modelling [KMP07], reconstruc-
tion [LSP08] and tracking [NFS15]. Many existing methods have
been proposed for computing shape correspondence [vKZHCO11,
TCL∗13]. Such approaches assume surface deformations to be ei-
ther: piecewise rigid, (near-)isometric and/or topologically consis-
tent. In the literature, there are only a few public benchmark shape
correspondence datasets that challenge these assumptions about de-
formations [BRLB14, CRB∗16, LRB∗16, AED∗18]. Previous con-
tests [CRB∗16, LRB∗16] used synthetic objects that produce de-
formations that are not realistic. [BRLB14, AED∗18] do capture
real-life objects, focusing on specific object categories (i.e., human
bodies and human faces), but neither benchmark suitably considers
the large range of deformation that an object may undergo simulta-
neously. Instead of directly generating correspondences, non-rigid
registration methods tend to produce a set of local transformations
that deform one surface to align with the other. Our benchmark can
also be used to evaluate such methods, by working out correspon-
dences based on the deformed shape.

We observe that there is presently no single standard benchmark
for comparing the performance of shape correspondence methods
under a large range of deformation conditions. This has motivated
us to provide a new benchmark that is divided into distinct sets,
each containing different types of deformation.

Organisation Our report is organised as follows: Section 2 de-
scribes the dataset we have constructed and our approach to eval-
uating the results of submissions. Section 3 describes the methods
we compare in this report. Section 4 evaluates the results obtained
on each test set. Finally, Section 5 concludes with a summary of the
findings of this track.

2. Dataset

For this track we have produced a new dataset from 3D scans of
real-world objects, captured by ourselves using a high-precision 3D
scanner (Artec3D Space Spider) designed for small objects. Each
object exhibits one or more types of deformation. We classify these
surface deformations into four distinct groups by level of complex-
ity:

0. Articulating – piecewise rigid deformation
1. Bending – isometric and near-isometric
2. Stretching – isotropic and anisotropic (e.g., Fig. 2a)
3. Topologically changing – heteromorphic (i.e., shapes of differ-

ent topology. e.g., Fig. 2c)

The dataset consists of wooden mannequins and wooden hands

Set name No. of pairs Model materials
Test-set 0 14 wooden hands
Test-set 1 26 clothed hands, clothed mannequins
Test-set 2 19 very stretched clothed mannequins
Test-set 3 17 all materials

Table 1: Test set structure.

that are articulated. To produce other types of deformation, we have
created clothes for the model from two materials. We use one mate-
rial that can bend but is resistant to stretching, and another that can
bend and stretch. To induce greater non-isometry, we use modelling
cl yaunderneath the clothing of the mannequ nimodel. Materials
and objects have been carefully selected to incrementally introduce
these deformation types so that the limitations (w.r.t. deformation
type) can be clearly identified. Because the dataset consists of real-
world scans, it contains geometric inconsistencies and topological
changes due to self-contacts. The real-scans also contain natural
noise, varying triangulation of shapes and occluded geometry (e.g.,
Fig. 2b). Some examples of models in our dataset are shown in
Fig. 1.

A total of 76 shape pairs were selected for the test sets (Ta-
ble 1). Test-set 0 contains 14 pairs of articulating wooden hand
objects. Test-set 1 contains 26 pairs of models, comprising clothed
humans and hands. Test-set 2 contains 19 pairs of models; the pair-
ings are between a thin clothed mannequin and a larger mannequin,
ensuring significant non-isometry. Test-set 3 contains 17 carefully
selected pairs that contain challenging geometric and topological
changes.

Information of the data underpinning the results presented here,
including how to access them, can be found in the Cardiff Univer-
sity data catalogue (http://doi.org/10.17035/d.2019.
0072003316).

2.1. Ground truth construction

To generate ground-truths, clearly drawn texture marks (e.g.,
Fig. 3) were made on the surfaces of the objects used. Correspon-
dences were initially automatically determined using the shape tex-
ture maps, and then manually corrected by multiple annotators to
ensure ground-truths were accurate for this track (see examples in
Fig. 4 of the obtained ground-truth).

2.2. Evaluation

Similarly to other shape correspondence benchmarks [CRB∗16,
LRB∗16], the correspondence quality of each method is evalu-
ated using the evaluation procedure of [KLF11]. The quality of
shape correspondence has been evaluated automatically by measur-
ing normalised geodesics between the ground-truth and predicted
correspondence. Specifically, let (xxxi,yyyi) ∈ X×Y be a pair of corre-
sponding points between surfaces X and Y , the normalised geodesic
error εi between the predicted correspondence yyyi and the ground
truth position gggi on surface Y is measured as:

εi =
dY (yyyi,gggi)

area(Y )1/2
. (1)
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(a) Non-isometric deformation due to inflation. (b) Geometric change caused by occlusion. (c) Topological change caused by self-contact.

Figure 2: Illustrations of some of the challenges in our dataset.

Figure 3: A photo of the real wooden hand used in the dataset after
markers were drawn.

The following measurements are used to evaluate the perfor-
mance of each method:

• An overall error measurement, for methods that complete all test
sets.
• Four plots (one for each test set) of cumulative geodesic error

to demonstrate the performance of methods for individual types
of deformation. This is also useful for participants that have not
submitted results for all test sets.

3. Correspondence methods

This section presents the approaches used to find correspon-
dences on one or more of the test sets. Seven methods were
evaluated using the benchmark, namely: traditional non-
rigid Iterative Closest Point (N-ICP) [BP13], anisotropic
non-rigid registration [DLRT19], deep learning-based shape
correspondence [GFK∗18], non-isometric partial functional
maps [VLB∗17], non-rigid registration with reweighted spar-
sity [LYLG18], genetic optimisation-based (near-)isometric shape

correspondence [Sah18], and a commercial non-rigid registration
tool [Rus18].

3.1. Traditional Non-Rigid ICP (N-ICP)

To provide an effective baseline to compare the performance of the
recently developed approaches we use a version of the well known
N-ICP method [BP13] that has extended the original rigid formula-
tion of ICP [BM92]. The method repeatedly applies the following
two steps until convergence. In the first step, it finds correspon-
dences between surfaces based on closest point matching, similar to
ICP. In the second step, to align surfaces the method minimises dis-
tances between correspondences; point-to-point distances are com-
bined with point-to-plane distances to speed up the convergence. It
also uses 1-ring as-rigid-as-possible regularisation to smooth local
deformations.

3.2. Non-Rigid Registration with Anisotropic Estimation
(R. Dyke, Y.-K. Lai, P. L. Rosin & G. K. L. Tam)

The method [DLRT19] follows the N-ICP framework that alter-
nately improves correspondences and local transformations. The
initial correspondences are obtained based on matching of local
geometric features (SHOT [TSDS10] is used). In order to ad-
dress (local) anisotropic deformations, the method iteratively es-
timates local anisotropy (represented as local principal directions
and principal scaling factors), which is then incorporated in an ex-
tended diffusion pruning framework [TMRL14] to identify consis-
tent correspondences, taking anisotropy into account when calcu-
lating geodesic distances. Local regions with substantial stretch-
ing may end up with very few correspondences identified due to
changes of local geometric features. To cope with significantly dif-
ferent input shapes, the method further introduces additional corre-
spondences by taking existing correspondences as landmarks.

3.3. 3D-CODED (T. Groueix, M. Fisher, V. G. Kim,
B. C. Russell & M. Aubry)

The method in [GFK∗18] takes a deep learning approach for
matching deformable shapes, and introduces Shape Deformation
Networks which jointly encode 3D shapes and correspondences.

c© 2019 The Author(s)
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(a) Test-set 0 (b) Test-set 2 (c) Test-set 3

Figure 4: Shape pairs from test-sets 0, 2 & 3 with ground truth correspondences visualised.

This is achieved by factoring the surface representation into (i) a
template that parameterises the surface, and (ii) a learnt global fea-
ture vector that parameterises the transformation of the template
into the input surface. By predicting this feature for a new shape,
correspondences between this shape and the template are implicitly
predicted. These correspondences can be improved by an additional
step which improves the shape feature by minimising the Chamfer
distance between the input and transformed template.

To learn a transformation between shapes, an encoder-decoder
architecture is trained end-to-end to optimise a regularised recon-
struction loss. 3D shape correspondences between two shapes X
and Y are found by first using the decoder to compute the param-
eters that deform the template to each of the two shapes. For each
point on shape X , its nearest neighbour is found on the template de-
formed to X . This template point has a known corresponding point
in the template deformed to Y , which is then used to find the nearest
neighbour in Y .

The hyperparameters were unchanged for all the tests.
The code used is available online from the authors of
3D-CODED [Gro18] and the pre-trained network called:
“sup_human_invY_network_last.pth” was used. An example
output of the deformed template using this method is shown in
Fig. 5.

3.4. Kernel Matching (M. Vestner, Z. Länher, A. Boyarski,
O. Litany, R. Slossberg, T. Remez, E. Rodolà,
A. M. Bronstein, M. M. Bronstein, R. Kimmel &
D. Cremers)

Kernel Matching applies the method proposed in [VLB∗17] using
the publicly available code [Lae17]. The algorithm solves a series
of linear assignment problems (LAPs) of the form

P(k+1) = argmax
P∈Πn

〈P,αFY F>X +Ktk
Y P(k)Ktk

X 〉, (2)

P(0) = argmax
P∈Πn

〈P,αFY F>X 〉, (3)

Figure 5: This figure shows an example output of the deformed
template using [GFK∗18].

where P is a permutation matrix, FX ,FY are matrices of pointwise
descriptors and Ktk

X ,K
tk
Y are the positive-definite heat kernel matri-

ces with diffusion parameter tk on shapes X and Y , respectively. In-
tuitively, the first term in Eqn. 2 describes descriptor similarity and
the second how well the neighbourhood information is preserved
by comparing heat kernels. With decreasing diffusion parameter
more emphasis is put on local neighbourhoods (cf. the ε-δ defini-
tion of continuity). The paper gives more details about connections
to quadratic assignment problems of the form

argmax
P∈Πn

E(P) = argmax
P∈Πn

〈P,αFY F>X +Ktk
Y PKtk

X 〉, (4)

as well as interpretations in terms of kernel density estimation and
low pass filtering of correspondences.
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By construction the algorithm yields bijections and is – in its ba-
sic variant – only applicable to pairs of shapes with consistent sam-
pling, in particular with the same number of vertices. In addition
solving the LAP becomes intractable for high number of vertices.

Thus a multi-scale approach is applied that overcomes both is-
sues: At each scale a subset of the vertices is sub-sampled (with in-
creasing density). The solution of each scale induces Voronoi cells
in the following scale, and sparse initial correspondences for the
next scale.

Since the Voronoi cells can directly be put into correspondence,
the vertices are matched between corresponding cells and thus a set
of smaller LAPs is solved instead of one big LAP. Notice that the
payoff matrices (Eqn. 2) of an LAP capture the correspondences
between the centres of all Voronoi cells. The different number of
vertices within corresponding cells can be tackled via slack vari-
ables. As a consequence the final matching is a bijection between
subsets of the vertices on X and Y . The fraction of unmatched ver-
tices is low and tends to appear in areas with inconsistent sampling.

Two sets of results were submitted for this method with different
parameters. The diffusion parameters for heat kernels remained the
same throughout the benchmark. After normalising the shapes to
have unit surface area, the diffusion parameters are set to

(log10(500), . . . , log10(500)︸ ︷︷ ︸
3x

, . . . , log10(10), . . . , log10(10)︸ ︷︷ ︸
3x︸ ︷︷ ︸

10, logarithmic sampling

). (5)

Parameters for SHOT results As pointwise descriptors
SHOT [TSDS10] is used as described in the paper.

Parameters for SHOT & HKS results SHOT and HKS [SOG09]
are used as pointwise descriptors.

3.5. Reweighted Position and Transformation Sparsities
(K. Li, J. Yang, Y.-K. Lai, D. Guo, Z. Wu)

In order to cope with challenges of non-rigid registration, namely
high degrees of freedom and presence of noise and outliers,
[LYLG18] proposes a robust non-rigid registration method using
reweighted sparsities on position and transformation to estimate the
deformations between 3D shapes. Observing that large position and
transformation errors tend to concentrate on local areas, which can
be considered as sparse signals over surfaces, they formulate the
energy function with position and transformation sparsity on both
the data term and the smoothness term, and define the smoothness
constraint using local rigidity. The double sparsity based non-rigid
registration model is enhanced with a reweighting scheme to further
improve its robustness. The formulation is solved by transferring it
into four alternately-optimised sub-problems which have exact so-
lutions and guaranteed convergence. To cope with large differences
in source and target shapes, diffusion pruning [TMRL14] is ap-
plied to obtain initial correspondences based on matching of local
SHOT features [TSDS10], and further correspondences are intro-
duced during iterative optimisation based on closest points, similar
to the standard N-ICP framework.

Figure 6: Overview of the genetic algorithm [Sah18].

3.6. Genetic Isometric Shape Correspondence (Y. Sahillioğlu)

The method in [Sah18] exploits the permutation creation ability of
genetic optimisation to find the permutation matrix that encodes
correspondences between two point sets. To this end, Sahillioğlu
provides a genetic algorithm for the 3D shape correspondence
problem. The point sets to be matched are sampled from two iso-
metric (or near-isometric) shapes. The sparse one-to-one corre-
spondences produced by this algorithm minimise the following iso-
metric distortion function:

Diso(φ) =
1
|φ| ∑

(xi,y j)∈φ

1
|φ′| ∑

(xl ,ym)∈φ′
|dg(xi,xl)−dg(y j,ym)|, (6)

where dg(., .) is the normalised geodesic distance between two
points on a given surface and φ

′ = φ \ {(xi,y j)} in the most gen-
eral setting. The optimal bijection φ

∗ being sought minimises Diso
in the huge space of all N! possible bijections while matching
N points. Since a bijection is merely an assignment of a permu-
tation π of the target samples to the fixed source samples, the
proposed genetic algorithm efficiently seeks the optimal permu-
tation π

∗ of indices that will be used as subscripts of {y j}, e.g.,
fixed x1,x2, ..,sN is assigned to y4,y3, ..,y29, respectively, and π

∗ =
4,3, ..,29 (Fig. 6).

Having represented a permutation that defines a correspondence
as a chromosome, [Sah18] evolves with a fitness function that
yields the set of correspondences with minimal distortion using
carefully designed genetic operations. The algorithm with the same
parameters used in the original paper is able to compute corre-
spondences under articulated, isometric, and non-isometric defor-
mations of this dataset. Two sets of results were submitted for this
method with different levels of sparsity, one set that has relatively
sparse correspondences (∼100 per shape pair) and one set of ex-
tremely sparse correspondences (6 per shape pair). A random result
from each deformation type is shown in Fig. 7.

c© 2019 The Author(s)
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Figure 7: Extremely sparse (top) and sparse (bottom) correspon-
dences produced by [Sah18] on some pairs.

3.7. RSDS Wrap 3.3

Wrap 3 [Rus18] is a widely used commercial software tool for
mesh processing that includes a wrapping tool that non-rigidly fits
one 3D shape to another. It is often used to wrap a well structured
base mesh around unstructured scanned data. This method accepts
pre-defined point correspondences between shapes to create con-
trol nodes on the source shape. For consistency, we also use the
diffusion pruning [TMRL14] method to generate an initial set of
correspondences for initialisation. A position for each control node
is then found so that it matches the target shape as closely as possi-
ble. The method runs iteratively where the density of control nodes
is increased per iteration. This leads to an approximation of the tar-
get shape with increasing accuracy per iteration.

4. Results & discussion

Here we present quantitative results of the methods described in
Section 3. Figs. 8 to 11 show the geodesic error of correspondences
generated by each method on each test set. Fig. 12 shows the com-
bined results for methods that registered all test sets. Table 2 reports
the percentage (and where appropriate number) of correspondences
returned by each method. Table 3 shows the area under the curve
(AUC) of each method on each test set.

Sparsity of correspondence results Most methods evaluated here
compute a reasonably dense set of matches. The number of corre-
spondences returned by each method is reported in Table 2, 100%
indicates that a correspondence was found for all vertices of X . As
discussed in Section 3, [Sah18] submitted two sets of results, the
first set consisting of an average number of 98.3 (to one decimal
place) sparse correspondences, the other containing 6 correspon-
dences. Methods [LYLG18, DLRT19, BP13, Rus18] produce a de-
formed source mesh towards the target mesh. We use the following
strategy to work out the correspondences: For each vertex on the
deformed mesh, we work out its foot point when projecting it onto
the target mesh surface. This is usually located within a triangle,
and the barycentric coordinates are recorded. We also reject corre-
spondences that have a projection distance larger than the average
mesh edge length, as this indicates regions where surfaces are not

accurately aligned. We note that before rejecting correspondences,
we observe that the overall results of “all test sets” for [LYLG18]
& [DLRT19] were comparable.

Test-set 0 This set contains only articulated deformations. This is
the most simple type of deformation that we investigate. Thus we
expected most methods to perform well on this test set. However,
we discover performance varies across many methods, especially
when compared to the other test sets. Inspecting the shapes in the
dataset reveals that the surfaces are primarily comprised of smooth
surfaces that lack high frequency geometric details. For example
finger regions (cylinder-like surfaces) are symmetrically ambigu-
ous (see Fig. 13). This may affect the initial correspondences lead-
ing to a higher error rate. [LYLG18] performs well because the
large smooth surfaces fit the sparsity assumption.

Test-set 1 This test set contains shape pairs that bend either iso-
metrically or near-isometrically. In it, we observed the largest dif-
ference between the best performing method ([LYLG18]) and the
worst performing method (baseline N-ICP [BP13]). Shape pairs
also have large-scale deformations, which typical N-ICP methods
([BP13]) cannot handle as N-ICP requires two shapes to have a
good initial alignment to ensure optimal registration.

Test-set 2 We observe the fastest convergence to 100% from
[GFK∗18]. It should be noted that this test set contains only non-
isometric human models. [GFK∗18] demonstrates how the use of
a pre-trained network from some datasets may be generalised for
other datasets. With respect to the other methods, we observe that
SHOT-based approaches suffer significantly, when compared with
the results in test-set 0 and test-set 1. We expect that this is caused
by the non-isometry. As SHOT signatures are not well defined for
such non-isometric surfaces, the degradation in performance is rea-
sonable.

For [Sah18], the performance degrades on shape pairs of man-
nequins that possess bilateral symmetry (test-sets 1 and 2). Due
to self-occlusions during scanning, unnatural connections between
fingers of some hand models are present, causing some pairwise
geodesics to be inconsistent in test-set 0. As a purely geodesic-
based method, its performance is also affected by the unnatural
shortcuts present in hand models due to occlusions during capture.
We note that the performance of [Sah18] would have improved sig-
nificantly if such problematic pairs (symmetric flips and shortcuts)
were discarded.

Test-set 3 [VLB∗17] achieves notably worse results through the
combination of SHOT and HKS when compared with using SHOT,
whereas on the contrary for test-set 2 using SHOT and HKS per-
forms better. This demonstrates the instability of HKS under topo-
logical change. Topological changes appear to be challenging, and
likely to be beyond the assumptions of most methods. Therefore,
some methods did not participate in this test. However, for those
that participated in this test set, the overall AUC appears compara-
ble to other test sets. This is probably because, apart from topolog-
ical changes, this test set tends to have less distortion.

c© 2019 The Author(s)
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Figure 8: Results for test-set 0.
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Figure 9: Results for test-set 1.
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Figure 10: Results for test-set 2.
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Figure 11: Results for test-set 3.

5. Conclusions

In this paper we have presented a novel dataset of real-world
scanned objects that cover a large variety of deformation types. Our
investigation has found that changes in topology is a challenging
problem for some methods.

Machine learning-based approaches prove to be more capable
of handling non-isometric deformations. However, they often re-
quire a high training cost, and may not generalise to arbitrary data.
Recent advances in non-rigid registration techniques that explicitly
model non-isometric deformation generally perform well in many

c© 2019 The Author(s)
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Method Correspondences
[DLRT19] 99.02%
[LYLG18] 75.96%
[BP13] 49.64%
[Rus18] 93.99%
[VLB∗17] (SHOT+HKS) 92.31%
[VLB∗17] (SHOT) 92.39%
[GFK∗18] 100%
[Sah18] sparse 98.34
[Sah18] extremely sparse 6

Table 2: Sparsity of correspondence results given as either a per-
centage of the number of vertices comprising shape X or the num-
ber of correspondences, where appropriate.

scenarios. Though they do not perform as good as deep learning
techniques in non-isometric deformation, they do not require train-
ing, are generically applicable to unseen datasets, and are less sus-
ceptible to topological changes. There is also a need to develop
more reliable features for point-based correspondence on non-rigid
surfaces.

To summarise, our experimental results suggest that develop-
ing correspondence techniques that are generic, reliable to any
kind of seen/unseen deformation and surface, whilst handling noise
and topological changes, are still an on-going challenge. No sin-
gle technique is perfect, but the results also indicate an interest-
ing direction: combining the individual advantages of sophisticated
deep learning models and the advantages of generic non-rigid non-
isometric registration techniques may lead to a more useful and
generic correspondence technique that performs well in most sce-
narios, and would practically be applicable in downstream applica-
tions.

It is interesting to see how well a commercial solution compares
to the state-of-the-art methods.

Through this track we have discovered some challenges in fairly
evaluating the performance of shape correspondence methods. Tak-
ing intrinsic symmetries of shapes into account and reporting de-
tails, such as the sparsity of correspondences estimated, need fur-
ther investigation.

Further exploration of the robustness of shape correspondence
methods on partial real scans would be interesting, and our dataset
could be augmented to provide such challenges in the future.
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Figure 12: Results for all test sets.

Figure 13: Wooden hand object from the dataset that illustrates the
lack of high frequency geometric details on the shape’s surface.
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