
GLASS: Geometric Latent Augmentation for Shape Spaces

Sanjeev Muralikrishnan1, Siddhartha Chaudhuri2,3, Noam Aigerman2, Vladimir Kim2, Matthew
Fisher2, and Niloy Mitra1,2

1University College London
2Adobe Research

3IIT Bombay

1

10

2 3

4

5

6

7

8

9

Figure 1: Starting from just 10 shapes (larger, numbered), our method iteratively augments the collection by alternating
between training a VAE, and exploring random perturbations in its low-dimensional latent space guided by a purely geometric
deformation energy. Here we show the 1000 most diverse shapes from the first 2.5K discovered by our method, positioned
according to their latent embedding (projected to 2D via t-SNE). Shapes are colored according to the initial landmark they
trace back to, with shapes added in later iterations lighter (greyer) in color. The augmentation effectively fills in the space
between the sparse initial landmarks, and even extrapolates beyond them. It manages to also interpolate global rotations for
samples near the back-facing 3rd exemplar, and yields crossed-legged models even though there is no such initial landmark.

Abstract

We investigate the problem of training generative mod-
els on a very sparse collection of 3D models. We use ge-
ometrically motivated energies to augment and thus boost
a sparse collection of example (training) models. We ana-
lyze the Hessian of the as-rigid-as-possible (ARAP) energy
to sample from and project to the underlying (local) shape
space, and use the augmented dataset to train a variational
autoencoder (VAE). We iterate the process of building la-
tent spaces of VAE and augmenting the associated dataset,
to progressively reveal a richer and more expressive gen-
erative space for creating geometrically and semantically
valid samples. Our framework allows us to train genera-
tive 3D models even with a small set of good quality 3D
models, which are typically hard to curate. We extensively

evaluate our method against a set of strong baselines, pro-
vide ablation studies and demonstrate application towards
establishing shape correspondences.

We present multiple examples of interesting and mean-
ingful shape variations even when starting from as few as
3-10 training shapes.

1. Introduction

This paper is concerned with generating plausible defor-
mations of a 3D model from a very sparse set of examples.
Figure 1 shows an input of 10 example deformations of a
3D mesh of a human in different poses, and the additional
deformations generated by our method.

3D deformations have a strong semantic element to them
– a human’s limbs should only bend at the joints, and then
not beyond the 180◦ that the joints permit. Arguably, this

1

ar
X

iv
:2

10
8.

03
22

5v
2

 [
cs

.C
V

]
 9

 A
ug

 2
02

1

can only be deduced via learning by example from a dataset.
Unfortunately, as opposed to 2D images, the 3D do-

main poses several challenges for the data-driven frame-
work: meshes come in a non-uniform representation, each
mesh with its own unique triangulation, making it hard to
devise a data-driven technique that generalizes to different
models in different triangulations; furthermore, data acqui-
sition is much more tedious, making datasets scarcer.

Hence, given the scarcity of data, we set to tackle the
challenge of generating additional meaningful deformations
from a given (very) sparse set of deformations of a single
model. The output of our method can then be used to create
larger datasets that in turn can be leveraged by other tech-
niques that cannot operate on scarce datasets.

Our core idea is to use supervised learning of a genera-
tive space from a training dataset, but augment that dataset
in an unsupervised, geometry-aware way. Namely, our main
contribution stems from observing that while meaningful
deformations are in essence semantic, they also possess a
very strong pure-geometric element, e.g., they are smooth
(i.e., preserve local details) and do not distort the model
too much (i.e., local lengths of elements are relatively pre-
served). Leveraging this observation enables us to reduce
the dimensionality of the problem, in turn enabling us to
devise a generative method which requires a very small
amount of examples as input.

Specifically, we train a Variational Autoencoder (VAE)
on the given dataset. During its training, we consider ran-
dom latent codes and the decoded deformation they repre-
sent. We propose an unsupervised geometry-aware method,
using the eigenmodes of the deformation energy’s Hessian,
to perturb and project existing latent codes in a way that
ensures they yield smooth, low-distortion deformations,
which we add as data-augmentation to the input datasets.
We then train the VAE on the augmented dataset and repeat
the process iteratively until the latent space has been sam-
pled densely enough. We call our method GLASS.

We evaluate GLASS on a selection of established datasets
(e.g., FAUST, centaur, horse) and compare performance on
different baseline alternatives using a combination of eval-
uation measures. The experiments show the effectiveness
of GLASS to recover meaningful deformation from a mere
handful of exemplars. We also evaluate the the proposed
method in the context of shape correspondence, demon-
strating the utility of the sampling process to assist the 3D-
CODED [15] algorithm.

2. Related Work
Geometric shape deformation. Parametric

deformation methods express 2D or 3D shapes as a
known function of a set of common parameters, and model
deformations as variations of these parameters. Such meth-
ods include cages [20], blendshapes [25], skinned skele-

tons [19] and Laplacian eigenfunctions [28]. In con-
trast, variational methods model deformations as mini-
mizers of an energy functional – e.g. Dirichlet [16],
isometric [21], conformal [24], Laplacian [5], As-Rigid-
As-Possible (ARAP) [32], or As-Consistent-As-Possible
(ACAP) [12] – subject to user constraints. In our work
we focus on minimizing the ARAP energy, although our
method supports any twice-differentiable energy function.
There are strong connections between the parametric and
variational approaches, for instance biharmonic skinning
weights [18] (parametric) are equivalent to minimizing the
Laplacian energy (variational). Please see surveys [23, 38]
for a complete discussion. We are also inspired by work on
modal analysis [17], which linearize the deformation space
of a shape in terms of the least-significant eigenvectors of
the Hessian of some energy functional. In the current pa-
per, we effectively perform learned non-linear modal anal-
ysis: starting with a variational formulation – the implicitly-
defined manifold of low-energy perturbations of a few land-
mark shapes – we learn the corresponding parametric repre-
sentation as the latent space of an autoencoder by iteratively
exploring locally linear perturbations.

Our work on data augmentation from a sparse set of land-
mark shapes is related to interpolation/morphing between,
and extrapolation from, sets of shapes. As in our scenario,
the set typically comprises articulations of a common tem-
plate. See e.g. [35] for a survey of classical (non-learning-
based) methods for shape interpolation. Plausible extrapo-
lation is less well-defined, and less studied, in the classical
literature. Kilian et al. [21] extend geodesics of an isometric
energy in the deformation space, though it is restricted to
exploring (and extrapolating) paths between shapes rather
than the full deformation space.

Learned deformation models. Various types of genera-
tive models based on graphical models, GANs, VAEs etc
have been developed to probabilistically synthesize shape
variations. A full treatment is beyond the scope of this
paper, please see surveys such as [9]. Here, we focus
on models which capture the space of smooth deforma-
tions of a given shape. The best-studied domain is that
of virtual humans, beginning with seminal works captur-
ing face [3], bodyshape [1] and pose [2] variations in a
data-driven fashion from scanned exemplars. These works,
like several subsequent ones, rely on variations of principal
component analysis (PCA) to parameterize the deformation
space. Yumer et al. [39] learn a common set of deformation
handles for a dataset. More recent work uses deep neural
networks to learn shape deformation models from training
sets [27, 33, 13, 11, 36], and use them for applications such
as non-rigid correspondences [15]. Similar to one aspect of
our work, Tan et al. [34] regularize a VAE with an energy-
based loss. However, the primary role of the energy in our
method is to guide exploration for data augmentation.

Crucially, all the above methods rely on extensive train-
ing data. In contrast, we specifically aim to learn mean-
ingful data-driven deformation models under extreme spar-
sity constraints, from just a handful of landmarks indicating
modes of the distribution. While this is broadly related to
few-shot learning scenarios, only a few other papers con-
sider these requirements in the context of geometric shape
synthesis, or without any auxiliary data from other domains.
LIMP [10] is an important recent work that tries to regular-
ize the latent space of a 3D shape VAE by requiring points
sampled on the line segment between two latent codes to
minimize geometric distortion relative to the endpoints. Un-
like our method, LIMP does not explore the full volume of
the hull bounding the training landmarks, or extrapolate be-
yond it – regularization is limited to the web of pairwise
paths. We modified LIMP to work with ARAP energy, and
demonstrate that our method significantly outperforms their
approach on a variety of metrics.

Unsupervised data augmentation. Our work is part of a
wide class of methods for synthetically increasing the size
of training datasets for data-hungry machine learning, with-
out additional supervision. For broad coverage, we refer
the reader to surveys on images [31], time series [37], and
NLP [8]. A particularly relevant recent technique is Deep
Markov Chain Monte Carlo [29], which samples pertur-
bations of training data using MCMC on an energy func-
tional, trains an autoencoder on these samples, and uses
the resulting latent space for lower-dimensional (and hence
faster) MCMC. We observed that on very sparse and high-
dimensional datasets (only a few landmark 3D shapes), the
initial samples of Deep MCMC do not capture meaningful
variations, and hence it does not adequately augment the
dataset. Also related are methods that augment classifica-
tion datasets with adversarial perturbations along the gra-
dients of loss functions [14, 30]. In contrast, we seek to
preserve an energy-based loss, and hence eliminate the gra-
dient and other high-change directions from consideration.

3. Method
We now describe our method for generating a dense

space of deformations from a given sparse set of example
deformations. We first describe the general problem setup
in Section 3.1, and then move on to the crux of our method,
deformation-aware data-augmentation in Section 3.2.

3.1. Problem setup

We assume we are given a mesh with N vertices V ∈
RN×3, and triangles T . A deformation of the mesh is sim-
ply an assignment of a new position to each vertex, denoted
W ∈ RN×3. We are also given a sparse set of deforma-
tion “examples”, W 1, . . .W k. Lastly, we assume to pos-
sess a deformation energy f(W), which quantifies how se-

MMR

1. Deformation-aware VAE

2. Augmenting the Latent Space
2.1 Deformation-aware perturbation in latent space

2.2 Data-driven pruning2.3 Deformation-aware projection

Figure 2: We present GLASS to iteratively build a
deformation-aware VAE latent space and analyzing it to
generate new training samples to augment the original train-
ing set. These enables generation of diverse yet plausible
shape variations starting from very few input examples.

vere is a deformation by measuring distortion. We use the
As-Rigid-As-Possible (ARAP) energy [32] to measure how
much does any deformation strays from isometry, i.e., how
much does geodesic lengths changes with respect to the rest
pose V . We note, however, that our method can be used
with other (piecewise) differentiable energies.

We seek a generative method to produce meaningful de-
formations, which is controllable by the given sparse set.
To that end, we devise a subspace-sampling strategy that
adheres to two properties: first, it should be data-driven,
and contain deformations guided by the given sparse set;
and second, it should be geometrically-meaningful, i.e., the
deformations should have low energy, with respect to the
given deformation energy f(W).

Our approach consists of a data-augmentation method to
train a variational autoencoder (VAE) [22]. During train-
ing, it explores the sample space, guided by the deformation
energy f(W), to discover additional meaningful deforma-
tions. These are then used as additional sample points to
form an augmented dataset that is used to retrain the VAE,
and the process is iterated. We now present the steps.

3.2. Deformation-aware VAE

To denote the two parts of the autoencoder, let
E : RN×3 → RK be the encoder, mapping a deformation
W into vectors of mean and variance, in standard VAE fash-
ion, into a distribution E(W) = µ,Σ. These vectors define
the mean and variance of a multivariate Gaussian distribu-
tionN (µ,Σ) from which the latent code of dimension K is
sampled, z ∼ N (µ,Σ). Similarly, let D : RK → RN×3

be the decoder mapping the latent code to a deformation,
D(z) = W . We shall slightly abuse notation and use
D(E(W)) to denote the full autoencoding process of W ,
including the step of sampling from the Gaussian. We de-
fine three losses to be used in training.

(i) Reconstruction Loss: We require that the VAE indeed
reconstructs, in expectation, a given input deformation,

LReconstruction := ‖D(E(W))−W‖2. (1)

(ii) Gaussian Regularizer Loss: Instead of applying the KL
divergence loss on the distribution parameters, we constrain
the sample mean and covariance of the mini-batch to that
of a Unit Gaussian. We found that for small sample size
this batch-based loss is better for convergence compared to
KL-Divergence. Thus, our Gaussian Regularizer loss is

LGaussian :=
1

b

b∑
i=1

(
‖µi‖2 + ‖Σi − I‖2

)
, (2)

where b is the mini-batch size, µi, σi are the predicted mean
and covariance for the i-th sample in the mini-batch, and I
is the identity matrix.

(iii) Deformation Energy: Lastly, we require the result-
ing deformation to have low deformation energy:

LDeformation := f(W). (3)

In summary, our network training loss is,

L := LReconstruction + LGaussian + αLDeformation (4)

where α is a scalar weighting factor applied to the energy
function. In our experiments, we set α = 1e− 6.

3.3. Augmenting the Latent Space

We now move on to describe the crux of our technique
– adding additional deformation examples W j to the latent
space to reinforce training. Simply optimizing the above

Round 1
| Landmarks | = 10

Round 3
| Landmarks | = 40

Round 5
| Landmarks | = 160

Round 7
| Landmarks | = 639

Round 9
| Landmarks | = 2547

Figure 3: t-SNE embedding of generated samples shows
progressive augmentation of the shape space. Sample color
indicates originating (parent) shape. See also Fig. 1.

1: procedure GLASS(W ,E,D,f ,R)
. E = Encoder, D= Decoder
. W = Deformation, f = Energy
. R = Previously generated shape set

2: l = E(W) . latent code
3: gu = ∇lf(D(l))/‖∇lf(D(l))‖ . unit gradient
4: H = ∇l∇lf(D(l)) . Hessian
5: U, S, V = svd(H)
6: Wd = ∅
7: for i ∈ [1,s]: do
8: v ∼ N (0, I) ∈ RK . sample v
9: wg = v − 〈v, gu〉gu . no high-change...

10: wh := wg −
∑k

i=1〈wg, U
↓
i (H)〉wgdirs

11: Ŵi = D(l + βwh)
12: Wd ←Wd ∪ Ŵi . add to candidates
13: end for
14: WL∗ = MMR(W,R,Wd) . prune candidates
15: WProjected = arg min f(WL) . project
16: R← R ∪WProjected . augment training set
17: end procedure

loss for the given sparse set of deformations will lead to
slow and sub-optimal training for large meshes. Instead,
we continuously introduce new low-energy samples into
the training set, by which we make the data term aware
of the deformation energy. We achieve this through three
steps: first, deformation-aware perturbation of the latent
code in directions that locally least modify the deformation
energy; second, data-driven pruning perturbed codes that
do not introduce variance to the current dataset; and third,
deformation-aware projection of the new codes to further
lower their deformation energy. Figure 3 illustrates how
the latent space is populated with new deformations over
iterations, where colors indicate the base shapes.

(i) Deformation-aware perturbation in latent space.
We devise a method to perturb a given code in latent space
without modifying its deformation energy significantly: let
W be a deformation, and l ∼ E(W) ∈ RK a latent code
achieved from encoding it. We aim to find the low-energy
perturbation modes. To that end, we denote the (normal-
ized) energy’s gradient with respect to l by,

gu := ∇lf(D(l))/‖∇lf(D(l))‖. (5)

Similarly, let H denote the Hessian of the deformation en-
ergy with respect to the latent code,

H := ∇l∇lf(D(l)). (6)

To get an (arbitrary) perturbation a random vector v ∈ RK

from a normal distribution, we first eliminate the gradient
direction (direction of maximal energy change) from the
perturbation via projection:

Figure 4: Training GLASS on the human, centaur, and horse
meshes using the 3 examples each (top). (Bottom) We show
random samples from the latent space, which combine dif-
ferent properties learned from the example deformations.

wg := v − 〈v, gu〉gu, (7)

where 〈.〉 represents the inner product. Next, we remove
from wg the eigenvectors of H corresponding to the high-
est eigenvalues of the Hessian of f . Let U↓i (H) denote its
eigenvectors, ordered in descending order w.r.t their corre-
sponding eigenvalues (i.e., highest eigenvalues come first).

wh := wg −
k∑

i=1

〈wg, U
↓
i (H)〉wg. (8)

Finally, using the projected perturbation wh we perturb the
latent code to get l̃ ← l + βwh where β is the step size.
We repeat this process s times from the same latent code l
with random v’s to get s perturbed codes l̃1, l̃2, . . . l̃s. Let
{W̃ 1, W̃ 2 . . . W̃ s} denote the decoded perturbed deforma-
tions where W̃ j = D(l̃j).

In our implementation, we use Pytorch’s GPU version of
SVD to compute the eigenvectors of H . This implementa-
tion can fail to find a decomposition, in which case we will
only eliminate the gradient direction from v, and update the
latent code with l← l + βwg .

(ii) Data-driven pruning of the perturbed deformations.
We select a single deformation from the candidate defor-
mations {W̃ j} to be added to the dataset, via the Maxi-
mal Marginal Relevance (MMR) ranking [7]. Specifically,
MMR gives a higher score to perturbations that are similar
to the unperturbed W , but different from the entire defor-
mations set R. We compute this as,

F (w) = αM(w,W)− (1− α) max
r∈R

M(w, r). (9)

where M(x, y) is the cosine similarity between x and y.
We choose the deformation W ∗ ∈Wd that maximizes the
MMR function with its latent code denoted l∗.

Training Data Query Ours Vanilla VAE +Interp +Interp+Energy LIMP DeepMCMC

Figure 5: Generation results evaluated by coverage. We
train different methods on the same training data (col 1) and
generate comparable numbers of shapes. Given two shapes
from the holdout data (col 2), we evaluate the methods by
finding the closest generated shape (cols 3-8). Note how
baseline techniques exhibit strong artifacts and usually do
not generate a good match to the query shape.

(iii) Deformation-aware projection to smooth, low-
energy deformations. Although the deformation-aware
perturbation somewhat avoids high-energy states, the per-
turbed deformation W ∗ may still exhibit undesirable arti-
facts such as lack of smoothness or high deformation en-
ergy. Hence, we project the code to have lower deformation
energy with respect to the unperturbed W . We achieve this
by treating W now as the rest pose, defining a deformation
energy with respect to it, fW . We perform a fixed number
of gradient descent steps starting from W ∗ to lower the en-
ergy, which yields the final deformation WProjected. In our
experiments, we optimize up to the threshold of 10−5. We
append this to the current (training) data set.

4. Experiments

We evaluate GLASS on public data of humans
(FAUST [4]) and creatures (TOSCA [6]) in different poses.
In our experiments, we sampleL landmark poses of a model
from a dataset and train our method. We evaluate quality
and diversity of newly generated poses as well as interpola-
tion sequences between both landmark and generated poses.
We denote our experiments as “SubjectName-X” to indi-
cate the type of the subject and the number of landmark
poses provided as an input to our method; most results use
between 3 and 10 landmarks.

Figure 6: Interpolation results. In gray, we show two landmark shapes. In gold, we show the decoded meshes after we
linearly interpolate the latent space between these two landmarks. All models are trained on only 5 landmarks.

4.1. Evaluation Metrics

The goal of a data augmentation method is to gener-
ate natural, smoothly-varying and diverse deformations. To
that end we propose three metrics to evaluate performance.

(i) Coverage: While it is difficult to evaluate whether gen-
erated poses are meaningful and diverse, we propose to use
the holdout data (SH) that was not part of the input exem-
plars to see if the newly generated poses LG cover every

O
ur

s
V

an
il

la
 V

A
E

+
In

te
rp

+
In

te
rp

 +
E

ne
rg

y
L

IM
P

Figure 7: We compare the interpolation results between our
method, several ablations of our method, and prior work.

holdout example:

Mcoverage :=
∑
s∈SH

min
g∈LG

D(s, g)/|SH |,

where D(s, g) is the average Euclidean distance between
corresponding vertices of shapes s and g.
(ii) Smoothness: This metric measures how well a method
preserves the original intrinsic structure of the mesh. We
compute the mean curvature obtained from the discrete
Laplace-Beltrami operator:

Msmoothness :=

N∑
i=1

1

2
‖∆(Vi)‖

where ∆ is the area-normalized cotangent Laplace-Beltrami
operator and N is the number of mesh vertices.
(iii) Interpolation smoothness: In addition to measuring
quality of individual meshes, we also evaluate the quality
of interpolations between pairs of shapes. Since none of
the existing methods guarantee a clear relationship between
the distances in the latent space and differences between
frames, we first densely sample 1000 poses between pairs of
landmark deformations and then keep a subset of 30 poses
so that they have approximately equal average Euclidean
distance between subsequent frames. We then measure the
standard deviation of these Euclidean distances, as a way
to penalize interpolations that yield significant jumps be-
tween frames. While this metric is imperfect (e.g., variance
could decrease as we increase the sampling rate), we found
it to stabilize in practice after 1000 poses (we sampled up
to 3000), which suggests that denser sampling would not
reveal new poses in the latent space.

4.2. Comparison to Alternative Methods

While existing methods are not designed to learn gener-
ative latent spaces from very sparse data, we adapt them as
baselines.

Table 1: Surface smoothness and coverage with respect to excluded set, of generated samples. Lower is better.

Data Vanilla VAE +Interpolation +Interp. +Energy LIMP Deep-MCMC GLASS

Faust-3 1.00 / 0.08 0.66 / 0.08 0.71 / 0.08 0.96 / 0.08 0.98 / 0.07 0.59 / 0.05
Faust-5 1.00 / 0.07 0.69 / 0.08 0.69 / 0.07 1.04 / 0.08 1.02 / 0.08 0.62 / 0.06
Faust-7 1.00 / 0.04 0.74 / 0.04 0.66 / 0.05 1.07 / 0.04 0.95 / 0.04 0.59 / 0.03

Centaurs-3 1.00 / 0.11 0.77 / 0.09 0.72 / 0.09 0.96 / 0.11 1.03 / 0.11 0.68 / 0.06
Centaurs-4 1.00 / 0.10 0.70 / 0.10 0.70 / 0.10 0.99 / 0.10 0.96 / 0.10 0.69 / 0.07

Horses-3 1.00 / 0.06 0.74 / 0.07 0.69 / 0.08 1.14 / 0.06 0.95 / 0.06 0.65 / 0.05
Horses-4 1.00 / 0.06 0.70 / 0.06 0.72 / 0.06 1.05 / 0.06 1.07 / 0.05 0.69 / 0.04

1. Vanilla VAE: We train a VAE using only the sparse set
of shapes, with no data augmentation, using the en-
coder and decoder detailed in Section 3.2.

2. +Interpolation: We generate new shapes by interpolat-
ing between all pairs of available landmarks by simply
averaging coordinates of corresponding vertices. We
interpolate such that the amount of augmented data is
equivalent to what is generated with our method (2500
shapes). Then we train a VAE with these poses.

3. +Interp. +Energy: This is an extension of the previ-
ous method. Since raw interpolation can deviate from
the underlying shape space, in addition to interpola-
tion, we perform projection by minimizing the sum of
ARAP energies with respect to both shapes in the pair.

4. LIMP-ARAP [10]: This method is motivated by the
training strategy proposed in LIMP [10]. They train a
VAE with pairs of shapes in every iteration - for each
pair, they pick a random latent code on the line be-
tween the two, decode it to a new shape, and minimize
its energy. Since we only want to compare augmenta-
tion strategies we adapt LIMP to use ARAP energy.

5. Deep-MCMC [29]: This method explores parameter
variations via a latent space. They encode a given
dataset and generate samples by performing HMC
steps in the latent space and decoding the generated
codes. This method is not suitable for interpolation, so
we only evaluate its ability to generate novel poses.

Generation Experiments We next evaluate the quality of
shapes generated with our method. After training, we sam-
ple latent codes from a Unit Gaussian in RK , and decode
with our decoder to generate samples (see Figures 1 and
4). See how generated poses look substantially different
from the training data and combine features from multiple
input examples. Our method can also be used in incremental
training, where we add new samples to previously-trained
latent space to discover new poses (see supplemental).

We compare our approach to all the baselines. We
sample from Unit Gaussian for all VAE-based techniques,

where the only exception is Deep-MCMC where we use
latent-space HMC as proposed in their work. We show
qualitative results in Figure 5 and quantitative evaluations in
Table 1. Each cell reports smoothness and coverage errors,
normalized based on the corresponding errors for Vanilla-
VAE. Note that our method outperforms all baselines in its
ability to generate novel and plausible poses (i.e., the poses
from the hold-out set of the true poses).

Interpolation Experiments We compare our method and
the first four baselines by evaluating the quality of interpo-
lations produced between all pairs of landmark shapes (we
omit Deep-MCMC since it is not suitable for interpolation).
We show our results in Figure 6 and comparisons in Fig-
ure 7 with corresponding stats in Table 3. Each cell reports
smoothness, ARAP score, and interpolation quality, and to
make results more readable we normalize the scores using
the corresponding value for Vanilla VAE.

Our method performs the best with respect to ARAP
score and also yields consistently smoother shapes with
fewer artifacts, both in terms of individual surfaces, as
well as discontinuities in interpolation sequences. LIMP-
ARAP is performing consistently worse than all baselines
except Vanilla-VAE. Interpolation-based baselines some-
times yield smoother interpolations, something we would
expect to be true for simpler, linear motions. However, as
we will demonstrate they are limited in their ability to syn-
thesize novel plausible poses.

Table 2: Correspondence error on the Faust INTRA bench-
mark, by GLASS-augmenting 3D-CODED with deforma-
tions sampled from our method.

Data +GLASS augmentation Error (cm)
Faust-3 0 26.90
Faust-3 3,065 12.06
Faust-7 0 22.10
Faust-7 3,573 13.95

SMPL-650 0 24.69
SMPL-650 84,000 5.41
SMPL-650 192,000 4.37

Table 3: Surface smoothness, ARAP energy, and standard deviation of inter-frame spacing between landmarks by interpola-
tion across different datasets. All results are normalized such that Vanilla VAE is 1.0, and lower numbers are better.

Data Vanilla VAE +Interpolation +Interp. +Energy LIMP GLASS

Faust-3 1.00 / 1.00 / 1.00 0.62 / 0.36 / 0.59 0.62 / 0.36 / 0.35 1.06 / 1.34 / 0.40 0.58 / 0.26 / 0.31
Faust-5 1.00 / 1.00 / 1.00 0.61 / 0.34 / 0.79 0.62 / 0.32 / 0.35 1.04 / 1.18 / 1.01 0.58 / 0.22 / 0.62
Faust-7 1.00 / 1.00 / 1.00 0.63 / 0.33 / 0.73 0.63 / 0.34 / 0.13 0.93 / 0.97 / 0.85 0.62 / 0.31 / 0.71

Faust-10 1.00 / 1.00 / 1.00 0.66 / 0.33 / 0.30 0.67 / 0.37 / 0.27 0.88 / 0.76 / 0.36 0.61 / 0.26 / 0.25
Centaurs-3 1.00 / 1.00 / 1.00 0.63 / 0.35 / 0.57 0.66 / 0.36 / 0.43 0.89 / 1.03 / 0.79 0.57 / 0.22 / 0.40
Centaurs-4 1.00 / 1.00 / 1.00 0.63 / 0.23 / 0.65 0.66 / 0.25 / 0.42 1.00 / 1.04 / 0.78 0.61 / 0.20 / 0.70
Centaurs-6 1.00 / 1.00 / 1.00 0.67 / 0.38 / 0.73 0.67 / 0.39 / 0.66 0.93 / 0.87 / 0.87 0.65 / 0.34 / 0.60

Horses-3 1.00 / 1.00 / 1.00 0.58 / 0.41 / 0.62 0.63 / 0.56 / 0.42 1.03 / 1.31 / 0.96 0.55 / 0.35 / 0.64
Horses-4 1.00 / 1.00 / 1.00 0.56 / 0.31 / 0.48 0.56 / 0.42 / 0.53 0.93 / 0.98 / 0.60 0.54 / 0.28 / 0.42
Horses-8 1.00 / 1.00 / 1.00 0.65 / 0.38 / 0.30 0.64 / 0.39 / 1.03 0.89 / 0.84 / 0.70 0.63 / 0.35 / 0.76

Table 4: This Table presents ablations on various steps of our method with respect to interpolation evaluation metrics. Starting
with vanilla VAE (1) we add deformation energy (2), deformation-aware perturbations (3,4), and projection (5,6) steps.

Data 1: Vanilla VAE 2: (1)+Ldeform 3: (1) + perturb 4: (2) + perturb 5: (3)+project 6: (4)+project
Faust-10 1.00 / 1.00 / 1.00 0.96 / 0.91 / 0.86 0.76 / 0.52 / 0.39 0.72 / 0.48 / 0.34 0.62 / 0.27 / 0.32 0.61 / 0.26 / 0.25

Centaurs-6 1.00 / 1.00 / 1.00 0.95 / 0.87 / 0.93 0.73 / 0.61 / 0.82 0.68 / 0.47 / 0.73 0.67 / 0.37 / 0.61 0.65 / 0.34 / 0.60
Horses-8 1.00 / 1.00 / 1.00 0.97 / 0.98 / 0.91 0.73 / 0.84 / 0.84 0.71 / 0.50 / 0.80 0.64 / 0.37 / 0.77 0.63 / 0.35 / 0.76

4.3. Using GLASS for Learning Correspondences

We now evaluate our data augmentation technique on
the practical task of learning 3D correspondences between
shapes. We pick a state-of-the-art correspondence learning
method, 3D-CODED [15], as a reference. Originally, this
method was trained on 230k deformations, most of them
sampled from the SMPL model [26] and 30k synthetic aug-
mentations. Obtaining this large training dataset is a chal-
lenge, so we evaluate how well this method could perform
with a smaller training set, with and without the augmenta-
tion proposed in this paper.

We train 3D-CODED using different small datasets that
are augmented with a number of additional deformations
sampled from our model. We show the results of this exper-
iment in Table 2. We see that our method consistently pro-
vides a significant improvement over training 3D-CODED
with the original landmarks and that additional samples
continue to improve the results on the SMPL-650 dataset.
For a reference, the correspondence error of 3D-CODED
trained on the full 230k pose dataset is 1.98cm.

4.4. Method Ablations

In this section we evaluate the contribution of various
steps used in GLASS with respect to interpolation met-
rics. We evaluate on the Faust-10, Centaurs-6 and Horses-8
datasets. Since these are all the available data for them,
there is no hold-out set, so we do not measure cover-
age. Starting with Vanilla-VAE (that only uses LReconstruction
and LGaussian), we first add the deformation energy loss
(LDeformation). Table 4(1,2) shows this improves all metrics.

Next, we consider our perturbation strategy (Sec-
tion 3.3 i, ii) and add it to both vanilla as well as energy-
guided VAE (Table 4.3, 4.4). Note that in both of these
cases, our perturbation strategy improves on all metrics by
up to 1.5x. We observe that LDeformation performs better be-
cause it makes the latent-space conducive for sampling low
energy shapes. LDeformation helps our perturbation strategy
find low energy shapes that are suitable for our subsequent
projection step. Due to this,we discover shapes with energy
as low as 0.001, while without it, the discovered shapes can
have energy > 0.1. This difference helps the subsequent
projection step converge faster to our required threshold of
10−5.

Finally, we look at the projection step (Section 3.3 iii).
We add it to both baseline techniques that have perturba-
tion, and report results in Table 4.5, 4.6, where column (6)
corresponds to our final method. Adding the projection step
improves the smoothness and ARAP scores by up to 1.3x.
After projection, our shapes have very low ARAP, in the or-
der of 10−5. Since these are added back to the training set,
we observe that perturbation steps in future iterations find
lower energy shapes. This further improves convergence
of the projection step in future iterations. To summarize,
LDeformation helps both the perturbation and projection steps
converge faster to low energy shapes, and since projected
shapes are encoded again by training, both perturbation and
projection steps require fewer iterations.

5. Conclusion
GLASS is shown to be an effective generative technique

for 3D shape deformations, relying solely on a mere hand-
ful of examples, and a given deformation energy. The main
limitation of our method is its reliance on a given mesh
with vertex correspondences, preventing its use on exam-
ples with different triangulations, and we set the goal of
generalizing it to arbitrary geometries as important future
work.

We believe our proposed technique opens many future
directions. There are many other deformation energies that
could be explored; e.g., densely sampling conformal (or
quasi-conformal) deformations from a given sparse set can
be an extremely interesting followup. More broadly, replac-
ing the deformation energy with learned energies, such as
the output of an image-discriminator, may enable generat-
ing plausible images, given a very sparse set of examples.

References
[1] Brett Allen, Brian Curless, and Zoran Popović. The space

of human body shapes: Reconstruction and parameterization
from range scans. In SIGGRAPH, 2003.

[2] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Se-
bastian Thrun, Jim Rodgers, and James Davis. SCAPE:
Shape completion and animation of people. In SIGGRAPH,
2005.

[3] Volker Blanz and Thomas Vetter. A morphable model for the
synthesis of 3D faces. In SIGGRAPH, 1999.

[4] Federica Bogo, Javier Romero, Matthew Loper, and
Michael J. Black. FAUST: Dataset and evaluation for 3D
mesh registration. In CVPR, 2014.

[5] Mario Botsch and Olga Sorkine. On linear variational sur-
face deformation methods. TVCG, 14(1), 2008.

[6] Alexander M Bronstein, Michael M Bronstein, and Ron
Kimmel. Numerical geometry of non-rigid shapes. Springer
Science & Business Media, 2008.

[7] Jaime Carbonell and Jade Goldstein. The use of mmr,
diversity-based reranking for reordering documents and pro-
ducing summaries. In Proceedings of the 21st Annual In-
ternational ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR ’98, page 335–336,
New York, NY, USA, 1998. Association for Computing Ma-
chinery.

[8] Amit Chaudhary. A visual survey of data augmentation
in NLP, 2020. https://amitness.com/2020/05/
data-augmentation-for-nlp.

[9] Siddhartha Chaudhuri, Daniel Ritchie, Jiajun Wu, Kai Xu,
and Hao Zhang. Learning generative models of 3D struc-
tures. Comput. Graph. For. (Eurographics STAR), 2020.

[10] Luca Cosmo, Antonio Norelli, Oshri Halimi, Ron Kimmel,
and Emanuele Rodolà. LIMP: Learning latent shape repre-
sentations with metric preservation priors. ECCV, 2020.

[11] Matheus Gadelha, Giorgio Gori, Duygu Ceylan, Radomir
Měch, Nathan Carr, Tamy Boubekeur, Rui Wang, and

Subhransu Maji. Learning generative models of shape han-
dles. In CVPR, 2020.

[12] Lin Gao, Yu-Kun Lai, Jie Yang, Ling-Xiao Zhang, Shihong
Xia, and Leif Kobbelt. Sparse data driven mesh deformation.
TVCG, 27(3), 2021.

[13] Lin Gao, Jie Yang, Tong Wu, Yu-Jie Yuan, Hongbo Fu, Yu-
Kun Lai, and Hao Zhang. SDM-NET: Deep generative net-
work for structured deformable mesh. ACM Trans. Graph.,
38(6), 2019.

[14] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. In ICLR,
2015.

[15] Thibault Groueix, Matthew Fisher, Vladimir G. Kim,
Bryan C. Russell, and Mathieu Aubry. 3D-CODED: 3D cor-
respondences by deep deformation. ECCV, 2018.

[16] Frédéric Hélein and John C. Wood. Handbook of Global
Analysis, chapter Harmonic Maps. 2008.

[17] Qi-Xing Huang, Martin Wicke, Bart Adams, and Leonidas
Guibas. Shape decomposition using modal analysis. Com-
puter Graphics Forum, 28(2), 2009.

[18] Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine.
Bounded biharmonic weights for real-time deformation.
ACM Trans. Graph., 30(4), 2011.

[19] Alec Jacobson, Zhigang Deng, Ladislav Kavan, and J. P.
Lewis. Skinning: Real-time shape deformation. In SIG-
GRAPH Courses, 2014.

[20] Tao Ju, Scott Schaefer, and Joe Warren. Mean value coordi-
nates for closed triangular meshes. In SIGGRAPH, 2005.

[21] Martin Kilian, Niloy J. Mitra, and Helmut Pottmann. Geo-
metric modeling in shape space. ACM Trans. Graph., 26(3),
2007.

[22] Diederik P. Kingma and Max Welling. Auto-encoding vari-
ational bayes. In ICLR, 2014.

[23] Hamid Laga. A survey on non-rigid 3D shape analysis.
CoRR, abs/1812.10111, 2018.

[24] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérôme
Maillot. Least squares conformal maps for automatic tex-
ture atlas generation. In SIGGRAPH, 2002.

[25] J. P. Lewis, Ken Anjyo, Taehyun Rhee, Mengjie Zhang, Fred
Pighin, and Zhigang Deng. Practice and theory of blend-
shape facial models. Eurographics State of the Art Reports,
2014.

[26] M. Loper, N. Mahmood, J. Romero, Pons-Moll, and M. J.
G., Black. Smpl: A skinned multi-person linear model. In
SIGGRAPH Asia, 2015.

[27] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and
Michael J Black. Generating 3D faces using convolutional
mesh autoencoders. In ECCV, 2018.

[28] Guodong Rong, Yan Cao, and Xiaohu Guo. Spectral mesh
deformation. The Visual Computer, 24, 2008.

[29] Babak Shahbaba, Luis Martinez Lomeli, Tian Chen, and
Shiwei Lan. Deep Markov chain Monte Carlo. CoRR,
abs/1910.05692, 2019.

[30] Shiv Shankar, Vihari Piratla, Soumen Chakrabarti, Sid-
dhartha Chaudhuri, Preethi Jyothi, and Sunita Sarawagi.
Generalizing across domains via cross-gradient training. In
ICLR, 2018.

https://amitness.com/2020/05/data-augmentation-for-nlp
https://amitness.com/2020/05/data-augmentation-for-nlp

[31] Connor Shorten and Taghi M. Khoshgoftaar. A survey on
image data augmentation for deep learning. Journal of Big
Data, 6(1), 2019.

[32] Olga Sorkine and Marc Alexa. As-rigid-as-possible surface
modeling. In SGP, 2007.

[33] Qingyang Tan, Lin Gao, Yu-Kun Lai, and Shihong Xia. Vari-
ational autoencoders for deforming 3D mesh models. In
CVPR, 2018.

[34] Qingyang Tan, Zherong Pan, Lin Gao, and Dinesh Manocha.
Realtime simulation of thin-shell deformable materials using
CNN-based mesh embedding. IEEE Robotics and Automa-
tion Letters, 5(2), 2020.

[35] Christoph Von-Tycowicz, Christian Schulz, Hans-Peter Sei-
del, and Klaus Hildebrandt. Real-time nonlinear shape inter-
polation. ACM Trans. Graph., 34(3), 2015.

[36] Yifan Wang, Noam Aigerman, Vladimir G. Kim, Siddhartha
Chaudhuri, and Olga Sorkine-Hornung. Neural cages for
detail-preserving 3D deformations. In CVPR, 2020.

[37] Qingsong Wen, Liang Sun, Fan Yang, Xiaomin Song,
Jingkun Gao, Xue Wang, and Huan Xu. Time series
data augmentation for deep learning: A survey. CoRR,
abs/2002.12478, 2021.

[38] Yu-Jie Yuan, Yu-Kun Lai, Tong Wu, Lin Gao, and Ligang
Liu. A revisit of shape editing techniques: from the geomet-
ric to the neural viewpoint. CoRR, abs/2103.01694, 2021.

[39] Mehmet Ersin Yumer and Levent Burak Kara. Co-
constrained handles for deformation in shape collections.
ACM Trans. Graph., 33(6), 2014.

Supplementary for GLASS: Geometric Latent Augmentation for Shape Spaces

6. Dataset
Each of the triangle meshes used for evaluation contains 1000 vertices and 1996 faces. We report sample generation on

higher resolution of 6890 vertices in a later section in this supplementary. SMPL-650 contains only 650 shapes sampled from
SMPL.

Figure 8: Faust-10 dataset, with all the 10 poses available in Faust. All models are consistently scaled – the models may look
different in the following images due to image-specific scaling.

Figure 9: Faust-3 (top-left), Faust-5 (top-right) and Faust-7 (bottom) sampled from Faust-10.

Figure 10: Centaurs-6 dataset, with all the 6 poses available in the Tosca dataset.

Figure 11: Centaurs-3 (left) and Centaurs-4 (right), sampled from Centaurs-6.

Figure 12: Horses-8 dataset, with all the 8 poses available in Tosca.

Figure 13: Horses-3 (left) and Horses-4 (right), sampled from Horses-8.

7. Interpolation frames

(i) Some interpolations between pairs (shown in gray) of Faust shapes.

Figure 14: Faust-10 Interpolation results 1/6.

Figure 15: Faust-10 Interpolation results 2/6.

Figure 16: Faust-10 Interpolation results 3/6.

Figure 17: Faust-10 Interpolation results 4/6.

Figure 18: Faust-10 Interpolation results 5/6.

Figure 19: Faust-10 Interpolation results 6/6.

(ii) Some interpolations between pairs (shown in gray) of Tosca Centaurs.

Figure 20: Centaurs Interpolation results 1/3.

Figure 21: Centaurs Interpolation results 2/3.

Figure 22: Centaurs Interpolation results 3/3.

(iii) Some interpolations between pairs (shown in gray) of Tosca Horses.

Figure 23: Horses Interpolation results 1/6.

Figure 24: Horses Interpolation results 2/6.

Figure 25: Horses Interpolation results 3/6.

Figure 26: Horses Interpolation results 4/6.

Figure 27: Horses Interpolation results 5/6.

Figure 28: Horses Interpolation results 6/6.

8. Faust-10 Coverage
We generated 2500 shapes using our method on the Faust-10 dataset. The coverage of pose space can be studied by how

well it performs on pose retrieval. Here, we sample shapes from SMPL, and for each sampled shape, we retrieve the closest
shape generated by our method by L2 and compare it with the corresponding closest shape retrieved from the original set
of landmarks. We illustrate these in the figure below, with triplets of query shape (blue), closest shape in Faust-10+GLASS
(gold) and closest shape in original Faust-10 (grey).

Figure 29: Each triplet shows a query shape from SMPL (blue) and the corresponding closest shapes in Faust-10+GLASS
(gold) vs Faust-10 (grey).

9. Incremental training image
Here we show how adding new poses to the training landmarks changes the direction of pose-space exploration.

Training data: 3 models 2 additional training models

Sampling from
GLASS latent space

Figure 30: Effect of adding new poses to training set.

10. Network architecture
We use Pointnet encoder with convolutional layers and a multilayer perceptron decoder. Our VAE architecture is illustrated

below.

1D
-C

o
nv

ol
ut

io
n

Mesh Vertices

N x 3

R
eL

U
 +

 B
N

N x 256

1D
-C

o
nv

ol
ut

io
n

R
eL

U
 +

 B
N

N x 512

1D
-C

o
nv

ol
ut

io
n

K

R
eL

U
 +

 B
N

N x K

512

256

G
lo

ba
l M

a
x

P
oo

l

Li
ne

ar
 L

ay
er

R
eL

U
 +

 B
N

Li
ne

ar
 L

ay
er

Li
ne

ar
 L

ay
er

R
eL

U

1 x K 1 x K

Li
ne

ar
 L

ay
er

R
eL

U

1 X K

1024

Li
ne

ar
La

ye
r

R
eL

U

2048

Li
ne

ar
 L

ay
er

R
eL

U

4096

Li
ne

ar
 L

ay
er

R
eL

U

2048

Li
ne

ar
 L

ay
er

R
eL

U

1024

Li
ne

ar
 L

ay
er

3N
Reconstruction

N x 3

Layer Output
Size

Layer Num
Filters

1 x 1024
1 x 2048

1 x 4096
1 x 2048

1 x 1024

1 x 3N

Layer Width

Layer Output
Size

Pointnet Encoder

MLP Decoder

1D Convolutional Layer Linear Layer ReLU + optional BN Forward Reshape

N = Number of vertices

Figure 31: VAE network architecture: Pointnet Encoder (top) contains 3 convolutional layers (green) with ReLU/BN, fol-
lowed by Global Max Pooling to obtain a feature for the set of vertices. The feature is input to a linear layer that further
branches into 2 layers that output the gaussian parameters µ and σ from which we sample the latent code to be input to
the decoder. The decoder is a 5 layer fully-connected network that transforms the latent code to a 3N size output which is
reshaped to Nx3 to give us the reconstruction of vertices.

11. High Resolution results for Faust-10
While we used low resolution meshes of 1000 vertices for evaluation, our method scales well with number of vertices.

Here we show samples generated when GLASS is trained on Faust-10 in its full resolution of 6890 vertices. The generated
samples have low ARAP energies but can have non-semantic deformations as we do not use multiscale Laplacian features in
this experiment.

Figure 32: Samples generated with GLASS when trained on high resolution Faust-10.

