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Fig. 1. ASSET allows users to create diverse editing results by specifying a region and a new label on the input image. Our efficient transformer captures
long-range dependencies in the image, such as the detailed reflection of the trees on the water, even at high resolutions (1024 × 1024 pixels in this example).

We present ASSET, a neural architecture for automatically modifying an
input high-resolution image according to a user’s edits on its semantic seg-
mentation map. Our architecture is based on a transformer with a novel
attention mechanism. Our key idea is to sparsify the transformer’s attention
matrix at high resolutions, guided by dense attention extracted at lower im-
age resolutions. While previous attention mechanisms are computationally
too expensive for handling high-resolution images or are overly constrained
within specific image regions hampering long-range interactions, our novel
attention mechanism is both computationally efficient and effective. Our
sparsified attention mechanism is able to capture long-range interactions
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and context, leading to synthesizing interesting phenomena in scenes, such
as reflections of landscapes onto water or flora consistent with the rest of
the landscape, that were not possible to generate reliably with previous
convnets and transformer approaches. We present qualitative and quan-
titative results, along with user studies, demonstrating the effectiveness
of our method. Our code and dataset are available at our project page:
https://github.com/DifanLiu/ASSET
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1 INTRODUCTION
Semantic image editing allows users to easily edit a given image by
modifying a corresponding segmentation map. Ideally, one could
change the outline of existing regions, or even freely add or re-
move regions. However, to obtain realistic and consistent results,
an effective system needs to consider global context, from across
the full image. For example, consider the example in Figure 1. To
properly hallucinate a reflection in the water on the bottom of the
image, the model should consider the content from the very top.
Traditional CNN based approaches [Chen and Koltun 2017; Isola
et al. 2017; Ntavelis et al. 2020; Park et al. 2019; Zhu et al. 2020]
rely entirely on convolutional layers which have difficulty modeling
such long-range dependencies [Wang et al. 2018].
Transformers are well equipped to handle these long-range de-

pendencies through their attention mechanism allowing them to
focus on distant image areas at each sampling step. However, the
heavy computational cost for using attention, which usually in-
creases quadratically with the input size, makes it infeasible to use
standard transformers for high-resolution image editing. One way to
address this is to use a sliding-window approach [Esser et al. 2021a],
in which the transformer only attends to a small area around the
currently sampled token, thereby reducing the computational cost
to a fixed budget. While this approach enables the synthesis of high-
resolution images, it forgoes the benefit of modeling long-range
dependencies. This leads to inconsistencies when edits are depen-
dent on image regions that are far away in pixel space. Is it possible
to retain the ability to model long-range dependencies, while not
paying prohibitive computational costs at high resolution?
We introduce a novel attention mechanism, called Sparsified

Guided Attention (SGA), to facilitate long-range image consistency
at high resolutions. While the sliding window approach is limited
to local contexts, SGA can attend to far contexts that are relevant
for the current sampling location. The core idea is to efficiently de-
termine a small list of relevant locations that are worth attending to,
and compute the attention map only over these locations. To achieve
this, we use a guiding transformer that operates at the downsampled
version of the input image and performs the same edit, but enjoys
the full self-attention map thanks to the reduced input size. Based
on the guiding transformer’s attention map, we rank the impor-
tance of different areas of the image, and have the high resolution
transformer attend only to the top-𝐾 most important image regions.
In practice, our SGA leads to a large reduction in computational
cost due to the obtained sparse attention matrix. Compared to other
approaches, we obtain more realistic and consistent edits while still
achieving high diversity in our outputs.

Our model takes as input a quantized representation of the image
and its edited segmentation map, both obtained through a modified
VQGAN encoder [Esser et al. 2021a]. We then mask out all image
tokens in the image representation corresponding to the edited
area and replace those tokens with a specific [MASK] token. Our
transformer then samples new image tokens at the edited areas,
conditioned on the original (masked) image and the edited segmen-
tation map. Finally, a VQGAN decoder is used to decode the image
tokens into the final RGB image. As the edited tokens are sampled
autoregressively based on a likelihood-based model, we can sample

a diverse set of image outputs, all of which are consistent with the
overall image characteristics.

Contributions. We propose a transformer-based model that out-
puts realistic and diverse edits specified through modified segmen-
tation maps. We introduce Sparsified Guided Attention (SGA), which
allows the transformer to only attend to the most important image
locations, leading to sparse attention matrices and reduced compu-
tational cost. Our model achieves diverse, realistic, and consistent
image edits even at 1024 × 1024 resolution.

2 RELATED WORK
CNN-based image editing. CNN-based methods have achieved

impressive results by enabling users to move bounding boxes con-
taining objects [Hinz et al. 2019; Hong et al. 2018], modifying scene
representations [Dhamo et al. 2020; Su et al. 2021], or following
textual instructions [Cheng et al. 2020; Nam et al. 2018; Patashnik
et al. 2021]. Other approaches enable user guides with edges or color
information [Jo and Park 2019; Liu et al. 2021c] or perform simple
inpainting, typically without user guidance [Liu et al. 2018, 2021b;
Suvorov et al. 2022; Yang et al. 2017; Yu et al. 2018, 2019]. Exemplar-
based image translation methods [Zhang et al. 2020; Zheng et al.
2021; Zhou et al. 2021] can synthesize images from semantic maps,
but they cannot hallucinate new content that does not exist in the
exemplar image. Other approaches fine-tune or train a generator
for a specific image to perform editing on that single image [Bau
et al. 2019; Hinz et al. 2021; Shaham et al. 2019; Vinker et al. 2021].
However, these models need to be adapted for each new image.
More similarly to us, other methods allow for direct editing via
segmentation maps [Gu et al. 2019; Lee et al. 2020; Ling et al. 2021;
Ntavelis et al. 2020]. However, these approaches can only generate
a single output for a given edit. In addition, previous CNN-based
approaches prioritize local interactions between image pixels for
image synthesis due to their inductive bias. They also fail to ef-
fectively capture long-range interactions between image regions
necessary for realistic image synthesis. Our approach is based on a
transformer that is able to effectively capture such interactions and
also allows the synthesis of diverse results for each edit.

Transformers for image synthesis. To apply transformers for image
synthesis, they are trained on discrete sequences of image elements.
Somemodels first learn a discrete image region representation [Esser
et al. 2021a; Ramesh et al. 2021], whereas other approaches work
directly on pixels [Chen et al. 2020; Child et al. 2019; Jiang et al.
2021; Parmar et al. 2018]. However, most of them model images in a
row-major format, and thus cannot capture bidirectional context,
leading to inconsistent editing results. PixelTransformer [Tulsiani
and Gupta 2021], iLAT [Cao et al. 2021], and ImageBART [Esser et al.
2021b] add bidirectional context to their transformer models but do
not support editing via segmentation maps. More importantly, due
to their quadratic complexity in the number of image tokens, these
methods are trained on small image resolutions of 256 × 256 pixels.
Alternatively, some approaches model the image directly at a low
resolution (e.g., 32 × 32) and then use a deterministic upsampling
network [Wan et al. 2021; Yu et al. 2021]. In this case, fine-grained
edits are difficult to achieve due to the small resolution at which the
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images are modeled. For high-resolution image synthesis, [Esser
et al. 2021b,a] proposed transformers with attention constrained
on sliding windows. However, this hampers long-range interac-
tions and, as a result, they often generate artifacts and inconsistent
image edits. In contrast, our work incorporates a novel sparsified
attention mechanism that can capture such interactions without
compromising the synthesized image plausibility.

Efficient transformers. Much work has been invested in reducing
the computational cost of the transformer’s attention mechanism
[Tay et al. 2020]. Broadly speaking, there are two ways to achieve
this. One way is to reduce the computational cost of the attention
mechanism directly, e.g., by approximating full attention through
mechanisms where the computation cost grows linearly with the
input length [Kitaev et al. 2020; Wang et al. 2020]. Alternatively,
several works explore reducing the cost by replacing full attention
with a sparse variant [Beltagy et al. 2020; Zaheer et al. 2020]. A few
recent vision transformers reduce the computational complexity
by spatially reducing attention [Liu et al. 2021a; Wang et al. 2021;
Yang et al. 2021; Zhang et al. 2021]. However, these methods use
encoder-only transformers for feature extraction and do not sup-
port autoregressive image generation. Our method is inspired by
BigBird’s sparse attention mechanism for long-document NLP tasks
[Zaheer et al. 2020]. BigBird achieves high efficiency by using a
random sparse attention map over blocks of tokens. However, when
applying the random attention mechanism of BigBird to our task it
fails to capture correct context for a given edit. Instead of randomly
choosing tokens, our approach picks the most relevant tokens for
attention at each spatial location.

Image synthesis with a guidance image. Synthesizing high res-
olution outputs is challenging in terms of both quality and com-
putational cost. The idea of utilizing a high-resolution guide to
upsample a low-resolution output has been explored in computer
graphics [Chen et al. 2016; Kopf et al. 2007]. In particular, construct-
ing a high-resolution depth map from coarse sensor data, guided by
an RGB image has been extensively investigated [Ferstl et al. 2013;
Liu et al. 2013; Park et al. 2011; Yang et al. 2014, 2007]. More recently,
learning-based approaches were developed for similar tasks, by pos-
ing it as an image-to-image translation problem [Lutio et al. 2019],
fusing the guidance and low-res information at multiple scales [Hui
et al. 2016], or transferring the mapping learned at low resolution
to high resolution [Shocher et al. 2018]. While these works primar-
ily aim at leveraging high-resolution information in the input as
a guide, our application must synthesize information from a flat
input. In fact, our guide is a low-resolution version of the same
image. Relatedly, [Shaham et al. 2021] use a low-resolution network
to predict parameters of a lightweight high-resolution network, for
the purpose of fast image translation, using a convolutional network
architecture.

3 METHOD
Overview. Ourmethod synthesizes images guided by user input in

the form of an edited label map (“semantic map”) of an input image.
More specifically, given an RGB image and its corresponding label
map, the user paints some desired changes on the label map, e.g.,

Edited semantic map

Input image + Mask
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Fig. 2. Overview of our semantic image editing model. Our transformer
model operates in the codebook space using the encoder 𝐸1. To incorporate
user edits the tokens inside the edited region are masked and are augmented
with a semantic encoder 𝐸2. The mask tokens are filled in by our SGA-
Transformer Encoder-Decoder network, whose sparse attention mechanism
is guided by the Guiding Transformer that computes the full attention on
downsampled inputs. Finally, the generated tokens are decoded into the
output image via 𝐷𝑒𝑐 .

replace mountain regions with water (Figure 2). Since there exist
several possible output images reflecting the input edits, our method
generates a diverse set of outputs allowing the user to select themost
preferable one. Moreover, our method generates high-resolution
images of up to 1024 × 1024 resolution.
Our architecture is shown in Figure 2. Inspired by recent ap-

proaches [Esser et al. 2021a] we represent images and label maps
as a spatial collection of quantized codebook entries (Section 3.1).
These codebook entries are processed by a transformer model which
aims to update the codebook entries of the edited areas in an autore-
gressive manner (Section 3.2). All codebook entries are subsequently
decoded to the output set of images (Section 3.3). A crucial compo-
nent of the transformer is its attention mechanism, which enables
long-range interaction between different parts of the image such
that the synthesized output is coherent as a whole. E.g., if a lake is
generated by the semantic edits it must also capture any reflections
of landscape (Figure 1). One complication is that the quadratic com-
plexity of the traditional attention mechanism leads to a large time
and memory cost for high-resolution images. The key idea of our
method is to compute the full attention at lower resolution first, and
then use that as guidance for sparsifying the attention at full reso-
lution (Section 3.2). This approach allows us to model long-range
dependencies even at high resolutions, resulting in more coherent
and plausible output images compared to existing approaches that
constrain attention within sliding windows [Esser et al. 2021a] or
alternative attention models [Zaheer et al. 2020].

3.1 Image encoder
The input RGB image X of size 𝐻im ×𝑊im × 3 is processed by a con-
volutional encoder resulting in a feature map F of size 𝐻im

16 ×𝑊im
16 ×𝑑 .

We also create a 𝐻im ×𝑊im binary mask indicating image regions
that must be replaced according to the semantic map edits. Masked
image regions should not affect features produced for unmasked
regions, e.g., information about the edited area of Figure 2 should
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Fig. 3. Details of our Sparsified Guided Attention (SGA, right) compared to full attention (left). We downsample the input and the user-edited semantic layout
and use a Guiding Transformer to obtain the full attention map, which identifies the most important attention locations for each sampling step. By keeping
only the locations with high attention weight, we construct the high-resolution, sparse attention map for the SGA transformer.

not “leak” into the feature map of the unmasked area. To avoid
information leakage, we employ partial convolutions [Liu et al.
2018] and region normalization [Yu et al. 2020] in our encoder
while processing the unmasked regions. The feature map F is sub-
sequently quantized following VQGAN [Esser et al. 2021a] with
the help of a learned codebook Z, i.e., each feature map entry
f𝑖, 𝑗 at position (𝑖, 𝑗) in F is mapped to the closest codebook entry
f̂𝑖, 𝑗 = argminz𝜅 ∈Z | |f𝑖, 𝑗 − z𝜅 | |, where {z𝜅 } |Z |

𝜅=1 are codebook entries
with dimensionality 𝑑 . The codebook indices of the edited regions,
as indicated by the binary mask, are replaced with a special [MASK]
token (Figure 2). We use a second encoder with regular convolu-
tions to obtain a feature representation of the edited semantic map P
which is subsequently quantized in the same way as the RGB image,
resulting in codebook entries ĝ𝑖, 𝑗 .

3.2 Autoregressive transformer
Our transformer follows a sequence-to-sequence architecture in-
spired by [Vaswani et al. 2017] which consists of a bidirectional
encoder and an autoregressive decoder, both of which are equipped
with our novel sparsified attention mechanism. The transformer
encoder captures bi-directional context of the image, which is used
by the transformer decoder to generate new codebook indices au-
toregressively.

Traditional Dense Attention. Traditional attention transforms each
embedding linearly into a learned query, key, and value represen-
tation Q,K,V of size 𝐿 × 𝑑 , where 𝐿 = 𝐻feat𝑊feat =

𝐻im
16

𝑊im
16 is the

length of the flattened codebook indices in our case [Vaswani et al.
2017]. The output embedding is then computed as softmax(A/

√
𝑑)V,

where attention A = QK𝑇 ∈ R𝐿×𝐿 . The advantage of attention is
that it allows for interactions across all positions in the sequence,
i.e., in our case the whole encoded image, as illustrated in Figure 3
(left). The disadvantage is computation of the attention matrix A
has quadratic time and memory complexity in terms of sequence
length: O(𝐿2) = O(𝐻2

feat𝑊
2
feat). For an input image with resolution

1024 × 1024, the sequence has length 𝐿 = 4096, and practically the
cost of performing the above matrix multiplication becomes prohib-
itively high, as discussed by several other works [Tay et al. 2020].
One simple way to reduce the computational cost is to use a sliding
window approach [Esser et al. 2021a], i.e., crop a fixed sized patch
around the currently sampled token and feed it into the transformer.
However, this introduces a bias towards preferring interactions only

within local regions of the image, missing other useful longer-range
interactions.

Sparsified Guided Attention (SGA). We propose an efficient spar-
sification strategy, without sliding windows. The key idea is to first
compute coarse full attention with downsampled images, determine
which locations are worth attending to, and then use it to avoid
computing most entries of the attention matrix A.

To do this, we first proceed by downsampling the original input
image and semantic map to 256× 256 resolution. We further encode
them to obtain a feature map of size 16× 16. At this resolution, com-
puting full attention is fast, because the sequence length of codebook
indices is only 162 = 256. Then we employ a guiding transformer,
which has the same architecture as the main transformer but is
trained at the low resolution, to calculate the dense attention matrix
Alow ∈ R256×256.

Then we leverage Alow to construct a block attention matrix
B ∈ R𝐿×𝐿 at the original feature resolution that will guide the
sparsification. To do this, we divide the original feature map into
non-overlapping blocks, as illustrated in Figure 3 (right) for an 8× 8
grid of blocks. For each block, we find the corresponding locations
in Alow and average their affinity values. Note that the matrix B
essentially consists of blocks, each of which is populated with a
single affinity value.
Then we construct the sparse attention matrix Asparse by con-

sidering only the attention weights that are likely important in
approximating the true attention. To this end, we keep the attention
if the corresponding affinity is high in the block attention matrix B.
In other words, we argue that the selection of sparse attention pairs
can be reliably guided by the dense attention evaluated at lower res-
olution. In addition, following the proposition in the context of NLP
models [Zaheer et al. 2020], we always compute attention within
the current and adjacent blocks, no matter their affinity values.

Asparse (𝑟, 𝑡) =
{
A(𝑟, 𝑡), if 𝑡 ∈ N (𝑟 ) or 𝑡 ∈ K(𝑟 ).
−∞, otherwise,

(1)

where N(𝑟 ) contains the entries of the neighborhood blocks of 𝑟 ,
and K(𝑟 ) contains the entries of the blocks with the top-𝐾 highest
affinities outside the neighborhood.
In our experiments, we set 𝐾 = 3, resulting in the sparsity ratio

<10%, and significantly reduce the computational cost of attention.
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Transformer encoder. The input to our transformer encoder is
a sequence of embeddings jointly representing the masked image
codebook indices x = {𝑥𝑙 }𝐿𝑙=1 and semantic codebook indices p =

{𝑝𝑙 }𝐿𝑙=1 produced by the image encoders (flattened using row-major
format), and position information of each index in the corresponding
sequence. Note that here, the transformers are operating both at full-
resolution and low-resolution. Specifically, for each position in the
sequence, three 𝑑-dimensional learned embeddings are produced: (i)
an image embedding 𝐸im (𝑥𝑙 ) representing the token 𝑥𝑙 at position
𝑙 in our sequence and in turn the corresponding RGB image region,
(ii) an embedding 𝐸map (𝑝𝑙 ) of the semantic token 𝑝𝑙 at the same
position, and finally (iii) a positional embedding 𝐸pos (𝑙) for that
position 𝑙 . The summation of token embeddings and positional
embeddings follows other popular transformers [Dosovitskiy et al.
2021; Vaswani et al. 2017]:

e𝑙 = 𝐸im (𝑥𝑙 ) + 𝐸map (𝑝𝑙 ) + 𝐸pos (𝑙) (2)

The sequence of embeddings {e𝑙 }𝐿𝑙=1 is fed to the first transformer
encoder layer and is transformed to a continuous representation by
the stack of transformer encoder layers. To preserve the position
information of each index at subsequent layers, the position encod-
ing generator (PEG) is placed before each encoder layer [Chu et al.
2021a,b] (more details in the appendix).

Transformer decoder. The decoder predicts codebook indices for
the edited region with the help of the global context obtained
through the transformer encoder. Similar to BART [Lewis et al.
2020], the autoregressive generation starts by pre-pending a spe-
cial index (token) [START] to the decoder input. At each step, the
decoder predicts a distribution over codebook indices from our dic-
tionaryZ learned in our image encoder (Section 3.1). Specifically,
the decoder predicts 𝑝 (X𝑙 |{𝜒<𝑙 }), where X𝑙 is a categorical random
variable representing a codebook index to be generated at position
𝑙 in the sequence and {𝜒<𝑙 } are all indices of the previous steps.
We note that the tokens corresponding to unmasked image regions
(i.e., image regions to be preserved) are set to the original image
codebook indices. We predict the distributions only for positions
corresponding to the edited image regions.
To predict the output distribution at each step, the decoder first

takes as input a learned embedding 𝐷im (𝑥𝑙 ) representing the input
token 𝑥𝑙 , and a learned positional embedding 𝐷pos (𝑙) for that po-
sition 𝑙 . It sums the two embeddings d𝑙 = 𝐷im (𝑥𝑙 ) + 𝐷pos (𝑙), then
passes d𝑙 into a self-attention layer (attention between generated
tokens) and a cross-attention layer (attention between generated
tokens and encoder output features). For both self-attention and
cross-attention we make use of the sparsified guided attention mech-
anism. We also note that the self-attention in the decoder layer is
modified to prevent tokens from attending to subsequent positions.
For more details about the architecture of our decoder, we refer
to the appendix. Based on the predicted distribution of codebook
indices, we use top-k sampling [Esser et al. 2021a; Holtzman et al.
2019] (𝑘 = 100 in our experiments) to create multiple candidate
output sequences, each of which can be mapped to a new image by
the image decoder. The generated images are ordered by the joint
probability of the distributions predicted by the decoder.

3.3 Image decoder
The image decoder takes as input the quantized feature map and
decodes an RGB image of size 𝐻im ×𝑊im × 3 following VQGAN
[Esser et al. 2021a] (see appendix for architecture details). Due to
the quantization process, the reconstruction of the encoder-decoder
pair is not perfect and leads to minor changes in the areas that are
not edited. To avoid this, we follow the same strategy as SESAME
[Ntavelis et al. 2020] and retain only the generated pixels in the
masked regions while the rest of the image is retrieved from the
original image. To further decrease any small artifacts around the
borders of the masked regions we apply Laplacian pyramid image
blending as a final post-processing step.

3.4 Training
We randomly sample free-form masks following [Ntavelis et al.
2020] and use the semantic information in the masked area as user
edits. The image encoder, decoder, and transformer are trained in
a supervised manner on training images which contain ground-
truth for masked regions. We first train our image encoders and
decoders following VQGAN [Esser et al. 2021a]. We then train our
transformer architecture on images with 256 × 256 resolution using
the original attention mechanism (full attention), which will be
used as the guiding transformer. Following that, we switch to train
our SGA-transformer with the sparsified guided attention on high
resolution, specifically, we initialize its weights from the previously
trained guiding transformer and fine-tune it at 512 × 512 resolution
again at 1024 × 1024 resolution. In all cases, we use the same losses
proposed in VQGAN [Esser et al. 2021b]. For more details about our
model and training procedures please see the appendix.

4 RESULTS
In this section, we present qualitative and quantitative evaluation
for ASSET.

Dataset. We evaluate our ability to perform high-resolution se-
mantic editing on the Flickr-Landscape dataset consisting of images
crawled from the Landscape group on Flickr. It contains 440𝐾 high-
quality landscape images. We reserve 2000 images for our testing set,
while the rest are used for training. Following [Ntavelis et al. 2020],
we use 17 semantic classes including mountain, clouds, water, and
so on. To avoid expensive manual annotation, we use a pre-trained
DeepLabV2 [Chen et al. 2017] to compute segmentation maps for all
images. We also use the ADE20K [Zhou et al. 2017] and COCO-Stuff
[Caesar et al. 2018] datasets for additional evaluation.

Evaluation metrics. To automatically generate test cases, we sim-
ulate user edits by masking out the pixels belonging to a random
semantic class for each test image. As explained in Section 3.2, we
can sample several output images and also rank them according to
their probability. For our experiments, we sample 50 images, and
keep the top 10 of them, as also done in other works [Liu et al. 2021b;
Zheng et al. 2019]. This results in 20K generated images for our test
set. To evaluate the perceptual quality of our edits we compute the
FID [Heusel et al. 2017], LPIPS [Zhang et al. 2018], and SSIM metrics
[Wang et al. 2004]. For each ground-truth image of the test split, we
evaluate these metrics against the synthesized image that achieves
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Fig. 4. Comparison of our approach with Taming Transformers [Esser et al. 2021a], ImageBART [Esser et al. 2021b], INADE [Tan et al. 2021], and SESAME
[Ntavelis et al. 2020] on 256 × 256 images.

Table 1. Quantitative evaluation on the Flickr-Landscape dataset at various
resolutions.

Res Method LPIPS ↓ FID ↓ SSIM ↑ mIoU ↑ accu ↑ div ↑

256

INADE 0.233 11.2 0.826 48.6 59.1 0.145
SESAME 0.213 10.2 0.830 50.3 61.7 0.000
TT 0.201 10.4 0.839 46.1 58.3 0.187
ImageBART 0.196 10.0 0.841 47.3 58.5 0.163
ASSET 0.187 9.2 0.846 51.5 63.0 0.151

512
TT 0.203 10.6 0.850 52.2 63.7 0.186
ImageBART 0.199 10.4 0.851 52.4 63.3 0.168
ASSET 0.186 8.4 0.856 53.5 64.7 0.145

1024
TT 0.210 10.9 0.881 50.4 61.7 0.160
ImageBART 0.201 10.4 0.880 50.8 62.1 0.139
ASSET 0.160 7.7 0.887 54.1 65.2 0.124

the best balance of them, as done in [Liu et al. 2021b; Zheng et al.
2019]. To evaluate how well the models adhere to the specified label
map at the edited areas we also compare the mean Intersection over
Union (mIoU) and the pixel-accuracy between the ground truth
semantic map and the inferred one using the pretrained DeepLabV2
model [Chen et al. 2017]. Finally, to evaluate diversity, we utilize
the LPIPS metric following [Liu et al. 2021b; Zheng et al. 2019]. The
diversity score is calculated as the average LPIPS distance between
5K pairs of images randomly sampled from all generated images, as
also done in [Liu et al. 2021b; Zheng et al. 2019]. We also perform a
user study to evaluate the perceptual quality of several models.

Baselines. We compare our method with several semantic im-
age editing baselines: SESAME [Ntavelis et al. 2020], INADE [Tan
et al. 2021], Taming Transformers (TT) [Esser et al. 2021a], and
ImageBART [Esser et al. 2021b]. SESAME and INADE are based on
convolutional networks and only support image resolutions of up
to 256 × 256 pixels. TT and ImageBART are based on Transformers,
but use a sliding window approach at high resolution, in which the
attention is only calculated on a local neighborhood for each sam-
pling location. While SESAME can only produce a single output, the
other three methods can generate diverse outputs for a given edit.
For a fair comparison, when generating image samples using TT or

Table 2. Quantitative evaluation on the COCO-Stuff and ADE20K datasets
at 512 × 512 resolution.

Dataset Method LPIPS ↓ FID ↓ SSIM ↑ mIoU ↑ accu ↑ div ↑
COCO- TT 0.237 20.2 0.820 36.9 51.7 0.192
Stuff ASSET 0.194 14.7 0.845 43.4 58.7 0.156

ADE20K TT 0.197 15.7 0.860 51.8 68.1 0.155
ASSET 0.191 14.0 0.862 52.6 68.8 0.140

ImageBART, we also selected top-10 images out of 50 sampled ones
based on their probability. We selected top-10 images for INADE
based on discriminator scores as done in [Liu et al. 2021b; Zheng
et al. 2019]. For all baselines, we use the authors’ implementation
and train them on the same datasets as our method.

Quantitative evaluation. For multimodal editing tasks we aim to
obtain outputs that are both diverse and consistent. There is an
inherent trade-off between diversity and consistency, as higher di-
versity can be achieved by sacrificing image consistency. As such,
we aim to achieve maximal diversity without generating inconsis-
tent results. For all models that can generate more than one solution
for a given edit, we choose the sample with the best balance of
quantitative measures (out of the top 10 samples), as done in [Liu
et al. 2021b] and [Zheng et al. 2019]. Table 1 shows the comparison
with competing models on the Flickr-Landscape dataset at different
resolutions.

Except for the diversity metric our model outperforms all compet-
ing methods on all resolutions. While TT and ImageBART achieve
a higher diversity than our model, we observe that this higher di-
versity comes at the cost of inconsistent images (see Figure 5 and
Figure 6). In contrast, our approach also achieves high diversity
but shows much more consistent image outputs, both at lower and
higher resolutions. At low resolution (256× 256), our method differs
from TT by using a bidirectional transformer encoder to capture
global context and partial convolutions to prevent information leak-
age from masked regions. As we increase the resolution (512 × 512
and higher), our approach continues to obtain consistent results,
thanks to the Sparsified Guided Attention (SGA) that captures long-
range dependencies. In contrast, the perceptual performance of TT
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Input & Edits ASSET Taming Transformers

Fig. 5. Comparison of ASSET with Taming Transformers [Esser et al. 2021a] at 1024 × 1024 resolution.

Input & Edits ASSET ImageBART

Fig. 6. Comparison of ASSET with ImageBART [Esser et al. 2021b] at 1024 × 1024 resolution.
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Input Image User Edits Ours Random Sliding Local

Fig. 7. Comparison showing the effects of using different kinds of attention at 1024 × 1024 resolution.
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Fig. 8. User study results. At both low and high resolution, our method
ASSET is dominantly preferred over the baselines.

and ImageBART decreases with increasing resolution, as the slid-
ing window approach is unable to enforce consistency over long
distances.
We also conduct experiments on the COCO-Stuff and ADE20K

datasets. Table 2 shows the comparison with TT at 512 × 512 reso-
lution. Our model outperforms TT on both datasets.

Qualitative evaluation. For qualitative evaluation, a brush of a
semantic class is used, painting over the image. Figure 4 shows
comparisonwith all competingmethods at 256×256 resolution. Since
we do not need SGA at small resolutions, we only use our guiding
transformer for these examples. Compared to other approaches, our
method produces more coherent content with fewer artifacts. In
Figure 5 and Figure 6, we show the comparison on 1024 × 1024
images against Taming Transformers and ImageBART respectively.
Figure 9 and Figure 10 show qualitative results on COCO-Stuff
and ADE20K at 512 × 512 resolution. Even at high resolution, our
method can synthesize coherent content across the whole image,
while Taming Transformers and ImageBART fail to capture long-
range dependency and sometimes ignore the user edits.

User study. To further evaluate perceptual image quality we also
conduct an AmazonMTurk study. We showed participants a masked

Table 3. Effects of different forms of attention on the Flickr-Landscapes
dataset at 512 × 512 resolutions.

Method LPIPS ↓ FID ↓ SSIM ↑ mIoU ↑ accu ↑ div ↑
Sliding 0.214 10.7 0.847 52.6 63.1 0.180
Local 0.209 10.1 0.853 51.1 62.4 0.152
Random 0.202 9.6 0.851 50.0 61.6 0.157
ASSET 0.186 8.4 0.856 53.5 64.7 0.145

input image, along with a randomly ordered pair of images synthe-
sized by ASSET and one of our baseline algorithms. The participants
were then asked which edited image looks more photo-realistic and
coherent with the rest of the image. Figure 8 summarizes 1500 user
responses for 256 × 256 and 1024 × 1024 resolutions. The study
shows that our method receives the most votes for better synthesis
compared to other methods in both resolutions, with the largest
margin at the highest 1024 × 1024 resolution.

Ablation study. To evaluate the effect of our SGA, we perform
several ablations with different attention approaches. The following
variants are evaluated at 512 × 512 resolution: (1) Sliding: we use
our guiding transformer with the sliding window approach as in
[Esser et al. 2021a]. (2) Local: we remove our top-𝐾 attention and
only use neighboring window attentionN(𝑟 ). (3) Random: we use
random instead of top-𝐾 attention similar to [Zaheer et al. 2020].
Table 3 shows the performance of all variants compared to our full
model. Our model outperforms all variants in all metrics except
for diversity. As before, we observe that higher diversity can be
achieved at the cost of poorer image consistency. In Figure 7 we
show qualitative comparisons with the proposed variants trained at
1024 × 1024 resolution. As we can see, without the SGA component,
the image consistency and perceptual quality decreases as the model
either only attends to local areas (sliding and local) or fails to attend
to important image regions at each sampling step (random).

ACM Trans. Graph., Vol. 41, No. 4, Article 74. Publication date: July 2022.



ASSET: Autoregressive Semantic Scene Editing with Transformers at High Resolutions • 74:9

Input & Edits ASSET Taming Transformers

Fig. 9. Qualitative results and comparisons with Taming Transformers [Esser et al. 2021a] on COCO-Stuff at 512 × 512 resolution.

Input & Edits ASSET Taming Transformers

Fig. 10. Qualitative results and comparisons with Taming Transformers [Esser et al. 2021a] on ADE20K at 512 × 512 resolution.
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user edit

water

attention map

water water

Fig. 11. Encoder self-attention visualized for two different query points
(shown as red). The image regions acquiring higher attention are the ones
more relevant to generate water reflections at each of these points.

Table 4. Number of transformer parameters for TT and ASSET.

Dataset TT ASSET
Landscape 307M 343M
COCO-Stuff 651M 365M
ADE20K 405M 269M

Model capacity comparison with TT. We compare the number
of transformer parameters with TT in Table 4. Our transformer’s
number of parameters is∼12% larger than the one in TT for the Land-
scape dataset, and much smaller for the COCO-Stuff and ADE20K
datasets. We note that ASSET’s and TT’s CNNs have the same num-
ber of parameters.

Attention visualization. We use Attention Rollout [Abnar and
Zuidema 2020] to visualize the attention map of our guiding trans-
former encoder. Specifically, we average attention weights of the
guiding transformer encoder across all heads and then recursively
multiply the resulting averaged attention matrices of all layers. The
attention maps for two different query points are presented in Fig-
ure 11. The guiding transformer can attend to informative regions
for different query points. For the query points in Figure 11, the
regions with high attention correspond to image areas useful to
synthesize reflection of scenery at each of these points.

VQGAN leakage visualization. We employ partial convolutions
[Liu et al. 2018] and region normalization [Yu et al. 2020] in our
image encoder while processing the unmasked image regions. The
reason is that the features produced for unmasked regions should
not be affected by the masked image regions. Partial convolutions
and region normalization avoid any information leakage of the
masked area. In Figure 12, we visualize leakage for the original
VQGAN and our improved image encoder. With our modification,
the latent features produced for unmasked regions are independent
of the masked area.

Inference speed comparisons. Following [Cao et al. 2021; Esser
et al. 2021b], we record the average inference time on Flickr Land-
scape and ADE20K as shown in Table 5. The inference speed is
influenced by the size of the masked region relevant to the size of
the input image (i.e., ratio of the masked region). Following [Cao
et al. 2021], we report the average masked ratio in this table. Our

(a) input image

mask

changed unchanged

(d) ASSET
latent features

(c) VQGAN 
latent features(b) mask

masked area

Fig. 12. The masked area of the input image is replaced with random noise.
The difference of 16 × 16 latent features between the original image (a) and
the masked image (b) are visualized on the right. Changed and unchanged
latent features are visualized in blue and black respectively. Image (c) shows
how unmasked image latent tokens are affected (blue tokens) by the masked
area in the original VQGAN. Image (d) shows that our image encoder suc-
cessfully prevents leakage from the masked area to the unmasked area.

Table 5. Average inference time in seconds per image.

Resolution Dataset Masked Ratio TT ASSET
1024 Landscape 0.287 52.3 55.8
512 ADE20K 0.296 16.9 10.6

method achieves similar inference speed with TT, while producing
much higher-quality results than TT.

Inference time of guiding transformer. Measured on the Landscape
dataset, the average inference time of our guiding transformer (256
× 256 resolution) represents only a small fraction (3.4%) of the
total inference time of the full ASSET pipeline. The majority of the
inference time (96.6%) is taken by our architecture operating at high
resolution, which is the crucial part significantly accelerated by our
SGA mechanism.

Comparison with full attention. Based on an NVIDIA A100 (40GB
VRAM) at 1024 × 1024 resolution with a batch size of 1, the trans-
former architecture requirements with full attention exceeds the
available memory during training. Using our Sparsified Guided At-
tention mechanism, the transformer architecture utilizes 37GB at
train time. In terms of inference time during testing, the cost of the
guiding transformer is significantly lower: ASSET is about 20 times
faster at test time compared to using full attention at 1024 × 1024
resolution.

5 LIMITATIONS AND CONCLUSION
We introduce a novel transformer-based approach for semantic im-
age editing at high resolutions. Previous approaches have difficulty
in modeling long-range dependencies between image areas that are
far apart, resulting in unrealistic and inconsistent image edits. To
this end, we introduce a novel attention mechanism called Sparsified
Guided Attention (SGA), which uses the full attention map at the
coarse resolution to produce a sparse attention map at full resolu-
tion. Our experiments show that SGA outperforms other variants
of localized or sparse attention, and allows us to obtain realistic and
diverse image edits even at high resolutions of 1024 × 1024 pixels.
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While our approach can perform consistent and diverse edits at
high resolutions of up to 1024×1024 pixels, there are still avenues for
further improvements. A common issue in transformers including
ours is that directly applying a trainedmodel to generate content at a
higher resolution degrades performance, since the learned positional
embedding cannot adapt to the new resolution. In addition, the
repeated autoregressive sampling takes several minutes to perform
a full edit at 1024 × 1024 resolution. To alleviate this issue, we can
sample a diverse set of outputs for a given edit in parallel on multiple
GPUs. Finally, the synthesized content may not be perfectly aligned
with the provided mask since the masking takes place at a low
resolution in the latent space.
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A IMPLEMENTATION DETAILS
Here we provide implementation details of our network architecture
and training procedure. Our model is implemented in PyTorch.

Image encoder / decoder. Our image encoder (Section 3.1) and
decoder (Section 3.3) use the architecture shown in Table 7. The

Table 6. Ablation for use of global blocks at 512 × 512 resolution.

Method LPIPS ↓ FID ↓ SSIM ↑ mIoU ↑ accu ↑
R+G 0.207 9.5 0.849 50.3 61.7
Random 0.202 9.6 0.851 50.0 61.6
ASSET 0.186 8.4 0.856 53.5 64.7

design of the networks follows the architecture proposed in VQ-
GAN [Esser et al. 2021a]. One difference is that we employ partial
convolutions [Liu et al. 2018] and region normalization [Yu et al.
2020] in our image encoder while processing the unmasked image
regions. The reason is that the features produced for unmasked
regions should not be affected by the masked image regions. Par-
tial convolutions and region normalization avoid any information
leakage of the masked area.

The semantic map encoder follows the same architecture with reg-
ular convolutions. We note that during training, VQGAN measures
the reconstruction error in terms of both the image and semantic
map. Thus, along with the decoder for the image, we also use a de-
coder to reconstruct the semantic map. The semantic map decoder
uses an architecture following the “decoder” column in Table 7. A
minor difference is that the number of input/output channels is
changed from 3 to the number of categories 𝐶 in the semantic map
encoder and decoder.

Transformer. Our transformer (Section 3.2) follows the architec-
ture presented in BART [Lewis et al. 2020]. All the hyperparameters
for the transformer are described in Table 8.
Following [Chu et al. 2021a,b], the position encoding generator

(PEG) is placed before each transformer encoder layer. The position
encoding generator is a 5 × 5 depth-wise convolution with the
padding size of 2, which convolves with each block independently.
Similar to the encoder layer, we add one PEG before the first decoder
layer which takes the encoder output representation as input to
produce positional embeddings for the transformer decoder.

Sparsified Guided Attention. For each transformer layer and at-
tention head, a full attention matrix A𝑙𝑜𝑤 ∈ R256×256 is computed
from the downsampled input image. The computation of the block
attention matrix B for high-resolution is guided by A𝑙𝑜𝑤 . Specifi-
cally, in our experiments, the number of blocks 𝑁 is set to 64. Each
block consists of 256

64 = 4 tokens at low-resolution. The affinity
value of each block corresponds to a 4 × 4 region in A𝑙𝑜𝑤 . In our
implementation, we use a 2D average pooling layer with kernel size
4 and stride 4 to downsample A𝑙𝑜𝑤 into B.

Training details. For the image encoder/decoder and semantic
encoder/decoder, we used the Adam optimizer [Kingma and Ba
2015] with learning rate 7.2 · 10−6 and batch size 16. During the
training of the guiding transformer, we used the AdamW optimizer
[Loshchilov and Hutter 2019] with learning rate 3.2 · 10−5 and batch
size 224. During the finetuning of the SGA-transformer, we used
the AdamW optimizer [Loshchilov and Hutter 2019] with learning
rate 1.2 · 10−5 and batch size 8. All training is done on 8 A100 GPUs.
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Table 7. Architecture of the image encoder and decoder. Note that 𝐻feat =
𝐻im
16 ,𝑊feat =

𝑊im
16 .

Encoder Decoder
X ∈ R𝐻im×𝑊im×3 F̂ ∈ R𝐻feat×𝑊feat×256

Conv2D → R𝐻im×𝑊im×128 Conv2D → R𝐻feat×𝑊feat×512

4× { Residual Block, Downsample Block} → R𝐻feat×𝑊feat×512 Residual Block → R𝐻feat×𝑊feat×512

Residual Block → R𝐻feat×𝑊feat×512 Non-Local Block → R𝐻feat×𝑊feat×512

Non-Local Block → R𝐻feat×𝑊feat×512 Residual Block → R𝐻feat×𝑊feat×512

Residual Block → R𝐻feat×𝑊feat×512 4× { Residual Block, Upsample Block} → R𝐻im×𝑊im×128

GroupNorm, Swish, Conv2D → R𝐻feat×𝑊feat×256 GroupNorm, Swish, Conv2D → R𝐻im×𝑊im×3

Table 8. Transformer hyperparameters. For every experiment, the number of total blocks 𝑁 , the number of blocks in N(𝑟 ) , the number of blocks in K(𝑟 )
are set to 64, 3, 3 respectively. 𝑛𝐸 denotes the number of transformer layers in the bidirectional encoder, 𝑛𝐷 is the number of transformer layers in the
autoregressive decoder, # params is the number of transformer parameters, 𝑛ℎ is the number of attention heads in the transformer, |Z | is the number of
codebook entries, dropout is the dropout rate used for training the transformer, and 𝑛𝑒 is the token embedding dimensionality.

Dataset 𝑛𝐸 𝑛𝐷 # params [𝑀] 𝑛ℎ |Z| dropout 𝑛𝑒

Flickr-Landscape 7 15 343 16 1024 0.0 1024
COCO-Stuff 7 15 365 16 8192 0.0 1024
ADE20K 7 10 269 16 4096 0.1 1024

input image User edit Our result

water

Fig. 13. Example of a less successful result.

B ADDITIONAL RESULTS AND COMPARISONS
Additional comparisons. Please see Figure 14 and Figure 15 for

more comparisons at 1024 resolution.

Adding global blocks. In our ablation study, we also experimented
with the global block presented in BigBird [Zaheer et al. 2020].
Specifically, we make the first and last blocks “global”, which attend
over the entire sequence. Similar to [Zaheer et al. 2020], we use
the global attention together with the local attention and random
attention – this variant is referred to as R+G. The results did not
improve compared to the Random variant in terms of our evaluation
metrics (see Table 6).

Failure case. Structured textures such as the mountain in Figure
13 is challenging for reflection synthesis. In this case, our result may
not reproduce the texture well.
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Input & Edits ASSET ImageBART

Fig. 14. Comparison of ASSET with ImageBART [Esser et al. 2021b] at 1024 × 1024 resolution.

Input & Edits ASSET Taming Transformers

Fig. 15. Comparison of ASSET with Taming Transformers [Esser et al. 2021a] at 1024 × 1024 resolution.
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